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DEMIDOVIC’S LIMITING REGIME TO A CERTAIN

FOURTH ORDER NONLINEAR DIFFERENTIAL

EQUATION: ANOTHER RESULT

O. A. ADESINA

ABSTRACT. In this paper, we use the Lyapunov’s second
method to solve an age long problem on limiting regime in the
sense of Demidovic for a general fourth order nonlinear differen-
tial equation. Sufficient conditions for the existence of a unique
solution to be a limiting regime, periodic (or almost periodic)
according as the forcing term is periodic (or almost periodic)
are established for the concerned equation. Our results improve
and generalize earlier ideas of Afuwape [A.U. Afuwape, On the
existence of a limiting regime in the sense of Demidovic for a
certain fourth order nonlinear differential equation, JMAA, 129,
(1988) 389-393].

Keywords and phrases: Demidovic’s limiting regime, uniformly
periodic solutions, uniformly almost periodic solutions, convergence
of solutions, Routh-Hurwitz interval, Lyapunov functions
2010 Mathematical Subject Classification: 34C11, 34C25,
34C27, 34D20, 34D25

1. INTRODUCTION

In 1961, Demidovic [8] considered a nonlinear system

ẋ = F (x) +G(t), (1.1)

where F and G are continuous functions of x and t respectively.
Sufficient conditions on all solutions of the system 1.1 to converge
to a periodic solution (limiting regime) for t → +∞ or t → −∞
are obtained. In 1965, Ezeilo [9] extended the result of Demidovic
[8] to a more general n-vector system

Ẋ = f(X, t) + g(X, t), (1.2)

where g satisfied a certain Lipschitz condition and g(0, t) ≡ 0 with

‖f(0, t)‖ ≤ m <∞, −∞ < t < +∞, (1.3)

for constant m(0 < m < ∞). Much later on in 1973, Ezeilo [10]
used the ideas of Demidovic [8] and Ezeilo [9] to obtain sufficient
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conditions on the existence of limiting regime to the third order
nonlinear differential equation

x′′′ + ax′′ + bx′ + h(x) = p(t, x, x′, x′′), (1.4)

with a and b as constants. In addition, it was assumed that func-
tions h and p are continuous in their respective arguments. Fur-
thermore, with h(0) = 0, the function h was considered not to be
differentiable but only restricted to satisfy a certain incrementary
ratio

η−1{h(ξ + η)− h(ξ)} ∈ I0, η 6= 0, (1.5)

for some designated ξ where I0 was chosen as a closed sub-interval
of the Routh-Hurwitz interval. On using the ideas in the above
mentioned papers, Afuwape [7] extended the result of Ezeilo [10] to
the fourth order nonlinear differential equation

x(iv) + ax′′′ + bx′′ + cx′ + h(x) = p(t, x, x′, x′′, x′′′), (1.6)

with constants a, b, c and continuous functions h (satisfying incre-
ment ratio (1.5)) and p.

Higher order nonlinear differential equations have proved to be
valuable tools in the modeling of many physical phenomena in the
sciences, social sciences and engineering. It is interesting to note
that many authors have worked on the various qualitative behaviour
of solutions of fourth order nonlinear differential equations. The
papers of Abou-El-Ela and Sadek [1] and Sadek [15] discussed as-
ymptotic behaviour of solutions; Adesina [2] worked on exponential
stability and periodic solutions; Adesina and Ogundare [4], Tunç
[17, 18, 19, 20, 21], Ogundare [11], Ogundare and Okecha [13] and
Wu and Xiong [22] treated stability and boundedness of solutions.
Convergence of solutions were considered in the works of Adesina
and Ogundare [3], Afuwape [5, 6] and Ogundare and Okecha [12].
Further classical expository results on fourth order nonlinear differ-
ential equations can be found in Reissig et. al [14]. However, the
corresponding situation where more than one nonlinear function is
present remains an open problem on limiting regime in the sense of
Demidovic.

Unfortunately, with respect to our observation in the relevant
literature, ever since the work of Afuwape [7] appeared, there has
been no further attempt to discuss the limiting regime in the sense
of Demidovic for fourth order nonlinear differential equations. This
might not be unconnected with the obvious difficulty in finding a
complete Lyapunov function.



