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A SEVENTH–ORDER COMPUTATIONAL ALGORITHM FOR
THE SOLUTION OF STIFF SYSTEMS OF DIFFERENTIAL

EQUATIONS

R. O. AKINOLA1 AND A. S. AKOH2

ABSTRACT. In this paper, we present a computationally cheap sec-
ond derivative block hybrid method for the numerical solution of
systems of stiff initial valued ordinary differential equations. Re-
sults of numerical experiments which validates our theoretical re-
sults are presented by figures and tables.

1. INTRODUCTION

A stiff system of differential equations refers to a set of differential
equations in which the solution changes rapidly over a specific region of
the problem domain. Such systems often arise in various scientific and
engineering fields, including physics, chemistry, and mechanics. Solv-
ing stiff systems of differential equations accurately and efficiently is a
challenging task, requiring the use of specialized numerical methods.

In recent years, researchers have developed a variety of numerical
methods to tackle the difficulties associated with stiff systems of dif-
ferential equations. One such method is the Seventh Order Second
Derivative Block Hybrid Method, which combines the advantages of
higher-order accuracy with the simplicity and efficiency of block meth-
ods. This method has shown promising results in solving stiff systems
by providing accurate solutions while reducing computational cost.

Several researches have focused on the implementation and numerical
algorithms of A-stable second derivative block hybrid method. Ramos
et al, [1] proposed a new 2-step hybrid block method with 10th order
convergence for numerical integration of initial value systems. Their
method is A-stable and outperforms similar methods in solving such
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problems, as shown by numerical experiments. Besides, Skwame et
al., [2] introduced a new A-stable backward difference second deriva-
tive linear multistep method for solving stiff ordinary differential equa-
tions. The method was derived using power series as basis functions
and involves multi-step interpolation and collocation techniques. Their
analysis confirmed that the method is consistent, zero-stable, and has
a uniform order of twelve. Additionally, the region of absolute sta-
bility was plotted, demonstrating the A-stability of the method. Singh
et al, [3] introduced an optimized hybrid block method for numerical
integration of initial value ordinary differential systems. The method
bypassed the first Dahlquist’s barrier on linear multi-step methods. The
scheme achieved fifth-order accuracy and A-stability by optimizing off-
grid points to minimize local truncation errors.

Akinfenwa et al., [4] proposed a hybrid second derivative three-step
method of order seven for solving first order stiff differential equations.
The hybrid second derivative block backward differentiation formula
is concurrently applied to the first order stiff systems to generate the
numerical solution that do not coincide in time over a given interval.

Although there is no paucity of research on this method, there is
however, further potential areas of improvement regarding the A-stable
second derivative block hybrid method including investigating adap-
tive step size selection strategies and higher-order accuracy. The lack
of such stability properties makes the continuous solution not reliable
Yakubu et al., [5]. Hence, the need for a modification that involves
incorporating the A-stable second derivative of the solution into the
integration scheme, resulting in the enhanced stability property. This
study builds on the existing works to derive block hybrid methods that
show a high order of accuracy with very low error constants. In all the
above mentioned literatures, our proposed method uses different off-
grid points which were well selected for better accuracy.

2. THE HEART OF THE MATTER

In this section, we show how the new method is derived using an inter-
polation and collocation approach, presented a result with proof which
shows a condition on the step size h under which the corresponding ma-
trix is nonsingular as well as the final presentation of the new second
derivative block hybrid method. The general form of a k-step second
derivative block hybrid method for the numerical solution of a system
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of ordinary differential equation is [5]

y(x) =
k

∑
j=0

α jyn+ j +h
k

∑
j=0

β j fn+ j +h2
k

∑
j=0

β jgn+ j, (2.1)

where the α ′
js,β

′
js and γ j’s are unknown coefficients to be found,

yn+ j = y(xn + jh),

is the numerical approximation to the exact solution

y
′
(xn+ j) = fn+ j = f (xn + jh,y(xn + jh)),

and

y
′′
(xn+ j) = f

′
n+ j = f

′
(xn + jh,y(xn + jh)) = gn+ j.

