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1. INTRODUCTION 
 

In the postwar years, we have seen a rapid development of 

themoelasticity stimulated by various engineering sciences. Most 

of investigations were done under the assumption of the 

temperature-independent material properties, which limited the 

applicability of the solutions obtained to certain ranges of 

temperature. 
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ABSTRACT. The objective of this paper is to investigate the 

surface waves in fibre-reinforced anisotropic elastic medium 

subjected to magnetic and thermal fields. We introduce the 

coupled theory (CD), Lord-Shulman (LS) theory and Green-

Lindsay (GL) theory to study the influence of magnetic field 

on 2D problem of a fibre-reinforced thermoelastic. The 

analytical expressions for displacement components and force 

stress are obtained in the physical domain by using the 

harmonic vibrations. The wave velocity equations have been 

obtained in different cases. Numerical results for the 

temperature, displacement, and thermal stress components are 

given and illustrated graphically in the presence and absence of 

the magnetic field of the material medium. A comparison is 

also made between the three theories in the case of presence 

and absence of fiber-reinforced parameters. 
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At high temperature, the material characteristics, such as the 

modulus of elasticity, the Poisson’sratio, and the coefficient of 

thermal conductivity, are no longer constants. In recent years, due 

to the progress in various fields of science and technology, taking 

into consideration the real behaviour of the material characteristics 

becomes an actual necessity. In some investigations, they have 

been taken as functions of coordinates. 

A reinforced concrete member should be designed for all 

conditions of stresses that may occur and in accordance with 

principles of mechanics. The characteristic property of a reinforced 

concrete member is that its components, namely concrete and steel, 

act together as a single unit as long as they remain in the elastic 

condition i.e. the two components are bounded together so that 

there can be no relative displacement between them. In the case of 

an elastic solid reinforced by a series of parallel fibers, it is usual to 

assume trans- verse isotropy. In the linear case, the associated 

constitutive relations, relating infinitesimal stress and strain 

components have five material constants. In the last three decades, 

the analysis of stress and deformation of fiber-reinforced 

composite materials has been an important research area of solid 

mechanics. The wave’s propagation in a reinforced media plays a 

very interesting role in civil engineering and geophysics. The 

studies of propagation, reflection and transmission of waves are of 

great interest to seismologists. Such studies help them to obtain 

knowledge about the rock structures as well as their elastic 

properties and at the same time information regarding minerals and 

fluids present inside the earth. The idea of introducing a  
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continuous self reinforcement at every point of an elastic solid was 

given by Belfied et al. [1]. The model was later applied to the 

rotation of a tube by Verma and Rana [2]. Verma [3] has also 

discussed the magneto elastic shear waves in self-reinforced 

bodies. Sengupta and Nath [4] discussed the problem of the surface 

waves in fibre-reinforced anisotropic elastic media. Singh [5] 

showed that, for wave propagation in fibre-reinforced anisotropic 

media, this decoupling can not be achieved by the introduction of 

the displacement potential. Hashin and Rosen [6] gave the elastic 

moduli for fibre-reinforced materials. The problem of reflection of 

plane waves at the free surface of a fibre-reinforced elastic half-

space was discussed by Singh and Singh [7]. Chattopadhyay and 

Choudhury [8] have discussed the problem of propagation, 

reflection and transmission of magneto elastic shear waves in a 

self-reinforced medium. The reflection and transmission of plane 

SH wave through a self-reinforced elastic layer sandwiched 

between two homogeneous viscoelastic solid half-spaces has been 

studied by Chaudhary et al. [9] . Chattopadhyay and Chaudhary 

[10] studied the propagation of magneto-elastic shear waves in an 

infinite self-reinforced plate. Pradhan et al. [11] studies the 

dispersion of Loves waves in a self-reinforced layer over an elastic 

non-homogenous half space. The propagation of plane waves in 

fibre-reinforced media is discussed by Chattopadhyay et al. [12]. 

The theory of couple thermo-elasticity was extended by Lord and 

Shulman [13] and Green and Lindsay [14] by including the thermal 

relaxation time in constitutive relations. These theories eliminate  
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the paradox of infinite velocity of heat propagation and are termed 

generalized theories of thermoelasticity.  

mMore realistic elastic model since earth, moon and other plants 

have angular velocity.   

Othman and Song [15] showed the effect of initial stress, 

thermoelastic parameter and thermal boundary condition upon the 

reflection amplitude ratios. The problem of magneto-elastic 

transverse surfaces waves in self-reinforced elastic solid was 

studied by Verma et al. [16]. The problem of wave propagation in 

thermally conducting linear fibre-reinforced composite materials 

was discussed by Singh [17]. 

