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ANALYTICAL SOLUTIONS FOR THE FLOW OF
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TEMPERATURE DEPENDENT VISCOSITY

MODELS IN A PIPE
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ABSTRACT. This study focuses on the heat generation and
various viscosity variational parameters of a third grade fluid
flow in a circular pipe. The governing equations in cylindrical
coordinates under quadratic heat generation is considered for
three different viscosity models: constant viscosity, Reynold’s
and Vogel viscosity models. Perturbation technique is adopted
and explicit, analytical expressions are derived for the dimen-
sionless velocity and temperature of the fluid. These new an-
alytical solutions are validated against the results obtained us-
ing numerical integration. Graphical results are presented and
discussed quantitatively with respect to the competing effects
of quadratic heat generation, viscous heating, pressure gradient
and non-Newtonian material parameters. Thereafter, the analy-
sis is focused on thermal criticality of physical parameters. The
operating conditions of emerging parameters are discussed for
the viscosity models
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1. INTRODUCTION

The heat released for a material undergoing a one-step exother-
mic reaction in an enclosure is described by the generalized Arrhe-
nius kinetics. Many chemical reactions involve simple Arrhenius
law [27], bimolecular law [3], sensitized law [5] while the Frank-
Kamenetskii’s approximation [10], quintic approximation in chem-
ical kinetics [4] and Okoya [21] as well as the quadratic expression
[11] also subsists. The first evidence of the occurrence of quadratic
expression to the Arrhenius term as heat generation term in a closed
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vessel was in the article by Gray and Harper [11]. The quadratic
heat released model has enhanced the investigation and understand-
ing of a physical phenomenon called thermal explosion i.e. a jump
from slow reaction to fast reaction. The main assumption during
the highly exothermic reaction was that reactant consumption is
negligible. In fact, this assumption implies absence of the conser-
vation of energy in the model while the merits and demerits are
established in Gray and Harper [11].
In addition to the explanation above, the heat generation term

modeled by quadratic expression has been employed by few re-
searchers. Boddington et al. [2] proved the existence of a number
of vital quadratic expressions (that introduced by Gray and Harper
[11] being one of them) to the Arrhenius term which enabled an
induction time to be defined and calculated. Dik and Zurer [5], ob-
tained the conditions for thermal explosion of a turbulent reactive
stream in a pipe by method of integral relations. Ayeni [1] estab-
lished the induction time which signals the onset of explosion for
a chain reaction of oxygen (reactant) and hydrogen (active inter-
mediary) with catalyst in the form of nitrosyl chloride (sensitizer)
as a non-isothermal branched - chain reaction using standard tech-
niques.
In the preceding paragraph, it is assumed that the material is

motionless. In the event that the material is being transported in a
flow field such as a third-grade fluid with nonlinear viscosities (see
for example, [6], [9], [12], [13], [16], [17], [20], [25], [26] and [31]),
then the hydrodynamic factors which control the dissipation of en-
ergy, viscosities of the fluid, nature of the fluid under consideration
and conduction of matter, influence the reaction history. This is
basically a one-dimensional problem and the reaction is assumed
to take place entirely in the stream. To the best of our knowledge,
analytical studies or numerical analysis of quadratic heat genera-
tion term in a non-Newtonian flow systems have not been studied
in a pipe. Our aim is to construct analytical solutions using per-
turbation technique [30] to investigate the sensitivity analysis of
emerging physical parameters of interest. The critical values of the
temperature distribution and of the Frank- Kamenestkii parameter
are obtained using standard Maple solver [23].

2. DEVELOPMENT OF THE PROBLEM

We shall consider in the following a class of steady one-dimensional
flow of non-Newtonian fluid in an infinitely long cylinder of radius
R0 as depicted in Figure 1.
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We choose cylindrical polar coordinate (r̄, φ, z̄) with z̄-axis along
the axis of the cylinder, r̄ normal to it with no flow in the φ-
direction. The flows are induced by constant applied pressure
gradient in the z̄ direction. We seek velocity field of the form
V = (0, 0, w̄(r̄)) where w̄ is the axial component of the velocity.
The continuity equation is automatically satisfied with the above
assumptions. The analyses performed is for a laminar, incompress-
ible fluid flowing in a pipe with a uniformly reactive homogeneous
third grade fluid in the absence of a body force. The definition of
the exothermic reaction with reaction rate expression, k0 obeying
the generalized Arrhenius law is given by

k0 = Ā

(
kT̄

ν�

)m

exp

(
− E

RT̄

)
, (1)

where Ā is the rate constant, R is the universal gas constant, � is
the Planck’s number, E is the activation energy, ν is the vibration
frequency k is the Boltzmann’s constant, m is a numerical exponent
and T̄ is the temperature of the system. It is further assumed that
there is negligible electrical heating as well as reactant consumption.
The heat flux vector is represented by Fourier law with constant
thermal conductivity and viscosity is assumed to be temperature
dependent.
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Figure 1. Schematic diagram of the flow domain.