In addition,

α j(x) =
k

∑
j=0

α j, j+1x j, for j = 0,1, · · · ,k−1,

β j(x) =
k

∑
j=0

β j, j+1x j, for j = 0,1, · · · ,k−1,

and

γ j(x) =
k

∑
j=0

γ j, j+1x j, for j = 0,1, · · · ,k−1.

To get α j(x),β j(x) and γ j(x), Sirisena et al (2004) arrived at a matrix
equation of the form

DC = I,
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where I is an identity matrix of dimension (t +m)× (t +m), D and C
are of the same dimensions

D=



1 xn x2
n x3

n x4
n · · · xt+m−1

n

1 xn+1 x2
n+1 x3

n+1 x4
n+1 · · · xt+m−1

n+1
...

...
...

...
... · · ·

...
1 xn+t−1 x2

n+t−1 x3
n+t−1 x4

n+t−1 · · · xt+m−1
n+t−1

0 1 2xn 3x2
n 4x3

n · · · (t +m−1)xt+m+2
n

0 1 2xn+1 3x2
n+1 4x3

n+1 · · · (t +m−1)xt+m−2
n+1

...
...

...
... · · ·

...
...

0 1 2xn+t−1 3x2
n+t−1 4x3

n+t−1 · · · (t +m−1)xt+m−2
n+t−1

0 0 2 6xn 12x2
n · · · (t +m−1)(t +2−m)xt+m−3

n

0 0 2 6xn+1 12x2
n+1 · · · (t +m−1)(t +m−2)xt+m−3

n+1
...

...
...

...
... · · ·

...
0 0 2 6xn+t−1 12x2

n+t−1 · · · (t +m−1)(t +m−2)xt+m−3
n+t−1



.

(2.2)
The matrix (2.2) is the multi-step collocation matrix of dimension (t +m)×
(t +m). For C we also define a matrix of dimension (t +m)× (t +m) whose
columns gives the continuous coefficient as:

C =


α0,1 · · · αt−1,1 . hβ0,1 · · ·hβm−1,1 . h2γ0,1 · · · h2γm−1,1
α0,2 · · · αt−1,2 . hβ0,2 · · ·hβm−1,2 . h2γ0,2 · · · h2γm−1,2
. . ; . . . . .
. . . . . . . .
. . . . . . .

α0, j+m · · · αt−1, j+m . hβ0, j+m · · ·hβm−1, j+m . h2γ0, j+m · · · h2γm−1, j+m

 ,
(2.3)

where t is the number of interpolation points while m is the number of collo-
cation points used respectively. The columns of the matrix
C = D−1 gives the continuous coefficients α j(x); j = 0,1 · · · ,k−1, β j(x); j =
0,1, · · · ,k−1 and γ j(x); j = 0,1, · · · ,k−1.
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Thus, the matrix D in (2.2) in our case becomes

D=



1 xn x2
n x3

n x4
n x5

n x6
n x7

n x8
n

0 1 2xn 3x2
n 4x3

n 5x4
n 6x5

n 7x6
n 8x7

n

0 1 2xn+ 1
2

3x2
n+ 1

2
4x3

n+ 1
2

5x4
n+ 1

2
6x5

n+ 1
2

7x6
n+ 1

2
8x7

n+ 1
2

0 1 2xn+1 3x2
n+1 4x3

n+1 5x4
n+1 6x5

n+1 7x6
n+1 8x7

n+1

0 1 2xn+ 3
2

3x2
n+ 3

2
4x3

n+ 3
2

5x4
n+ 3

2
6x5

n+ 3
2

7x6
n+ 3

2
8x7

n+ 3
2

0 1 2xn+2 3x2
n+2 4x3

n+2 5x4
n+2 6x5

n+2 7x6
n+2 8x7

n+2

0 0 2 6xn 12x2
n 20x3

n 30x4
n 42x5

n 56x6
n

0 0 2 6xn+ 1
2

12x2
n+ 1

2
20x3

n+ 1
2

30x4
n+ 1

2
42x5

n+ 1
2

56x6
n+ 1

2

0 0 2 6xn+1 12x2
n+1 20x3

n+1 30x4
n+1 42x5

n+1 56x6
n+1



.