Othman and Lotfy [18] studied two-dimensional problem of 

generalized magneto-thermoelasticity   under the effect of 

temperature dependent properties. Othman et al. [19] studied 

transient disturbance in a half-space under generalized magneto-

thermoelasticity with moving internal heat source. Othman and 

Lotfy [20] studied the plane waves in generalizedthermo-

microstretch elastic half-space by using a general model of the 

equations of generalized thermo-microstretch for a homogeneous 

isotropic elastic half space.  Othman and Lotfy [21] studied the 

generalized thermo-microstretch elastic medium with temperature 

dependent properties for different theories. This study included 

some discussion on the free-surface phenomenon in a rotating half-

space. Results concerning slowness surfaces, energy flux, reflected 

waves, and generalized Rayleigh waves have been obtained. Later 

on, several authors[22–25] studied plane waves in rotating  
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thermoelastic and magneto– thermoelastic media in the context of 

generalized theories. The normal mode analysis was used to obtain  

the exact expression for the temperature distribution, thermal 

stresses, and the displacement components.  

        Recently, Abd-Alla and Abo-Dahab [26] investigated the 

rotation and initial stress effects on an infinite generalized 

magneto-thermoelastic diffusion body with a spherical cavity. 

Many authors [27-32] discusses the dual phase lag model on 

magneto-thermoelasticity  and fibre reinforced infinite non-

homogeneous solid having a spherical cavity. 

    The present investigation, we shall formulate the fiber-

reinforced two-dimensional problem under the effect of magnetic 

field and solving for the considered variables leading  to particular 

cases such as Rayleigh waves and Stoneley waves. The  

displacement, temperature and stress are obtained in the physical 

domain by using the harmonic vibrations. The distributions of the 

considered variables are represented graphically. A comparison is 

carried out between the temperature, stresses and displacements as 

calculated from the generalized thermoelasticity LS, GL and 

coupled theory in the presence and absence of magnetic field. A 

comparison also is made between the three theories in the presence 

and absence of fiber-reinforced. 

2.  Formulation of the problem and basic equations 

     We consider the problem of a thermoelastic half space ( x 0).  

A magnetic field with constant intensity 0(0,0,H )H , acting  
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parallel to the boundary plane (taken as the direction of the z -

axis). The surface of the half space is subjected to a thermal shock 

which is a function of y and t. Thus, all quantities considered will 

be functions of the time variable t, and of the coordinates x  and y .  

   Let 1  and 2  be two fibers-reinforced elastic semi-infinite 

solid media. They are perfectly welded in contact to prevent any 

relative motion or sliding before and after the disturbances and that 

the continuity of displacement, stress etc. hold good across the 

common boundary surface. Further the mechanical properties of 

1  are different from those of 2 . These media extend to an 

infinite great distance from the origin and are separated by a plane 

horizontal boundary and 2  is to be taken above 1 . These two 

assumptions conclude that the wave is a surface wave and all 

partial derivatives with respect to z  are zero. 

   Further let us assume that u, v are the components of 

displacements at any point (x,y,z) at any time t. We begin our 

consideration with linearized of electro-dynamics slowly moving 

medium 

0curl ε J h E,                                                                           (1) 

0curl μ E h,                                                                            (2) 

0μ ( ),  E u H                                                                          (3) 

. 0h                                                                                        (4) 
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Fig. a. Schematic of the problem 

where, 0μ is the magnetic permeability, 0ε is electric 

permeability, u  is the particle velocity of the medium, and the 

small effect of temperature gradient on J  is also ignored. 

These equations are supplemented by the constitutive equations for 

a fibre-reinforced linearly thermoelastic medium with respect to 

the reinforcement direction a  are  

 ))((2)(2 kikjkjkiTLkkjikmmkijTijkkij eaaeaaeaaijeaaee 

 

        .))(1( 00 ijijjikmmk TT
t

aaeaa  



                                    (5) 

where, 
ijσ  are components of stress, ije  are the components of 

strain, lλandμ  are elastic constants,  ,   , )( TL   , ij  are 

reinforcement parameters, and 2 2 2
1 2 3 1 2 3(a ,a , a ), a a a 1.   a  

We choose the fibre-direction as a (1,0, 0).  The strains can be 

expressed in terms of the displacement iu  as 

ij i, j j,i

1
e = (u u ).

2
                                                                           (6)         
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For plane strain deformation in the xy -plane equation (5) then 

yields to 

),)(1(v 0011,12,11 TT
t

AuA yxxx 



                           (7)                         

),)(1(v 0022,12,22 TT
t

uAA xyyy 



                             (8)       

),)(1(v 0033,,12 TT
t

uA yxzz 



                                          (9)                            

, ,( ), 0xy L y x zx zyu v                                             (10) 

where 

11 T L TA λ 2(α μ ) 4(μ μ ) β,         
12A α λ,     

22 TA λ 2μ  .                                                                             (11)   

The equation of motion, taking into consideration the Lorentz force 

guess 

3 2, 1,j i,)(μσuρ 0jij,i  HJ                              (12) 

The dynamic displacement vector is actually measured from a 

steady state deformed position and the deformation is supposed to 

be small. Due to the application of the initial magnetic field H,  

there results an induced magnetic field (0,0,h)h and an induced 

electric field E,  as well as the simplified equations of electro-

dynamics of slowly moving medium for a homogeneous, thermal 

and electrically conducting elastic solid.  