DEMIDOVIC’S LIMITING REGIME TO A CERTAIN. . . 37

Hence, the object of this paper is to consider a more general
fourth order nonlinear differential equation of the form:

x(iv) + φ(x′′′) + f(x′′) + g(x′) + h(x) = p(t, x, x′, x′′, x′′′), (1.7)

where nonlinear functions φ, f , g, h and p are continuous in the
arguments displayed explicitly. It must be emphasized here that
equation (1.7) has so far remained intractable due to (i) the number
of the nonlinear terms φ, f, g and h simultaneously involved and (ii)
the form of the functions φ and f (see for instance Tejumola [16]).

On setting x′ = y, y′ = z and z′ = w in equation (1.7), we have
the equivalent system

x′ = y,

y′ = z,

z′ = w,

w′ = −φ(w)− f(z)− g(y)− h(x) + r(t, x, y, z, w) +Q(t),

(1.8)

where p(t, x, x′, x′′, x′′′) is separable in the form r(t, x, y, z, w) + q(t)

and Q(t) =
∫ t
0
q(τ)dτ . By constructing a complete Lyapunov func-

tion, sufficient conditions that guarantee all solutions of the equa-
tion (1.7) to converge to a limiting regime are given. Furthermore,
we prove that this limiting regime is periodic or almost periodic in
t according as p is periodic or almost periodic in t, uniformly in
x, x′, x′′, x′′′. For the sake of completeness, we shall now give the
following definition.
The unique solution X(t) of the fourth order nonlinear differen-
tial equation (1.7) is said to be a limiting regime in the sense of
Demidovic if

(X2 +X
′2

+X
′′2

+X
′′′2

)
1
2 ≤ D1 (1.9)

for a finite D1 and all t ∈ IR, and if every other solution converges
to X as t→∞.
Results obtained in this work generalize and extend the results of
Afuwape [7], and also complement existing results on fourth order
nonlinear differential equations. This paper is organized as follows.
We begin, in Section 2, by giving some preliminaries and stating
the main results of the paper while Section 3 offers the proof of the
main results.
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2. PRELIMINARIES AND MAIN RESULTS

The linear homogeneous part of the equation (1.7) is given as

x(iv) + ax′′′ + bx′′ + cx′ + dx = 0,

where a, b c and d are constants, are such that all its solutions tend
to the trivial solution, as t→∞, provided that the Routh-Hurwitz
conditions

a > 0, (ab− c) > 0, (ab− c)c− a2d > 0, d > 0

are satisfied.
We shall assume throughout that φ(0) = f(0) = g(0) = h(0) = 0.

For the remaining part of the paper, all D’s with subscript are
positive constants.

We shall now state our main results on the existence of a limiting
regime in the sense of Demidovic.

Theorem 2.1: Suppose that

(i) there are positive constants a, a0, b and b0 such that

a ≤ φ(w2)− φ(w1)

w2 − w1

≤ a0, w2 6= w1, (2.1)

b ≤ f(z2)− f(z1)

z2 − z1
≤ b0, z2 6= z1, (2.2)

(ii) for any ζ, η, (η 6= 0), the incrementary ratios for h and g
satisfy

h(ζ + η)− h(ζ)

η
∈ I0, (2.3)

g(ζ + η)− g(ζ)

η
∈ I1; (2.4)

where I0 and I1 are closed intervals defined respectively by

I0 ≡
[
∆0, K0

[ [(ab− c)c]
a2

]]
, (2.5)

I1 ≡
[
∆1, K1

[ [(a2d+ c2)]

ac

]]
(2.6)

with a, b, c, d, ∆0 > 0, ∆1 > 0, 0 < K0 < 1 and 0 < K1 < 1
as constants.

(iii) there exists a positive constant B0 such that

|Q(t)| ≤ B0,∀t ∈ IR, (2.7)
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where

Q(t) =

∫ t

0

q(τ)dτ ;

(iv) for a continuous function ϑ(t), the inequality

|r(t, x2, y2, z2, w2)− r(t, x1, y1, z1, w1)|
≤ ϑ(t)(|x2 − x1|+ |y2 − y1|+ |z2 − z1|+ |w2 − w1|)

(2.8)

for arbitrary t, x1, y1, z1, w1, x2, y2, z2, w2 holds and satisfies∫ ∞
−∞

ϑβdt <∞, (2.9)

for some constant β in the range 1 ≤ β ≤ 2.