Based on the above assumptions and consideration, the dimen-
sional momentum balance and energy equation that govern the flow
in the pipe as an extension of [18], [23] and [30] are non-dimensional
by using the following characteristic parameters:
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and δ =
Q̄EĀR2

0C0k
mT̄m−2

0

RKνm�m
exp

(
− E

RT̄0

)
,

where w̄0 is a reference velocity, Q is the heat of reaction, C0 is the
initial concentration and T̄0 is the initial temperature. Here r is the
dimensionless perpendicular distance from the pipe axis, w is the
dimensionless velocity, Γ is the viscous heating parameter which is
related to the Prandtl and the Eckert numbers, δ is the modified
Frank-Kamenetskii parameter, θ is the dimensionless temperature
excess, β is the activation energy, μ is the dimensionless viscosity, C
is the pressure gradient parameter, Λ is the non-Newtonian material
parameter of the fluid and μ̄∗ is for the Vogel’s viscosity model.
Although the material constant β3 and hence Λ may also depend
on temperature, they are taken as constants for simplicity in this
study.
In the new variable introduced, the reaction rate becomes k0 =

(1 + βθ)m exp(θ/[1 + βθ]). It is supposed in the analysis that the
heat generation term follows the quadratic form (i.e. k0 = θ2 +
(e− 2)θ+ 1) introduced by Gray and Harper [11] corresponding to
Frank-Kamenetskii approximation (FKA) (β = 0).
The non-dimensional governing equations are written as

dμ

dr

dw

dr
+

μ

r

(
dw

dr
+ r

d2w

dr2

)
+

Λ

r

(
dw

dr

)2(
dw

dr
+ 3r

d2w

dr2

)
= C, (2)

d2θ

dr2
+

1

r

dθ

dr
+Γ

(
dw

dr

)2
(
μ+ Λ

(
dw

dr

)2
)
+ δ(θ2+(e−2)θ+1) = 0, (3)

The associated boundary conditions for equations (1) and (2) with
respect to the pipe geometry are

w(1) = θ(1) = 0, and
dw

dr
(0) =

dθ

dr
(0) = 0. (4)

The viscosity μ is assumed to be a function of temperature and
the form of the equations (2) and (3) depend on the viscosity model
chosen to represent the fluid. Here we present the results for three
common viscosity models (see e.g., Ellahi et al. [8], Massoudi and
Christe [23], Nadeem and Ali [19], Okoya [22], Okoya [24] and
Sobamowo et al. [28]:

μ̄(T̄ ) =

⎧⎨
⎩

μ̄0, constant case,
μ̄0 exp(−M̄(T̄ − T̄0)), Reynolds’ model case, (5)
μ̄0 exp(a/(b+ T̄ )), Vogel’s model case.
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with a, b, and M̄ being constants so that the corresponding non-
dimensional form is

μ =

⎧⎨
⎩

1, constant case,
exp(−γθ), Reynolds’ model case, (6)
exp(A/(B + θ)− T̄0), Vogel’s model case.

where

A =
a

T̄0β
, B =

b+ T̄0

T̄0β
, and γ = M̄βT̄0.

It is clear that equations (2), (3) and (6) for our model problem
are similar to those considered by Sobamowo et al. [29] except that
the heat generation term for their model is the simple quadratic
term (i.e. θ2). Other researchers investigated heat source term
that is linear in temperature (see Sobamowo and Akinshilo [28],
Jayeoba and Okoya [14] and the references contained therein). The
aforementioned articles do not admit criticality of pertinent param-
eters. In the absence of heat source term, Our model is similar to
that studied by Massoudi and Christie [18].
Investigating the present problem we have employed two meth-

ods, namely, numerical method and approximate analytical tech-
nique, which are individually presented below.