The heat conduction equation in general formula is 

E,ii 1 0 0 1 0 0kT ρC (n τ )T γT (n n τ )e
t t

 
   

 
                    (13) 
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where, k is thermal conductivity, ρ is density, 
E

C  is the specific 

heat at constant strain, T is the temperature above reference 

temperature 0 1 0T , n and n  are parameters. In the above equations a 

dot denotes differentiation with respect to time, and comma 

followed by a subscript denotes partial differentiation with respect 

to the corresponding coordinates. Expressing the components of 

the vector 1 2 3(J , J , J )J in terms of displacement, where 

 1 0 0 0

e
J H ( μ ε v)

y


  


,  2 0 0 0

e
J H ( μ ε u )

x


 


and 3J 0 , by 

eliminating the quantities h  and E  from equation (1). 

3. Solution of the problem 
 

Using the summation convection. From (7)-(10) we note that the 

third equation of motion in (12) is identically satisfied and first two 

equation become 

,)1(
v

2

2
2

0

2

000002

2

1

2

22

2

112

2

t

u
H

x

h
H

x

T

ty

u
B

yx
B

x

u
A

t

u
















































                                                                                                        (14) 

2 2 2 2 2
2 2

22 2 1 0 0 0 0 0 02 2 2 2

v v v v
(1 )

u T h
A B B H H

t y x y x t y y t
     
        

      
         

                                                                                                        (15) 

where,    1 L 2 LB μ , B α + λ + μ .   

For convenience, the following non-dimensional variables are 

used: 

1x = c ηx,        1y = c ηy,        1u = c ηu,         
1v c ηv,          

2
1t c η t,       
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0

T

(T T )
θ γ ,

(λ 2μ )






   ij
ij

T

σ
σ ,

μ
   2

0 1 0τ = c ητ ,    
0

h
h .

H
   i, j 1,2   (16) 

 

where,        2E T
1

ρC λ 2μ
η = , c .

K ρ


  

  

In terms of non-dimensional quantities defined in Eq. (16), the 

above governing equations reduce to (dropping the dashed for 

convenience) 

,)1( 002

2

1

2

22

2

112

2

1
x

h
h

xty

u
h

yx

v
h

x

u
h

t

u
































 
                                       

(17) 
2 2 2 2

1 22 2 1 0 02 2 2
(1 )

v v u v h
h h h h

t y x y x t y y


 

      
     

       
                                  

(18)                             

where     

2
11 22 1 2 0 0

11 22 1 2 0
T

(A , A , B , B ,  μ H )
(h , h , h ,h , h ) 

(λ 2μ )
,


  

2 2
0 0 0

1

ε μ H
α 1

ρ
  ,   

   
 

2
0

11 22 1 2 11 22 1 2 0
E T

γ T
L ,L ,L ,L h ,h ,h ,h h , ε .

ρC λ 2μ
  



 

Taking 0h H e   and using Eq. (13) and substituting into Eqs. (17) 

and (18) we obtain the following wave equation for 1  satisfied by 

u  and v  as we get 

,)1(
v

02

2

1

2

22

2

112

2

1
xty

u
h

yx
L

x

u
L

t

u



























 
                     (19) 

,)1(
vvv

02

2

1

2

22

2

222

2

1
ytx

h
yx

u
L

y
L

t 

























 
                      (20)                                                              
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






























































yx

u

t
n

t
n

tt
n

yx

v
2

2

0012

2

012

2

2

2




   (21)                   

,)1( 022,12,11 
t

AvAuA yxxxT



                                       (22)           

,)1( 022,12,22 
t

AuAvA xyyyT



                                    (23)           

,)1( 022,,12 
t

AvuA yxzzT



                                        (24)          

.0),( ,,  zyzxxyLxyT vu  and 

similar relations in 2 with , , , , , , , , , , ,T L iju v          replaced 

by   ijLT vu   ,,,,,,,,,,,  

 

   To get the exact solutions without any assumed restrictions on 

temperature, displacement and stress distributions. The solution of 

the considered physical variable can be decomposed in terms as the 

following form 

*

*

*

*

( , , ) ( )exp ( ),

v( , , ) v ( )exp ( ),

( , , ) ( )exp ( ),

( , , ) ( )exp ( )ij ij

u x y t u x i y ct

x y t x i y ct

x y t x i y ct

x y t x i y ct





  

  

 

 

 

 

                                    (25) 

where, * *u (x),  v (x), θ (x)* , and 
*
ijσ (x)  are undetermined amplitude 

vectors of the field quantities. Since   is the circular frequency  

and  the wave velocity c  obtained from Eq. (25) depends on the 

particular value of  which indicates to the dispersion of the 

general wave form and on the magnetic field, imposing a certain 

changes in the waves form.  
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Substituting from Eq. (5) into Eqs. (19)-(24) we get set of 

differential equations for medium 1 as follows 

 ,][][ **

2

*

1

2

11  QDvDLiuADL                               (26)     

,][][ **

2

*

2

2

1  QiuDLivADh                                            (27) 

       ,][ *

4

2*

3

*

3  ADvAiuDA                                             (28) 

        ,*

22

*

12

*

11

*  QAvAiuDAxxT                        (29) 