Then there exists a unique solution X(t) of the equation (1.7) which
is a limiting regime in the sense of Demidovic.

Theorem 2.2: In addition to hypotheses (i)–(iii) of the Theorem
2.1, suppose that there is a solution X(t) of the equation (1.7) sat-
isfying the inequality (1.9) and that Q(t) is uniformly almost peri-

odic in t for (x2 + y2 + z2 + w2)
1
2 ≤ D1. Then the solution X(t) is

uniformly almost periodic in t. Furthermore, if Q(t) is periodic (re-
spectively almost periodic) with a period ω say, and r(t, x, y, z, w)
is periodic (respectively almost periodic) in t with period ω, then
the solution X(t) is periodic (respectively almost periodic) in t with
period ω.

Remark 2.3: If in the equation (1.7), φ(x′′′) = ax′′′, f(x′′) = bx′′

and g(x′) = cx′, then our results (Theorems 2.1 and 2.2) generalize
earlier results of Afuwape [7]. Furthermore, the Theorem 2.1 of this
paper generalizes the convergence theorem of Afuwape [5].

Remark 2.4: If in the equation (1.7), φ(x′′′) = ax′′′ and f(x′′) =
bx′′, then earlier results of Afuwape [6] and Ogundare and Okecha
[12] are also generalized and extended by the Theorem 2.1 of this
paper.

2. PROOF OF MAIN RESULT

Proof of Theorem 2.1: The main tool in the proof of our main
results will be the following quadratic Lyapunov function V =
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V (x, y, z, w) defined by

2V = [β(1− ε)x+ γy + δz + w]2 + [(1− ε)D − 1](δz + w)2

+βD[ε+ (1− ε)D − 1]y2 + γ(D − 1)z2 + εDw2

+β2ε(1− ε)x2 + 2γδ[(1− ε)2D − 1]yz,
(3.1)

where 0 < ε < 1 − ε < 1, γδ
β
> 1 − ε, β, γ, δ are positive real

numbers and for γδ 6= βε; D = 1 + β(1−ε)[γδ−β(1−ε)]
γδ−βε with D > 1

(1−ε)2
always. It can be verified just in the same way as in the papers of
Afuwape ([5], [6]) and Ezeilo [10] and using the hypotheses (i)–(iii)
of Theorem 2.1 that the function V is indeed a Lyapunov function
with the following properties:

(i) V is positive definite;
(ii) there exist positive constants D2 and D3 such that

D2(x
2 + y2 + z2 + w2) ≤ V ≤ D3(x

2 + y2 + z2 + w2) (3.2)

for all x, y, z, w;
(iii) the derivative of V is negative definite.

From equation (3.1), we note that

γ(D − 1)z2 + 2γδ[(1− ε)2D − 1]yz = γ(D − 1)X{
z + δ

(D−1) [(1− ε)
2D − 1]y

}2

− γδ2

(D−1) [(1− ε)
2D − 1]2y2

and

βDεy2 + 2γδ[(1− ε)2D − 1]yz = βDε
{
y + γδ

βDε
[(1− ε)2D − 1]z

}2

− (γδ)2

βDε
{[(1− ε)2D − 1]z}2 .

If we substitute the above equations into the equation (3.1), then

2V = {β(1− ε)x+ γy + δz + w}2 + [(1− ε)D − 1](δz + w)2

+βDε
{
y + γδ

βDε
[(1− ε)2D − 1]z

}2

+ β2ε(1− ε)x2

+βD[(1− ε)D − 1]y2 + γ(D − 1)z2 + εDw2

− (γδ)2

βDε
{[(1− ε)2D − 1]}2 z2.
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Indeed we can rearrange 2V as

2V = {β(1− ε)x+ γy + δz + w}2 + [(1− ε)D − 1](δz + w)2

+βDε
{
y + γδ

βDε
[(1− ε)2D − 1]z

}2

+β2ε(1− ε)x2 + βD[(1− ε)D − 1]y2

+ 1
βDε
{γβDε(D − 1) + 2(γδ)2D(1− ε)2

−(γδ)2[D2(1− ε)4 + 1]} z2 + εDw2.
(3.3)

Since 0 < ε < 1, γδ
β
> 1 − ε, β, γ, δ > 0 and D can be chosen such

that D > 1
1−ε , it follows that

2V ≥ β2ε(1− ε)x2 + βD[(1− ε)D − 1]y2

+ 1
βDε
{γβDε(D − 1) + 2(γδ)2D(1− ε)2 − (γδ)2[D2(1− ε)4 + 1]} z2

+εDw2.