3. ANALYTICAL RESULTS

The governing equations (2) - (4) and (6) are nonlinear and exhibit
no closed-form solutions, hence, we employ approximate analyti-
cal methods. In general, approximate solutions can be very useful
in implementing and validating computer routines of complicated
problems.
3.1 Constant viscosity case
For constant viscosity μ = 1. Let us suppose that the approximate
velocity and temperature profiles are given as

w = w0 + εw1 θ = θ0 + εθ1, (7)

where ε is the artificial perturbation quantity, a small parameter
whereby, the dimensionless non-Newtonian parameter, Λ, (or the
generalized Frank-Kamenetskii parameter, δ) is small compared to
the Newtonian term, M (or the classical Frank Kamenetskii num-
ber, N), such that

Λ = εM, δ = εN. (8)
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In order to avoid repetition, the details of the calculations are omit-
ted and the solution subject to (4) is directly given by

w =
−C

4
(1− r2) +

Λ

32
C3(1− r4), (9)

θ =
ΓC2

64
(1−r4)−ΛΓC4

576
(1−r6)+

δΓ2C4

3686400
(134−225r2+100r6−9r8)

+
δΓC2

2304
(e− 2)[8− 9r2 + r6] +

δ

4
(1− r2), (10)

after returning back to the original parameters.
3.2 Reynolds’ viscosity model
In this case, using the Maclaurin’s series we can express that

μ = exp(−γθ) = 1− γθ +O(θ2). (11)

Here, our interest is to retain the perturbation terms (i.e Λ and δ)
for the constant viscosity model and it is logical to select

γ = εP. (12)

Expansions of (7) are also assumed for this study of velocity and
temperature profiles. We obtained after some algebra the final so-
lutions subject to conditions (4) as

w =
−C

4
(1− r2) +

Λ

32
C3(1− r4)− γΓC3

768
(2− 3r2 + r6), (13)

θ =
ΓC2

64
(1− r4)− ΓΛC4

576
(1− r6) +

γΓ2C4

16384

(
3− 4r4 + r8

)
+

δΓ2C4

3686400
(134− 225r2 + 100r6 − 9r10) +

δΓC2

2304
(e− 2)[8− 9r2 + r6]

+
δ

4
(1− r2), (14)

on changing back to the original parameters.
3.3 Vogel’s viscosity model
Here, after the Maclaurin’s series expansion, we obtain

μ = exp

(
A

B + θ
− T̄0

)
= exp

(
A

B
− T̄0

)(
1− ε

Aθ0
B2

+O(ε2)

)
. (15)

We still retain the perturbation quantities (i.e. Λ and δ) for the
constant viscosity model and we impose a similar restriction on the
viscous heating parameter Γ by setting

Γ = εQ, (16)

and this choice dictates the pertinent expansion of the form

w = w0 + εw1, θ = εθ0 + ε2θ1. (17)
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The solutions of the problem subject to (4) in the original param-
eters after some manipulations are

w = −C∗

4
(1− r2) +

ΛC∗4

32C
(1− r4)− A

B2

ΓCC∗2

768
(2− 3r2+ r6), (18)

θ =
ΓCC∗

64
(1− r4)− ΓΛC∗4

576
(1− r6) +

A

B2

Γ2C2C∗2

16384
(3− 4r4 + r8)

+
δΓ2C2C∗2

3686400
(134−225r2+100r6−9r10)+

δΓCC∗

2304
(e−2)[8−9r2+r6]

+
δ

4
(1− r2). (19)

where C∗ as been defined as

C∗ =
C

exp(A/B − T̄0)
(20)

The restriction to small δ is in line with limit of practical rele-
vance as contained in Seddeek and Aboeldahab [23].
We observe that the dimensionless velocities are the same with

Yurusoy and Pakdemirli [30]. Consequently, we will look only at the
dimensionless mainstream temperature. The temperature equation
is different from Yurusoy and Pakdemirli [30] due to the terms as-
sociated with heat generation including the parameter δ. It is also
evident that the results of the dimensionless mainstream temper-
ature for constant viscosity model is recovered when γ and A are
zero for the Reynolds’ and Vogel’s viscosity models, respectively.
In the following section, equations (2) - (4) and (6) are solved

numerically using standard Maple solver.