         ,*

22

*

22

*

12

*  QAvAiuDAyyT                                    (30) 

        ,*

22

**

12

*  QAviuDAzzT                                      (31) 

       * * * * *( ), 0T xy L zx zyi u Dv               (32) 

where   

2 2 2 2 2 2

1 1 1 2 22 1 0, , 1 ,A h c A iL c Q i c              

2

3 1 0 0 4 1 0( ), ( ) , .
d

A i c n i cn A i c n i c D
dx

            

     

Eliminating θ (x)* and v (x)* between Eqs. (26)-(28), we obtain 

the partial differential  equation satisfied by *u (x)  

6 4 2 *[ ] ( ) 0D AD B D C u x                                                 (33) 

 where  

 ,1 22

231113111211

111

LALhQAhAhAL
hh

A                         (34)   

 ,)2(
1

3

22

24

2

2424

2

11311321121

111

ALALAAALQAAhAALAA
hh

B  

(35) 

 .1 2

41321

111

QAAAAA
Lh

C                                  (36) 
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In a similar manner, we can show that v (x)*
and θ (x)*  satisfy the 

equation  

  6 4 2 *[ D AD BD C ] v (x), θ (x) 0.*                                 (37) 

It can be factorized as 

   2 2 2 2 2 2 *
1 2 3D k D k D k u (x) 0                                     (38) 

where, 2
nk , (n 1, 2, 3)   are the roots of the following 

characteristic equation                        

6 4 2K AK BK C 0.                                                            (39) 

where, *u (x) , v (x)*
and θ (x)*  will describe surface waves, they 

must become vanishingly small as x .  

Since the attenuation coefficient is defined as 

)(Im ni kgQ                   3,2,1n  

The solution of Eq. (33) which is bounded as x  , for 

medium 1  is given by 

3
*

1

( ) ( , )exp( ).n n

n

u x M c k x


                                              (40) 

Similarly 

3
*

1

v ( ) ( , )exp( ),n n

n

x M c k x


                                         (41) 

)exp(),()(
3

1

* xkcMx n

n

n 


                                                   (42) 

where, nn MM ,  and nM    are some parameters depending on c and 

ω.  

Substituting from Eqs. (41) and (42) into Eqs. (26)-(28), we get 

.
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.3,2,1),,(),( 1  ncMHcM nnn                                  (43) 

           .3,2,1),,(),( 2  ncMHcM nnn                    (44) 

 

Thus, we have 

           
3

*

1

1

v ( ) ( , )exp( ),n n n

n

x H M c k x


                               (45)         

           
3

*

2

1

( ) ( , )exp( ),n n n

n

x H M c k x 


                               (46)                                                                       
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
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where 
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Also for medium 2 , set differential equations for medium 2  as 

follow 

 

     ,v][][ **

2

*

1

2

11   QDDLiuADL                                                             

(57) 

     ,][v][ **

2

*

2

2

1   QiuDLiADh                                                             

(58) 

       ,][v *

4

2*

3

*

3   ADAiuDA                                                                       

(59) 

        ,v *

22

*

12

*

11
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(60) 
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(61) 

        ,v *

22
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*   QAiuDAzzT                                                                

(62) 

       * * * * *( v ), 0T xy L zx zyi u D                                                 

(63) 

where   
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2
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2

11 cLiAchA          

Eliminating )(* x and )(v * x between Eqs. (57)-(59), we obtain the 

partial differential  equation satisfied by )(* xu  for medium 2 we 

get                      

6 4 2 *[ ] ( ) 0D A D B D C u x                                      (64) 

where  

 ,1 22
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hh
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hh
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41321

111

QAAAAA
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

                       (67) 

In a similar manner, we can show that )(* x and ),(v * x  satisfy 

the equation  

   .0)(),(v][ **246  xxCDBDAD                               (68)  

The above equation can be factorized as 

    0)(*2

3

22

2

22

1

2  xukDkDkD                                  (69) 

where, )3,2,1(2  nkn   are the roots of the following characteristic 

equation                        

0246  CkBkAk                                                          (70) 

where ),(u * x  ),(v * x and )(* x will describe surface waves, they 

must become vanishingly small as x  . The solution of  Eq. 