Therefore, a constant D2 > 0 can be found such that

V ≥ D2(x
2 + y2 + z2 + w2), (3.4)

where

D2 =
min

2

{
β2ε(1− ε); βD[(1− ε)D − 1];M∗; εD

}
,

with

M∗ =
γβε(D − 1) + 2(γδ)2D(1− ε)2 − (γδ)2[D2(1− ε)4 + 1]

βDε
.

Furthermore, by using the Schwartz inequality |y||z| ≤ 1

2
(y2 + z2),

we note that

2V ≤ β(1− ε)[β + γ + δ + 1]x2 + {γ (γ + β(1− ε))
+δ[(1− ε)2D − 1] + βD[ε+ (1− ε)D − 1]} y2
+ {δ2(1− ε)D + δ[β(1− ε) + (1− ε)D − 1]
+γ([1− ε]2D − 1) + (D − 1)} z2
+ {β(1− ε) + (D − 1)δ + (1− ε)D}w2.

Thus there exists D3 such that

V ≤ D3(x
2 + y2 + z2 + w2), (3.5)

where

D3 =
max

2
{β(1− ε)[β + γ + δ + 1]; γ (γ + β(1− ε)
+ δ[(1− ε)2D − 1]) + βD[ε+ (1− ε)D − 1];
δ2(1− ε)D + δ[β(1− ε) + (1− ε)D − 1]

+γ([1− ε]2D − 1) + (D − 1); β(1− ε)
+(D − 1)δ + (1− ε)D} .
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On combining inequalities (3.4) and (3.5), we have

D2(x
2 + y2 + z2 + w2) ≤ V ≤ D3(x

2 + y2 + z2 + w2). (3.6)

Now, to show that the derivative of V is negative definite, we
proceed as follows. Let the hypotheses of the Theorem 2.1 hold,
and let the function W (t) = W (x2 − x1, y2 − y1, z2 − z1, w2 − w1)
be defined by

2W = [β(1− ε)(x2 − x1) + γ(y2 − y1) + δ(z2 − z1) + (w2 − w1)]
2

+[(1− ε)D − 1](δ(z2 − z1) + (w2 − w1))
2

+βD[ε+ (1− ε)D − 1](y2 − y1)2 + γ(D − 1)(z2 − z1)2
+εD(w2 − w1)

2 + β2ε(1− ε)(x2 − x1)2
+2γδ[(1− ε)2D − 1](y2 − y1)(z2 − z1),

then we can show that there exist positive constants D4 and D5

such that
dW

dt
≤ −2D4S +D5S

1/2|θ|, (3.7)

where θ = r(t, x2, y2, z2, w2)− r(t, x1, y1, z1, w1).
In fact, with respect to the system (1.8), a direct computation of

dW
dt

gives after simplifications

dW

dt
= −U1 + U2, (3.8)

where

U1 = β(1− ε)H(x2, x1)(x2 − x1)2 + γ[G(y2, y1)
−β(1− ε)](y2 − y1)2 +Dδ(1− ε)[F (z2, z1)− γ(1− ε)]
(z2 − z1)2
+D[Φ(w2, w1)− δ(1− ε)](w2 − w1)

2

−β(1− ε)[G(y2, y1)− β](x2 − x1)(y2 − y1)
−β(1− ε)[F (z2, z1)− γ](x2 − x1)(z2 − z1)
−β(1− ε)[Φ(w2, w1)− δ](x2 − x1)(w2 − w1)
−[Dδ(1− ε)G(y2, y1) + γ(F (z2, z1)− γ)−Dβγ]
(y2 − y1)(z2 − z1)
−[DG(y2, y1) + γΦ(w2, w1)− β(1− ε)−Dγδ(1− ε)2]
(y2 − y1)(w2 − w1)
−[D(F (z2, z1) +DδΦ(w2, w1) +D(δ2(1− ε) + γ)]
(z2 − z1)(w2 − w1)

(3.9)
and

U2 = θ[β(1−ε)(x2−x1)+γ(y2−y1)+Dδ(1−ε)(z2−z1)+D(w2−w1)],
(3.10)
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with

H(x2, x1) = h(x2)−h(x1)
x2−x1 , x2 6= x1;

G(y2, y1) = g(y2)−g(y1)
y2−y1 , y2 6= y1;

F (z2, z1) = f(z2)−f(z1)
z2−z1 , z2 6= z1;

Φ(w2, w1) = φ(w2)−φ(w1)
w2−w1

, w2 6= w1.