4. NUMERICAL SOLUTIONS

We now discuss the numerical solution of the non-dimensional forms
of equations (2), (3) and (6) with the boundary conditions (4).
In doing so, we first note that equations (2) and (3) contain a
singularity for r = 0. To handle this problem numerically, it is
necessary to develop equations that will not contain a singularity.
On using L’Hospital rule, we have new equations

dμ

dr

dw

dr
+ 2μ

(
d2w

dr2

)
+ 6Λ

(
dw

dr

)2
d2w

dr2
= C, (21)

2
d2θ

dr2
+Γ

(
dw

dr

)2
(
μ+ Λ

(
dw

dr

)2
)
+ δ[θ2+(e−2)θ+1] = 0, (22)
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which are valid near r = 0. The boundary conditions at r = 1 are
specified in a straightforward manner. Equations (2), (3) and (6)
are augmented with (21) and (22) and solved numerically subject
to (4) by numerical algorithm based on the inbuilt Maple 12 solver.
In practice, the neighborhood of the axis of the pipe to start the
integration is chosen sufficiently small to the order of 10−2. To
ascertain the accuracy of the numerical solutions obtained by the
standard Maple solver employed in this study, the dimensionless
mainstream temperatures were generated for the special case of
δ = 0 so that comparison can be made with published numerical
results for the viscosity models at different parameter regime. For
this particular case, the numerical solution agree very well with the
finite-difference results presented in Massoudi and Christe [18] with
the difference being less than 10−3.
The numerical solutions developed in this section are used to

determine the interval of accuracy and effectiveness of the pertur-
bation technique of the preceding section.

5. COMPARISON BETWEEN NUMERICAL AND

PERTURBATION SOLUTIONS

Here, the solution for the temperature distribution at the central
axis of the pipe θ (0) = θmax are tabulated. The numerical solu-
tion (N) is also compared with the perturbation solution (P) while
the corresponding relative error (Rel. E.) is computed. The θmax

for the constant model viscosity are depicted in Tables 1 and 2,
Reynolds’ viscosity model are displayed in Tables 3-5 while those
for Vogel’s viscosity model are in Tables 6 and 9. In these tables,
the variation of the emerging parameters Λ,Γ, γ, δ, A,B, C and T̄0

are taken into account. It is evident that the approximate solutions
reveal the characteristics of the problems and compared favorably
well with the numerical integration of same.

Table 1: Comparison of perturbation solution and numerical
result for constant viscosity model with Λ = 1 and δ = 0.2.

C Γ = 1 Γ C = −1
θmax(P) θmax(N) Rel. E. θmax(P) θmax(N) Rel. E.

-0.25 0.05100 0.05246 2.79% 0.0 0.05000 0.05146 2.84%
-0.5 0.05392 0.05541 2.68% 2.5 0.08601 0.08870 3.03%
-0.75 0.05852 0.06010 2.63% 5.0 0.12212 0.12606 3.13%
-1 0.06439 0.06634 2.94% 10 0.19460 0.20113 3.25%
-1.1 0.06698 0.06923 3.25% 20 0.34066 0.35269 3.41%
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Table 2: Comparison of perturbation solution and numerical
result for constant viscosity model with Γ = −C = 1.

Λ δ = 0.2 δ Λ = 1
θmax (P) θmax (N) Rel. E. θmax (P) θmax (N) Rel. E.

0 0.06613 0.06767 2.27% 0.0 0.01389 0.01435 3.23%
0.5 0.06526 0.06691 2.46% 0.1 0.03914 0.03995 2.02%
1 0.06439 0.06634 2.94% 0.2 0.06439 0.06634 2.94%
1.5 0.06353 0.06589 3.58% 0.25 0.07702 0.07987 3.57%
2 0.06266 0.06550 4.34% 0.3 0.08965 0.09364 4.26%

Table 3: Comparison of perturbation solution and numerical
result for Reynolds’ viscosity model with Λ = γ = 1 and δ = 0.2.

C Γ = 1 Γ C = −1
θmax(P) θmax(N) Rel. E. θmax(P) θmax(N) Rel. E.

-0.25 0.05100 0.052498 2.85% 0.0 0.05 0.05146 2.84%
-0.5 0.05393 0.055530 2.87% 2.5 0.08716 0.09051 3.70%
-0.75 0.05858 0.06038 2.98% 5.0 0.12669 0.13159 3.72%
-1 0.06458 0.06685 3.40% 10 0.21291 0.22067 3.52%
-1.1 0.06725 0.06984 3.71% 20 0.41390 0.43342 4.50%

Table 4: Comparison of perturbation solution and numerical
result for Reynolds’ viscosity model with Γ = −C = γ = 1.

Λ δ = 0.2 δ Λ = 1
θmax (P) θmax (N) Rel. E. θmax (P) θmax (N) Rel. E.

0 0.06631 0.06835 2.98% 0.0 0.01407 0.01448 2.82%
0.5 0.06545 0.06748 3.01% 0.1 0.03932 0.04026 2.31%
1 0.06458 0.06684 3.39% 0.2 0.06458 0.06684 3.39%
1.5 0.06371 0.06634 3.96% 0.25 0.07720 0.08047 4.06%
2 0.06284 0.06592 4.67% 0.3 0.08983 0.09436 4.80%

Table 5: Comparison of perturbation solution and numerical result for
Reynolds’ viscosity model with Λ = Γ = −C = 1 and δ = 0.2.