(64) which is bounded as x  , for medium 2  is given by 

)exp(),(
~

)(
3

1

* xkcMxu n

n

n
 



                                                  (71) 

Similarly 

            )exp(),(
~

)(v
3

1

* xkcMx n

n

n
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)(
3

1

* xkcMx n

n

n
 


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Where nn MM
~

,
~

  and nM
~
   are some parameters depending on c and 

  for medium 2  

Substituting from Eqs. (72)-(73) into Eqs. (57)-(59), we get 

.
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1( , ) ( , ), 1,2,3,n n nM c H M c n                               (74) 

           .3,2,1),,(
~

),(
~

2  ncMHcM nnn                    (75) 

Thus, we have 
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The solution for  the medium 1 and 2 for  the physical 

components takes the form 

 

3

1

3 3

1 2

1 1

{ , v, }( , , ) { ( , )exp( ),

( , ) exp( ), ( , ) exp( )}exp ( ),
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4. Applications 

         4.1. Thermal shock problem 

 To investigate the possibility of thermal shock in anisotropic fibre-

reinforced elastic media, we replace medium 2 by a vacuum, in 

the preceding problem. Since the boundary z = 0 is adjacent to 

vacuum, it is free from surface traction. So thermal boundary and 

the stress boundary condition in this case may be expressed as: 

1) Thermal boundary conditions that the surface of the half-space 

subjected to thermal shock 

 

0),,(),,(  xattyftyx .                                        (92) 
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2)  Mechanical boundary condition that surface of the half-space is 

traction free 

xx xyσ (0,y,t) σ (0,y,t) 0.                                                          (93) 

Substituting the expressions of the variables considered into the 

above boundary conditions, we can obtain the following equations 

satisfied by the parameters 

3

2n n

n=1

H M f ,                                                                          (94)  

3

3n n

n=1

H M 0,                                                                            (95) 

3

6n n

n=1

H M 0.                                                                            (96) 

Solving Eqs.(94)-(96), we get the parameters nM (n 1,2,3)  are 

defined as the follow 

31 2
1 2 3M = , M , M

 
 

  
                       (97) 

where 

21 32 63 33 62 22 31 63 61 33 23 31 62 32 61H (H H H H ) H (H H H H ) H (H H H H ),               (98) 

1 32 63 33 62f (H H H H ),                                                         (99) 

2 31 63 61 33f (H H H H ),                                                    (100) 

3 31 62 32 61f ( H H H H ).                                                      (101) 

 

4.2. Rayleigh waves 
 

     To investigate the possibility of Rayleigh waves in anisotropic 

fibre-reinforced elastic media, also we replace medium 2 by a 

vacuum. Since the boundary z = 0 is adjacent to vacuum, it is free 

from surface traction. So the stress boundary condition in this case  
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may be expressed as 

 ( , , ) 0 0,xx x y t at x                              (102) 

            ( , , ) 0 0,yy x y t at x                              (103) 

     ( , , ) 0 0.xy x y t at x                                         (104)  

The wave velocity for Rayleigh waves in isotropic elastic medium 

it gives 
3

3n n

n=1

H M 0,                                                                       (105) 

3

4

1

0,n n

n

H M


                                                                       (106) 

3

6n n

n=1

H M 0.                                                                        (107) 

Also, by solving Eqs. (105)-(107), we get the parameters 

nM (n 1,2,3) , to determine the  wave velocity for Rayleigh 

waves. 

 

 

4.3. The boundary conditions between interfaces 
 

(i) The displacement components at the boundary surface between 

the media 1  and              2  must be continuous at all times 

and positions.  This means that 

                       21 ]v,[v],[   uu                                       (108) 

then we obtain 
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  (109) 

(ii) The stress components xx , yy  and zz  must be continuous at 

the boundary  

  21 ],,,[],,,[  xyzzyyxxxyzzyyxx                          (110) 
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(111) 

Invoking the boundary conditions (108) and (110) at the surface 

0x  of the plate, we obtain a system of six equations. After 

applying the inverse of matrix method, we have the values of the 

six constants  by eliminating j jM , M  from equation (109)-(111)    

we get  

11 12 13 11 12 13

31 32 32 31 32 33

41 42 43 41 42 43

51 52 53 51 52 53

61 62 63 61 62 63

1 1 1 1 1 1

H H H H H H

H H H H H H
0.

H H H H H H

H H H H H H

H H H H H H

Det

 
   
 
   

 
   

   
 
    

(112) 

Hence, we obtain the expressions of displacements, temperature 

distribution and another physical quantities of the plate. 

 

   4.4. Stoneley waves  
      

    It is the generalized form of Rayleigh waves in which we 

assume that the waves are propagated along the common boundary 

of two semi-infinite media 1 and 2 .    Therefore equation (112) 

determines the wave velocity equation for Stoneley waves in 

anisotropic fiber- reinforced solid elastic media under the influence 

of gravity. 
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 Clearly from equation (112), it is follows that wave velocity of the 

Stoneley waves depends upon the parameters for fiber-reinforced 

of the material medium, gravity and the densities of both media. 

Since the wave velocity equation (112) for Stoneley waves under the 

present circumstances depends on the particular value of ω and 

creates a dispersion of a general wave form. 

   Further equation (112), of course, is in complete agreement with 

the corresponding classical result, when the effect of gravity and 

parameters of the fibre-reinforcement are ignored. 