Furthermore, let χ1 = G(y2, y1) − β, y2 6= y1, χ2 = F (z2, z1) −
γ, z2 6= z1 and χ3 = Φ(w2, w1) − δ, w2 6= w1. Also let λ1 =
G(y2, y1)−β(1− ε), y2 6= y1, λ2 = F (z2, z1)−γ(1− ε), z2 6= z1 and
λ3 = Φ(w2, w1)− δ(1− ε), w2 6= w1. Define

3∑
i=1

µi = 1;
7∑
i=1

νi = 1;
7∑
i=1

κi = 1;
7∑
i=1

τi = 1,

with µi > 0, νi > 0, κi > 0 and τi > 0. Then we can rearrange U1

as

U1 = W1+W2+W3+W4+W5+W6+W7+W8+W9+W10+W11+W12,

where

W1 = µ1β(1− ε)H(x2, x1)(x2 − x1)2 + β(1− ε)χ1(x2 − x1)(y2 − y1)
+ν1γλ1(y2 − y1)2;

W2 = µ1β(1− ε)H(x2, x1)(x2 − x1)2 + β(1− ε)χ2(x2 − x1)(z2 − z1)
+κ1Dδ(1− ε)λ2(z2 − z1)2;

W3 = µ1β(1− ε)H(x2, x1)(x2 − x1)2 + β(1− ε)χ3(x2 − x1)(w2 − w1)
+τ1Dλ3(w2 − w1)

2;
W4 = ν2γλ1(y2 − y1)2 +Dδ(1− ε)λ1(y2 − y1)(z2 − z1)

+κ2Dδ(1− ε)λ2(z2 − z1)2;
W5 = ν3γλ1(y2 − y1)2 + γχ2(y2 − y1)(z2 − z1)

+κ3Dδ(1− ε)λ2(z2 − z1)2;
W6 = ν4γλ1(y2 − y1)2 +Dβδ((1− ε)2 − 1)(y2 − y1)(z2 − z1)

+κ4Dδ(1− ε)λ2(z2 − z1)2;
W7 = ν5γλ1(y2 − y1)2 +Dχ1(y2 − y1)(w2 − w1) + τ2Dλ3(w2 − w1)

2;
W8 = ν6γλ1(y2 − y1)2 + γχ3(y2 − y1)(w2 − w1) + τ3Dλ3(w2 − w1)

2;
W9 = ν7γλ1(y2 − y1)2 + [D(β − γδ(1− ε)2)

+γδ − β(1− ε)](y2 − y1)(w2 − w1) + τ4Dλ3(w2 − w1)
2;

W10 = κ5Dδ(1− ε)λ2(z2 − z1)2 +Dχ2(z2 − z1)(w2 − w1)
+τ5Dλ3(w2 − w1)

2;
W11 = κ6Dδ(1− ε)λ2(z2 − z1)2 +Dδχ3(z2 − z1)(w2 − w1)

+τ6Dλ3(w2 − w1)
2;

W12 = κ7Dδ(1− ε)λ2(z2 − z1)2
+D[δ2(1− ε) + 2γ + δ2](z2 − z1)(w2 − w1) + τ7Dλ3(w2 − w1)

2.
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It is not difficult to see that each of W1,W2, ...,W12 is quadratic in
its respective variables. Thus we can use the fact that any quadratic
of the form AX2 + BXY + CY 2 is non negative if 4AC − B2 ≥ 0
to obtain the following inequalities:

W1 ≥ 0, if χ1
2 ≤ 4µ1ν1γH(x2,x1)λ1

β(1−ε) , for x2 6= x1;

W2 ≥ 0, if χ2
2 ≤ 4Dµ2κ1δH(x2,x1)λ2

β
, for x2 6= x1;

W3 ≥ 0, if χ3
2 ≤ 4Dµ3τ1H(x2,x1)λ3

β(1−ε) , for x2 6= x1;