γ θmax(S) θmax(N) Rel. E.
-3 0.06386 0.06495 1.70%
-2 0.06403 0.06540 2.09%
-1 0.06421 0.06586 2.50%
0 0.06439 0.06635 2.94%
1 0.06458 0.06684 3.39%
2 0.06476 0.06737 3.87%
3 0.06494 0.06790 4.36%
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Table 6: Comparison of perturbation solution and numerical result
for Vogel’s viscosity model with Λ = A = B = T̄0 = 1 and δ = 0.2.

C Γ = 1 Γ C = -1
θmax (P) θmax (N) Rel. E. θmax (P) θmax (N) Rel. E.

-0.25 0.05100 0.05250 2.85% 0.0 0.05 0.05146 2.84%
-0.5 0.05393 0.05553 2.87% 2.5 0.08716 0.09039 3.58%
-0.75 0.05858 0.06037 2.97% 5.0 0.12670 0.13107 3.33%
-1 0.06458 0.06683 3.37% 10 0.21291 0.21754 2.13%
-1.1 0.06725 0.06982 3.68% 20 0.41390 0.40996 −0.96%

Table 7: Comparison of perturbation solution and numerical result for
Vogel’s viscosity model with Γ = A = B = −C = T̄0 = 1.

Λ δ = 0.2 δ Λ = 1
θmax (P) θmax (N) Rel. E. θmax (P) θmax (N) Rel. E.

0.0 0.06631 0.06832 2.94% 0.0 0.01407 0.01448 2.81%
0.5 0.06545 0.06746 2.98% 0.1 0.03932 0.04025 2.30%
1.0 0.06458 0.06683 3.37% 0.2 0.06458 0.06683 3.36%
1.5 0.06371 0.06632 3.94% 0.25 0.07720 0.08045 4.03%
2.0 0.06284 0.06590 4.65% 0.3 0.08983 0.09431 4.75%

Table 8: Comparison of perturbation solution and numerical result for
Vogel’s viscosity model with Λ = Γ = B = −C = T̄0 = 1 and δ = 0.2.

A B = 1 B A = 1
θmax (P) θmax (N) Rel. E. θmax (P) θmax (N) Rel. E.

1 0.06458 0.06683 3.37% 0.5 0.05600 0.05817 3.73%
2 0.05595 0.05778 3.16% 1.0 0.06458 0.06683 3.36%
3 0.05219 0.05386 3.09% 1.1 0.06535 0.06786 3.69%
4 0.05080 0.05237 2.98% 1.2 0.06585 0.06873 4.18%
5 0.05030 0.05181 2.92% 1.3 0.06612 0.06948 4.83%

Table 9: Comparison of perturbation solution and numerical result for
Vogel’s viscosity model with Λ = Γ = A = B = −C = 1 and δ = 0.2.

T̄0 δ = 0.2
θmax (PS) θmax (NS) Rel. E.

0.5 0.05961 0.06139 2.89%
0.75 0.06203 0.06392 2.96%
1 0.06458 0.06683 3.37%
1.1 0.06546 0.06806 3.81%
1.2 0.06611 0.06930 4.60%

Tables 1 and 2 are for constant viscosity model. In Table 1, columns
1-4, the effect of pressure-gradient variation is depicted when Λ = Γ = 1
and δ = 0.2. It is obvious that for |C| ≤ 1 the perturbation solutions
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exhibit good agreement with relative error less than 5 %. For |C| > 1,
deviations become substantial. In Table 1, columns 5-8, variation of Γ
is considered. Analytical results are in very good agreement with the
numerical results since the relative error is less than or equal to 5 % for
Γ ≤ 20. In Table 2, columns 1-4, the variation of the non-Newtonian
parameter (Λ) is considered. It is worth noting that the case of Λ = 0
corresponds to a Newtonian fluid. For Λ ≤ 2 the relative error is less
than 5 % when C = −1, Γ = 1 and δ = 0.2. In Table 2, columns 5-8,
the range for 5 % relative error for the Frank-Kamenetskii parameter, δ
is δ ≤ 0.3.