 

5. Numerical results 

     With a view to illustrating the analytical procedure presented 

earlier, we now consider a numerical example for which 

computational results are given. The results depict the variation of 

temperature, displacement and stress fields in the context of three 

theories. To study the effect of rotation and reinforcement on wave 

propagation, we now present some numerical results for the 

physical constants [7]  

 9 2λ 7.59x10 N/m , 9 2
Tμ 1.89x10 N/m ,  9 2

Lμ 2.45x10 N/m ,     

k 386 , 9 2α 1.28x10 N/m  , 9 2β 0.32x10 N/m ,   

2ρ 7800 kg/m ,   EC 3 8 3 . 1 J / ( k g k )   5 2
tα 1.78 x10 N/m ,   

0ν 0.03   ,    0τ 0.02 ,      a 1     0T 2 9 3 K       *f 1 ,          

10 2μ 3.86 10 kg/ms  ,        0ω ω iξ   ,     0ω 2 ,               ξ 1 .  

  The computations were carried out for a value of time t 0.1 . The 

numerical technique, outlined above, was used for the distribution  
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of the real part of the thermal temperature θ , the displacement u  

and v , the stresses xxσ , yyσ  and xyσ  distribution for the problem. 

The field quantities, temperature, displacement components u, v  

and stress components xxσ , yyσ  and xyσ  depend not only on space 

x and time t but also on the thermal relaxation times 0τ and 0ν . 

Here, all the variables are taken in non dimensional form. When 

there two thermal relaxation time in the absence and the presence 

of magnetic field, the results are shown in Figs. 1–11. The graph 

shows the three curves predicted by different theories of thermo-

elasticity. In these figures, the solid lines represent the solution in 

the Coupled theory, the dotted lines represent the solution in the 

generalized LS theory and dashed lines represent the solution 

derived using the GL theory. We notice that the results for the 

temperature, the displacement and stresses distribution when the 

relaxation time is including in the heat equation are distinctly 

different from those when the relaxation time is not mentioned in 

heat equation, because the thermal waves in the Fourier's theory of 

heat equation travel with an infinite speed of propagation as 

opposed to finite speed in the non-Fourier case. This demonstrates 

clearly the difference between the coupled and the theory of 

generalized thermo-elasticity. For the value of y, namely y = 1, 

were substituted in performing the computation. It should be noted 

(Fig.1). It is clear from the graph that θ  has decreases in the 

presence of magnetic field to arrive the minimum value at the 

beginning and hence increases with tacking the wave behaviors.  
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But in the case of absence of magnetic field the temperature 

increases in the beginning to arrive the maximum amplitudes and 

smooth decreases, also move in the wave propagation. The value 

of temperature converges to zero with increasing the distance x. 

The effect of magnetic field on temperature decreases the value of 

amplitude of θ  and its nature for the medium with magnetic field.  

   Fig. 2 depicts the horizontal displacement u,  begins from the 

negative values in the presence of magnetic field and then 

increases to arrive the maximum amplitudes, also moves in the 

wave propagation. However in the absence of magnetic field, the 

displacement start from the positive value at the beginning, the 

behavior is smooth in the first and then decreases again to reach its 

minimum, beyond it u  falls again to try to retain zero at infinity, 

but the effect in the presence of magnetic field illustrated in the 

figure that the value of u for magnetic field is smaller when 

compared to those in the absence of magnetic field. The behavior 

of displacement u in (CD), (LS) and (GL) theories for two different 

values of magnetic field is similar in two cases.  

  Fig. 3, shows that the vertical displacement v  always starts from 

the positives value and terminates at the zero value but v  always 

starts from the positive values without magnetic field sharp 

increases in the beginning to arrive the maximum amplitudes and 

smooth decreases. However in the presence of magnetic field, v  

starts from the positive value and terminates at the zero value but 

v  always starts from the positive value and smooth decreases in 

the beginning to arrive the minimum amplitudes and smooth  
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increases. Also v in this case reaches minimum value, beyond 

reaching zero at the infinity (state of particles equilibrium). The 

displacements u and v  show different behaviors, because of the 

elasticity of the solid tends to resist vertical displacements in the 

problem under investigation. Fig.4 explains that the stress 

component xxσ  reaches coincidence with zero value and satisfies 

the boundary condition at x 0 , starts sharp increases and reaches 

the maximum value in two cases and converges to zero with 

increasing the distance x, behavior of three theories are similar. In 

case of absence of magnetic field, xxσ  increases in the start and 

start decreases in the context of the three theories until reaching the 

zero value with increases the distance. These trends obey elastic 

and thermoelastic properties of the solid under investigation. The 

magnetic field caused relaxes the wave propagation and mores the 

amplitudes of the stress value.  Fig. 5, shows that the stress 

component yyσ  has a different behavior in the presence and 

absence of magnetic field. It decreases in the start and start 

increases (maximum) in the context of the three theories and 

propagation until reaching the zero value at infinity in the absence 

of magnetic field, but in the presence of magnetic field, it increases 

in the start and start decreases in the context of the three theories 

until reaching zero value. These trends obey elastic and 

thermoelastic properties of the solid under investigation. Fig. 6, 

shows that the stress component xyσ  satisfies the boundary 

condition, it sharply decreases in the start and start increases in the  
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presence of magnetic field but in the absence of magnetic field 

xyσ  takes the same behavior nearly. The lines without magnetic 

field has the highest gradient when compared with magnetic field. 