W4 ≥ 0, if λ1 ≤ 4ν2κ2γλ2
β(1−ε) , for z2 6= z1

W5 ≥ 0, if χ2
2 ≤ 4ν3κ3Dδ(1− ε)λ1λ2, for y2 6= y1, z2 6= z1;

W6 ≥ 0, if λ2 ≥ Dδβ2((1−ε)2−1)2
4ν4γκ4(1−ε)λ1 , for y2 6= y1, z2 6= z1

W7 ≥ 0, if χ1
2 ≤ 4ν5τ2λ1λ3

D
, for y2 6= y1, w2 6= w1;

W8 ≥ 0, if χ3
2 ≤ 4Dν6τ3λ1λ3

γ
, for y2 6= y1, w2 6= w1;

W9 ≥ 0, if λ3 ≥ [D(β−γδ(1−ε)2)+γδ−β(1−ε)]2
4ν7γτ4Dλ1

, for y2 6= y1, w2 6= w1;

W10 ≥ 0, if χ2
2 ≤ 4τ5κ5δ(1− ε)λ2λ3, for z2 6= z1, w2 6= w1;

W11 ≥ 0, if χ3
2 ≤ 4κ6τ6(1−ε)λ2λ3

γ
, for z2 6= z1, w2 6= w1;

W12 ≥ 0, if λ3 ≥ [δ2(1−ε)2)+2γ+δ2]2

4κ7τ7δ(1−ε)λ2 , for z2 6= z1, w2 6= w1.

Therefore, U1 ≥ W1, provided that

0 ≤ χ1
2 ≤ 4 min

{µ1ν1γH(x2,x1)λ1
β(1−ε) ; ν5τ2λ1λ3

D

}
;

0 ≤ χ2
2 ≤ 4 min

{Dµ2κ1δH(x2,x1)λ2
β

; ν3κ3Dδ(1− ε)λ1λ2; τ5κ5δ(1− ε)λ2λ3
}

;

0 ≤ χ3
2 ≤ 4 min

{4Dµ3τ1H(x2,x1)λ3
β(1−ε) ; 4Dν6τ3λ1λ3

γ
; 4κ6τ6(1−ε)λ2λ3

γ

}
;

λ1 ≤ 4ν2κ2γλ2
β(1−ε) ;

λ2 ≥ Dδβ2((1−ε)2−1)2
4ν4γκ4(1−ε)λ1 ;

0 ≤ λ3
2 ≤ max

{ [D(β−γδ(1−ε)2)+γδ−β(1−ε)]2
4ν7γτ4Dλ1

; [δ2(1−ε)2)+2γ+δ2]2

4κ7τ7δ(1−ε)λ2

}
,

where H and G lie respectively in

I0 ≡
[
∆0, K0

[ [(ab− c)c]
a2

]]
,

I1 ≡
[
∆1, K1

[ [(a2d+ c2)]

ac

]]
with K0 < 1, K1 < 1, ∆0 > 0 and ∆1 > 0 constants.

By choosing

2D4 = min
{
β(1− ε)∆0; γλ1;Dδ(1− ε)λ2;Dλ3

}
,

it follows that

U1 ≥ W1 ≥ 2D4S. (3.11)
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Furthermore, if we choose

D5 = max
{
β(1− ε; γ;Dδ(1− ε);D(w2 − w1)

}
, (3.12)

we have
U2 ≤ D5S

1
2 |θ|.

On combining (3.11) and (3.12) in (3.10), we obtain (3.7).
At last, let (x1, y1, z1, w1) and (x2, y2, z2, w2) be any two distinct

solutions of the system (1.8). Taking into account assumptions (i)
and (ii) of the Theorem 2.1, it can be shown that

S(t2) ≤ D6S(t1) exp {−D7(t2 − t1)} , (t2 ≥ t1), (3.13)

where

S(t) =
[
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 + (w1 − w2)

2
]2
.