Tables 3-5 illustrate for the Reynolds’ viscosity model. In Table 3,
columns 1-4, the variation of parameter C is considered and found to be
remarkably similar in error values to the constant case. For the variation
of Γ in Table 3, columns 5-8, the relative error is less than 5% for the
range of Γ values. In Table 4, columns 1-4, the variation of parameter
(Λ) is considered. For Λ ≤ 2 the relative error is less than 5 %. For
the variation of δ in Table 4, columns 5-8, the results deviate from each
other for δ > 0.3 substantially since the relative error is greater than
5 %. For 5 % relative error, δ ≤ 0.3. For δ = 0 results are the same up
to three decimals. In Table 5, variation of the viscosity parameter γ is
investigated. The perturbation solutions are in very good agreement to
relative error of 5 % when γ ≤ 4.

It should be noted that according to the Vogel’s model, viscosity has
two additional parameters namely A, B and the initial temperature T̄0

in the place of γ in the Reynold’s case. Table 6, columns 1-4, C varia-
tions is considered. It is observed that C produces quite similar behavior
as in the constant and Reynold’s models. In Table 6, columns 5-8, vari-
ation of parameter Γ is considered. The relative errors are extremely
small for these ranges of Γ values. The larger the viscous heating pa-
rameter, the smaller the relative errors between the numerical and the
asymptotic solutions. Table 7, columns 1-4 shows the dependence of
θmax on parameter Λ. For Λ < 2, the relative error is less than 5% and
results are in good agreement. The effect of heat parameter δ is shown
in Table 7, column 5-8. For δ ≤ 0.3 the results are in good agreement
with relative error of less than 5 %. For δ = 0 results are the same up
to three decimals. Variation of relative error as a function of A could be
analyzed through Table 8, columns 1-4. It is seen from the table that
there is a good agreement between perturbation and numerical results
as the relative error decreases as A increases. For the variation of B in
Table 8, columns 5-8, the relative error is greater than 5 % for B > 1.2.
Finally, for T̄0 ≤ 1.2, the relative error is less than 5 % in Table 9. For,
T̄0 > 1.2 deviations become substantial. These comparisons lends con-
fidence in the perturbation solutions and shows that the perturbation
method is adequate for solutions of the present problem.
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Having confirm the validity of the perturbation solutions we are left
to look only on the effect of embedding parameters on the solutions of
the energy equations.

6. RESULTS AND DISCUSSION

6.1 The dependence of the physical parameters upon heat flow

In this section, the pair Figures. 2 and 3, 4 and 5, 6 and 7 as well as
8 and 9 present the constant, Reynold’s and Vogel’s viscosity models
and the dimensionless radius versus the dimensionless temperature for
different values of δ, Λ, Γ and C, respectively. Figures. 2 and 3 show
the effect of a new heat generation parameter on the dimensionless tem-
perature distributions. Since δ is the measure of the heat generation
due to chemical reaction, in the absence of heat generation (δ = 0) the
temperature distribution depicts the least profile. For comparison, dif-
ferent values of the heat generation parameter δ (= 0.0, 0.1, 0.3) are also
displayed. It is seen that as the amount of heat generated increases, the
temperature distribution are noticeably higher than without the effect
of heat generation (i.e. for δ = 0.0) for the three viscosity models.

Figure 2. Effect of δ on the dimensionless tempera-
ture profiles of constant and Reynolds’ viscosity mod-
els when Γ = Λ = −C = 1.
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Figure 3. Effect of δ on the dimensionless temper-
ature profiles of Vogel’s viscosity model when Γ =
Λ = A = B = −C = T̄0 = 1.

Figure 4. The graphs of radius r against tempera-
ture θ of constant and Reynolds’ viscosity models for
values of Λ when Γ = −C = 1 and δ = 0.2.
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Figure 5. The plots of radius r versus the temper-
ature θ of Vogel’s viscosity model for various values
of Λ when Γ = A = B = −C = T̄0 = 1 and δ = 0.2.

Figure 6. The variations of radius r with tempera-
ture θ of constant and Reynolds’ viscosity models for
values of Γ when Λ = −C = 1 and δ = 0.2.
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Figure 7. The dependence of radius r on the tem-
perature θ of Vogel’s viscosity model for various val-
ues of Γ when ΛA = B = −C = T̄0 = 1 and δ = 0.2.

Figure 8. The profiles of radius r versus tempera-
ture θ of constant and Reynolds’ viscosity models for
values of C when Γ = Λ = 1 and δ = 0.2.
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Figure 9. The curves of radius r with the temper-
ature θ of Vogel’s viscosity model for various values
of C when Γ = Λ = A = B = T̄0 = 1 and δ = 0.2.

In addition, the influences of other different values of the emerging
parameters are also investigated for completeness.