These trends obey elastic and thermoelastic properties of the solid. 

Fig.7 depicts that the stress component zzσ  reaches coincidence 

with positives value start smooth increases and reaches the 

maximum value in two cases and converges to zero with increasing 

the distance x, behavior of three theories are similar. In case of 

absence of magnetic field, zzσ  increases in the start and start 

decreases in the context of the three theories until reaching the zero 

value with increasing the distance. However, in the presence of 

magnetic field the curves of zzσ  are large compared with the 

curves in the absence of magnetic field. These trends obey elastic 

and thermoelastic properties of the solid under investigation.  

Figs. 8-11, show the comparison between the temperatureθ , the 

normal displacement component v  and the force stress 

components xxσ and xyσ  in case of material with reinforced 

constants and case of material without reinforced constants in the 

context of the three theories under the same value of magnetic 

field. 

Fig. 8 shows that the temperature θ  with reinforced constants is 

greater than that without reinforced constants since start from the 

positive values and satisfy the boundary conditions. The material 

with and without reinforced constants start smooth decreases and 

reaches the minimum value in two cases and then increases to  
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reach the maximum value in two cases and converges to zero with 

increasing the distance x. Fig. 9 shows that the normal 

displacement v  with reinforced constants is greater than that 

without reinforced constants and tacks the wave propagation in all 

ranges but we observed that the displacement without reinforced 

constants tacks the exponential behavior. Fig. 10 shows that the 

stress component xxσ  with reinforced constants is greater than that 

without reinforced constants. Fig. 11 shows that the stress 

component xyσ  with reinforced constants are greater than that 

without reinforced constants. 

By comparing the figures which obtained under the three 

thermoelastic theories, important phenomena are observed:- The 

curves in the context of the (CD), (LS) and (GL) theories decrease 

exponentially with increasing x, this indicates that the 

thermoelastic waves are untenanted and non-dispersive, where 

purely thermoelastic waves undergo both attenuation and 

dispersion. 

   Fig. 12 displays the temperature distribution with varies values 

of c with respect to y, it is shown that  starts from zero, increasing 

to its maximum value and decreases with the increased values of y 

to attend again to zero that indicated to the vanishing of the 

temperature distribution at the boundary and the high values of the 

coordinate y. It is appearing that  increases, decreases and 

increases with an increasing of c tends to zero as y tends to 

infinity. From Fig. 13, it is seen that the distribution of yyσ  starts  

from zero, decreasing to its minimum value and increases with the 
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increased values of y to attend again to zero that indicated to the 

vanishing of the stress distribution at the boundary and the high 

values of the coordinate y. It is showing that yyσ decreases, 

increases and decreases with an increasing of c tends to zero as y 

tends to infinity.     

    Fig. 14 shows that the distribution of xxσ  starts from zero, 

increasing to its maximum value and decreases with an increasing 

of y to attend again to zero that indicated to the vanishing of the 

stress distribution at the boundary and the high values of the 

coordinate y. It is showing that xxσ  decreases and increases with 

an increasing of c arrives to zero as y tends to infinity. From Fig. 

15, it is clear that the distribution of xyσ  starts from zero, 

increasing to its maximum value and decreases with an increasing 

of y to attend again to its minimum value. It is seen that xyσ  

increases with an increasing of c. Figs. 16 and 17 schematic the 

variation of phase velocity with respect to depth and magnetic 

field, respectively, it is shown that c decreases to interrupt to zero 

with an increasing of the depth and magnetic field. It is clear from 

Figs. 18 and 19 that Stoneley waves velocity and attenuation 

coefficient affect strongly with the magnetic field and phase 

velocity c that tend to zero if the magnetic field vanishes and for 

high magnetic field value. 

    Figs. 20 and 21 plot the variation of the temperature distribution 

  and vertical displacement distribution v with respect to the depth 

y and coordinate x, it is seen that  and v increase and decrease 

periodically with x tend to zero and increases with the depth y.   
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Fig. 22 displays the variation of xxσ  with respect the depth and 

coordinate x, it is obvious that xxσ decreases, increases 

periodically tending to zero as x tends to infinity and decreases and 

decreasing with the increased values of y. From Fig. 23, it is 

appear that xxσ  affects strongly with variation of x and y which 

tends to zero as x tends to zero.  

  Figs. 24 and 25 display variation the attenuation coefficient of 

Rayleigh waves with respect to magnetic field, phase velocity and 

depth, phase velocity, respectively. It is clear that it affects with all 

parameters and takes the harmonic form with variation of the depth 

y. Fig. 26 displays the variation of the attenuation coefficient for 

Rayleigh waves with variation of magnetic field and depth, it is 

obvious that it decreases periodically with magnetic field and 

decreases with an increasing of y tends nearly to zero. Fig. 27 

displays the variation of the attenuation coefficient for Stoneley 

waves with variation of magnetic field and depth, it is obvious that 

it increases tends to zero with the increasing of magnetic field and 

increases and decreases with an increasing of y tends nearly to 

zero.  