Indeed, let W (t) be defined by

W (t) = [(x1 − x2), (y1 − y2), (z1 − z2), (w1 − w2)] , (3.14)

then, for t1 ≤ t2,

W (t2) ≤ W (t1) exp

{
−D7(t2 − t1) +D8

∫ t2

t1

ϑα(τ)dτ

}
≤ D9W (t1) exp {−D7(t2 − t1)} , (t2 ≥ t1),

(3.15)

where D9 is a finite constant (see hypothesis (iv) of Theorem 2.1)
given by

D9 = exp{D8

∫ ∞
−∞

ϑβ(τ)dτ},

with 1 ≤ β ≤ 2. On using the inequalities (3.2), and in view of the
fact that V is positive definite, we obtain

S(t2) ≤ D10S(t1) exp {−D7(t2 − t1)} , (t2 ≥ t1).

On setting D9 = D10, we have inequality (3.13).
In addition to the above, on using the adaptation of the tech-

niques in Afuwape[7], Demidovic[8] and Ezeilo[9], it is not difficult
to utilize the property of W (t) to show that there exists a unique
solution of the equation (1.7) satisfying (1.9) for which every other
solution distinct from it converges as t → ∞. This fact completes
the proof of the theorem.

Proof of Theorem 2.2: The case when Q(t) is uniformly almost
periodic and r(x, y, z, w) is uniformly almost periodic in t for (x2 +

y2 + z2 + w2)
1
2 ≤ D1 will be considered. Let

Ψ(t) = V (X(t+ τ)−X(t), Y (t+ τ)− Y (t), Z(t+ τ)− Z(t)
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,W ∗(t+ τ)−W ∗(t)), (3.16)

where V is as defined in the equation (3.1), and τ is a constant. By
uniform almost periodicity of Q(t) and r(x, y, z, w) in t, it follows
that for an arbitrary ε > 0, there exists a τ > 0 such that

‖Q(t+ τ)−Q(t)‖ ≤ kε2

‖r(t+ τ,X(t), Y (t), Z(t),W ∗)− r(t,X(t), Y (t), Z(t),W ∗)‖ ≤ kε2,
(3.17)

where k is a constant whose exact value will be chosen to advantage
later. On making use of the system (1.8) and inequalities (3.17),
we have

dΨ

dt
≤ −{D11 −D12ϑ

β(t+ τ)}Ψ(t) + 4kD13D1ε
2. (3.18)

Now let

D14 = exp

{
D12

∫ ∞
−∞

ϑβ(t)}dt,
}
.

On integrating inequality (3.18) and using inequalities (3.17), we
have

Ψ(t) ≤ D14Ψ(t0) exp{−D11(t− t0)}+ kD15ε
2, (t ≥ t0) (3.19)

where

D15 =
4D13D14D1

D11

.

Inequalities (3.19) hold for arbitrary t0. In particular, on letting
t0 → −∞ in (3.17) and noting that Ψ(t) is finite, we have

Ψ(t) ≤ kD15ε
2

for arbitrary t. By inequalities (3.2) and using the definition of Ψ,
these imply that

‖X(t+ τ)−X(t)‖ ≤
(
k
D15

D1

) 1
2

ε. (3.20)

Suppose that in the inequalities (3.17), the constant k had been
defined by k = D1

D15
. Then inequality (3.20) would read

‖X(t+ τ)−X(t)‖ ≤ ε, (3.21)

where τ is chosen to satisfy inequalities (3.17) with k = D1

D15
. The set

of all numbers τ satisfying inequalities (3.17) is relatively dense, and
hence the inequality (3.21) implies that X(t) is uniformly almost
periodic. Hence the completion of the proof to the first part of the
Theorem 2.2.
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To prove the second part of the theorem, let us assume that

Q(t+ τ) = Q(t),

r(t+ τ,X(t), Y (t), Z(t),W ∗) = r(t,X(t), Y (t), Z(t),W ∗),

for

(X2 + Y 2 + Z2 +W ∗)
1
2 ≤ D1.

Fix τ in the equation (3.16). The terms on the left hand side
of inequalities (3.17) are then both identically zero, and so, if we
proceed as in the proof of the first part of the theorem, we shall
have the following in place of inequality (3.20

‖X(t+ τ)−X(t)‖ ≤ 0. (3.22)

Hence by the definition of ‖.‖, we have

‖X(t+ τ)−X(t)‖ = 0,

making X(t) periodic with period τ .
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[17] C. Tunç, A note on the stability and boundedness results of solutions of certain
fourth order differential equations, Appl. Math. Comput, 155(3), 837-843, 2004.
MR2078694 (2005e:34151).
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