We compare the temperature profiles for two kinds of fluids: the New-
tonian fluid, for which Λ = 0 and the full third-grade non-Newtonian
fluid, in which we choose arbitrary values without physical reasons. Fig-
ures. 4 and 5 are helpful for the determination of non-Newtonian behav-
ior of the fluid under various viscosities. Within the permissible range
of Λ, increasing Λ decreases the temperature for the flow in the three
viscosity models.

Also, Figures. 6 and 7 show the importance of viscous heating pa-
rameter in the heat transport. The results show that, for a given non-
Newtonian fluid which comply with any of the three viscosity models,
as Γ increases, that is, as the effect of viscous dissipation becomes more
significant, the temperature distribution increases.

Moreover, Figures. 8 and 9 present the variation of pressure gradient
parameter which is controlled by external initiating device such as a
pump far from the inlet of the pipe. For the three cases of viscosity
models under consideration, it is seen that as C becomes more negative,
the temperature distributions increase.
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6.2 The dependence of the physical parameters upon thermal
explosion

From the symmetry of the system it can easily be obtained that the
central temperature results in θ(0) = θmax. Consequently, the param-
eters for thermal explosion are θmax and and the Frank-Kamenetskii
parameter δ. The steady state response curve in the (θ, δ)-plane shows
a rise to a maximum before it grows to zero as θmax → 0. Thermal
explosion (criticality) in the system is plainly determined as the turning
point (point of uniqueness of solution) for certain parameter values in the
bifurcation analysis and denoted by δcr and θmax cr. We accomplished
this task mathematically by employing

dδ

dθmax
= 0 and

d2δ

dθ2max

< 0. (21)

The steady state problem (1), (5), (7) subject to boundary condi-
tions (3) is then solved numerically employing shooting method solver
in Maple with δ taken to be the unknown parameter. For the prob-
lem considered here, it exhibits two solutions and with the conditions in
equation (23), we obtained the unique solution at criticality. Table 10
shows the numerical values obtained from Makinde [15] and ours.

Table 10: Computational results of δcr for various values of Λ are
compared with results by Makinde [15] when C = -1, γ = 0 and Γ = δ.

[15] Ours
Λ δcr (FKA) δcr (QE) Rel. E.
0.0 1.945436 1.967296 1.12%
0.1 1.946071 1.967870 1.12%
0.2 1.946755 1.968402 1.11%
0.3 1.947482 1.968898 1.11%

The table indicates that the relative error of the result in Makinde [15]
and ours is less than 1.15%. It is to be noted that the quadradic ex-
pression provides an upper solution for the model problem (2) - (4) and
(6). We now proceed to investigate the parameter sensitivity to thermal
explosion for the triplet viscosity models.

It is evident form Tables 3, 4, 6 and 7 that the effects of Γ, Λ and C on
the dimensionless temperature distribution are similar for both exponen-
tial viscosity models. In addition, since we have examined the influence
of the same physical parameters on the criticality of the Reynolds’ vis-
cosity model as contained in Table 10, we will look only at the effects of
A, B and T0 on the criticality of Vogel’s viscosity model in Table 11.
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TABLE 11: Computed critical values for the Reynolds’ viscosity
model problem.

γ = −0.4 γ = 0 γ = 0.4
Λ C Γ δcr θmax cr δcr θmax cr δcr θmax cr

0 2.005916 1.468974 1.999623 1.469541 1.990769 1.467398
1 2.007090 1.467364 2.001948 1.467604 1.995916 1.467048
2 1 1 2.007899 1.466288 2.003412 1.466382 1.998580 1.466193
4 2.009039 1.464812 2.005339 1.464766 2.001707 1.464804
7 2.010193 1.463367 2.007157 1.463236 2.004387 1.463358

-0.25 2.025851 1.447594 2.025463 1.447622 2.024932 1.447498
-1.0 2.007090 1.467363 2.001949 1.467604 1.995916 1.467048

1 -1.5 1 1.984689 1.490988 1.974875 1.491314 1.964458 1.491180
-2.0 1.956508 1.521028 1.941682 1.521402 1.927148 1.522158
-2.5 1.923960 1.556422 1.904083 1.556872 1.885794 1.558866

0 2.027189 1.446178 2.027189 1.446178 2.027189 1.446178
1 2.007090 1.467364 2.001948 1.467604 1.995916 1.467048

1 1 10 1.844051 1.658986 1.793184 1.668930 1.732059 1.671130
30 1.572252 2.081102 1.430795 2.163102 1.254592 2.244634
50 1.384127 2.484477 1.172990 2.705432 0.910247 3.035572