   Finally, Figs. 28 and 29 plot the variation the attenuation 

coefficient of Stoneley waves with respect to phase velocity, depth 

and magnetic field, phase velocity, respectively. It is clear that it 

affects with all parameters and takes the harmonic form with 

variation of the depth y.   
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6. Conclusions 

Due to the complicated nature of the governing equations of the 

elasticity  fiber-reinforced theory, the work done in this field is 

         unfortunately limited in number. The method used in this 

study provides a quite successful in dealing with such problems. 

This method gives exact solutions in the elastic medium without 

any assumed restrictions on the actual physical quantities that 

appear in the governing equations of the problem considered. 

Important phenomena are observed in all these computations: 

1. The curves of the physical quantities with (CD) theory in most 

of figures are lower in comparison with those under (LS) 

theory and (GL) theory, due to the relaxation times. 

2.  Analytical solutions based upon normal mode analysis for 

themoelastic problem in solids have been developed and 

utilized.  

3. The value of all the physical quantities converges to zero with 

an increase in  distance x and all functions are continuous. 

4. The fibre-reinforced has an important role on the distribution of 

the field quantities. 

5. The method which used in the present article is applicable to a 

wide range of problems in thermodynamics and 

thermoelasticity. 

6. Deformation of a body depends on the nature of forced applied 

as well as the type of boundary conditions.  

7. It was found that for large values of time they give close results. 

The solutions obtained in the context of elasticity theory, 

however, exhibit the behavior of speeds of wave propagation. 
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8. By comparing Figs. (13-29), it was found that the wave velocity 

has the same behavior in both media.  But with the passage of  

time and magnetic field,  numerical values of wave velocity in 

the elastic medium are large in comparison  due to the influences 

of  magnetic field  . 

9. The results presented in this paper should prove useful for      

    researchers in material science, designers of new materials. 

10. Study of the phenomenon of relaxation time and magnetic field       

is also used to improve the conditions of oil extra 
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Fig. 1: Temperature distribution in the presence and absence of  

magnetic field. 
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Fig. 2: Horizontal displacement distribution u in the presence 

     and absence of magnetic field. 
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Fig. 3: Vertical displacement distribution v in the presence  

        and absence of magnetic field. 
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Fig. 4: The distribution of stress component xxσ  in the presence  

   and absence of magnetic field. 
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Fig. 5: The distribution of stress component yyσ  in the presence  

    and absence of magnetic field. 
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Fig. 6: The distribution of stress component xyσ  in the presence  

    and absence of magnetic field. 
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Fig .7: The distribution of stress component zzσ  in the presence  

     and absence of magnetic field. 
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Fig. 8: Temperature distribution with and without reinforced 

constants at constant magnetic field. 
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Fig. 9: Vertical displacement distribution v with and without   

reinforced constants at constant magnetic field. 
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Fig. 10: The distribution of stress component xxσ  with and without  

               reinforced constants at constant magnetic field. 
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Fig. 11: The distribution of stress component xyσ  with and without  

reinforced constants at constant magnetic field. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y



 

 

c=1

c=3

c=5

 
Fig. 12: Temperature distribution with varies values of c with 

respect to y 
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Fig. 13: The distribution of stress component yyσ  with varies values of c   

with respect to y 
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Fig. 14: The distribution of stress component xxσ  with varies values of c 

with respect to y. 
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Fig. 15: The distribution of stress component xyσ  with varies values of c 

with respect to y 
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Fig. 16:  Phase velocity c for Rayleigh waves with respect to depth 
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Fig. 17: Phase velocity c for Rayleigh waves with respect to magnetic 

field  
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Fig. 18:  Variation of Stoneley wave velocity with varies values of c with 

  respect to magnetic field 
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Fig. 19: Variation of attenuation coefficient with varies values of c  

     with respect to magnetic field  
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Fig. 20: 3D Temperature distribution between two medium with a 

constant of magnetic field 
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Fig. 21: Vertical displacement distribution v in the presence of magnetic 

 field in  medium 1 with a constant c 
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Fig. 22: 3D  distribution of stress component xxσ  in the presence of   

magnetic field between two medium  with a constant c 
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Fig. 23: 3D  distribution of stress component xyσ  in the presence of   

magnetifield between two medium  with a constant c 
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Fig. 24: Variation of the attenuation coefficient with magnetic field  

     and phase velocity  for Rayleigh waves 
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Fig. 25: Variation of the attenuation coefficient with phase velocity   

    and depth for Rayleigh waves 
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Fig. 26: Variation of the attenuation coefficient with magnetic field  

     and depth for Rayleigh waves 
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Fig. 27: Variation of the attenuation coefficient with magnetic  

         field and depth for Stoneley waves 
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Fig. 28: Variation of the attenuation coefficient  with phase velocity  

    and depth  for Stoneley waves 
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Fig. 29: Variation of the attenuation coefficient with magnetic field 

     and phase velocity for Stoneley waves 

 