The numerical results in Table 11 for the Reynolds’ model viscosity
indicate the following observations on the parameter sensitivity on the
bifurcation parameters (δ and θmax) when other physical parameters are
turned off. Notice that the non-Newtonian parameter is relatively insen-
sitive to the bifurcation parameters; as it increases so does the critical
Frank-Kamenetskii parameter increases while the critical central tem-
perature decreases. It is evident that the Newtonian fluid represent an
upper bound on the numerical results. Also, in decreasing the magnitude
of the pressure gradient parameter, the same pattern of behaviour of the
critical parameters subsists. We note, in contrast to the non-Newtonian
parameter and the magnitude of the pressure gradient parameter, that
for an increase in the viscous heating parameter there is a substantial
increase (or decrease) in the the critical central temperature (or crit-
ical Frank-Kamenetskii) . From this viewpoint, high-heat dissipation
materials pose a greater fire hazard. Moreover, the value of critical
Frank-Kamenetskii parameter decreases for both gas and liquid states.
The table shows that at low (or a higher) Λ, Γ and C there is a decrease
(or increase) in the value of critical central temperature for both gas and
liquid states.

Table 12 shows the effect of varying the parameters A and B as well
as the initial temperature T0 upon the critical Frank-Kamenetskii pa-
rameter and the critical central temperature for fixed values of other
physical parameters under the Vogel model viscosity.
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Table 12: Numerical result for Vogel’s viscosity model with
Λ = −C = 1.

Γ = 1 Γ = 10 Γ = 30
A B T̄0 δcr θmax cr δcr θmax cr δcr θmax cr

0 1.983410 1.484038 1.643256 1.849578 1.147752 2.781780
1 1.993831 1.470509 1.717510 1.714988 1.251225 2.413840
1.5 1 1 1.999998 1.462918 1.766525 1.634230 1.331329 2.164757
2.0 2.005892 1.456496 1.817938 1.562056 1.433617 1.903230
3.0 2.014881 1.448948 1.903757 1.476221 1.655278 1.556470

0.1 2.008668 1.446608 1.839344 1.455796 1.448439 1.574754
0,3 2.003519 1.454634 1.791818 1.552864 1.353821 1.990034

1 0.5 1 1.999525 1.461228 1.759303 1.624170 1.305885 2.191988
0.7 1.996671 1.465947 1.737874 1.671254 1.277401 2.308826
1.0 1.993831 1.470509 1.717510 1.714988 1.251225 2.413840

0.3 2.007717 1.459078 1.839107 1.584350 1.509612 1.925562
1.0 1.993831 1.470509 1.717510 1.714988 1.251225 2.413840

1 1 1.5 1.984658 1.479606 1.645625 1.816166 1.131417 2.755056
2.0 1.978092 1.486709 1.598227 1.892308 1.062626 2.993189
2.5 1.973874 1.491449 1.569351 1.941944 1.023781 3.142820

It is apparent that as parameter A increases the critical Frank-Kamenetskii
parameter increases while the critical central temperature decreases.
Furthermore, it is seen that the critical Frank-Kamenetskii parameter
increases with increasing parameter B but the increase is minor for the
material. A similar pattern is observed with increase in the initial tem-
perature of the material. Evidently, as the Viscous heating parameter,
Γ, increases the critical central temperature increases while the critical
Frank-Kamenetskii parameter decreases.

7. CONCLUDING REMARKS

We have investigated the flow and heat transfer for a reactive third-
grade fluid. In nondimensionalizing the model problem, we have retained
physical and material parameters of interest. Analytical solutions are
presented for a pipe under constant, Reynolds’ and Vogel’s viscosity
models using perturbation method. It is shown that for the choice of
perturbation parameters and in the limit δ → 0, our new analytical
solutions for the dimensionless mainstream temperature reduced to the
well known cases in [30]. To validate the analytical solutions, we solved
the equations numerically and the results are compared. Both results
showed excellent agreement with relative error of less than 5 % . Further
numerical computation on thermal explosion when compared with [15]
reveals relative error of less than 1.15 % .

The main features of the analytical solutions and numerical results
for thermal explosion are as follows:
1. The contribution of heat due to reaction yields an increment in the
dimensionless temperature of the fluid.
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2. The increase of the non-Newtonian material parameter leads to the
decrease of dimensionless temperature distribution.
3. The results pointed to significant differences in the solutions for the
three viscosity models.
4. It has been shown through numerical studies that the thermal critical
values for reactive fluid with the three viscosity models are particularly
sensitive to viscous heating parameter.
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