By replacing xn+ 1
2

with xn+1 − h
2 , xn = xn+1 − h, xn+ 3

2
= xn+1 +

h
2 and xn+2 =

xn+1 +h, we obtained the determinant of D as

detD =−25515h25

64
.

This now leads to the following result.
Theorem 1: Given that ε > 0, then

h >

[
64ε

25515

] 1
25

.

If in addition ε = 2−52, h > 0.1861, then the D matrix is nonsingular.
Proof: Since by assumption ε > 0, then let

25515h25

64
> ε.

This implies

h25 >
64ε

25515
, and h >

[
64ε

25515

] 1
25

.

Now, substituting ε = 2−52 yields

h >

[
64ε

25515

] 1
25

=

[
64×2−52

25515

] 1
25

= 0.1861.

Therefore, if h > 0.1861 then the determinant of D will be nonzero, ensuring
the nonsingularity of D. □
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We state categorically here that the above result is purely theoretical and
does not influence the choice of step sizes in actual computations as shown in
[6].
In our case, equation (2.1) the continuous formulation is

y(x) = α0yn +h
5

∑
j=0

β j fn+ j +h2
2

∑
j=0

β jgn+ j

= α0yn +h
[

β0 fn +β 1
2

fn+ 1
2
+β1 fn+1 +β 3

2
fn+ 3

2
+β2 fn+2

]
(2.4)

+h2
[

γ0gn + γ 1
2
gn+ 1

2
+ γ1gn+1

]
.

Observe that since we have proved that D is nonsingular under a certain
condition on h, we are now at liberty to find the inverse. Upon inverting D and
replacing a with xn +h, the elements of the first row constitutes the following
continuous coefficients:

α0 = 1,

β0 =
759h8 −1715a3h5 +2415a4h4 +5271a5h3 −7945a6h2 −3300a7h+4515a8

3780h7 ,

β 1
2

=
466h8 −3080a3h5 −210a4h4 +7224a5h3 −2660a6h2 −3840a7h+2100a8

945h7 ,

β1 = −−3h8 +10ah7 −40a3h5 +15a4h4 +78a5h3 −50a6h2 −40a7h+30a8

10h7 ,

β 3
2

= −−6h8 +280a3h5 −1050a4h4 +1176a5h3 +140a6h2 −960a7h+420a8

945h7 ,

β2 =
−h8 +35a3h5 −105a4h4 +21a5h3 +245a6h2 −300a7h+105a8

3780h7 ,

γ0 =
3h8 −14a3h5 +21a4h4 +42a5h3 −70a6h2 −24a7h+42a8

252h6 ,

γ 1
2

=
−2h8 −56a3h5 +42a4h4 +168a5h3 −140a6h2 −96a7h+84a8

63h6 ,

γ1 =
−h8 +14a2h6 −28a3h5 −21a4h4 +84a5h3 −28a6h2 −48a7h+28a8

28h6 .
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The continuous formulation becomes

y(x) = yn +
[759h8 −1715a3h5 +2415a4h4 +5271a5h3 −7945a6h2 −3300a7h+4515a8]

3780h7 fn

+

[
466h8 −3080a3h5 −210a4h4 +7224a5h3 −2660a6h2 −3840a7h+2100a8

]
945h7 fn+ 1

2

−
[
−3h8 +10ah7 −40a3h5 +15a4h4 +78a5h3 −50a6h2 −40a7h+30a8

]
10h7 fn+1

−
[
−6h8 +280a3h5 −1050a4h4 +1176a5h3 +140a6h2 −960a7h+420a8

]
945h7 fn+ 3

2

(2.5)

+

[
−h8 +35a3h5 −105a4h4 +21a5h3 +245a6h2 −300a7h+105a8

]
3780h7 fn+2

+

[
3h8 −14a3h5 +21a4h4 +42a5h3 −70a6h2 −24a7h+42a8

]
252h6 gn

+

[
−2h8 −56a3h5 +42a4h4 +168a5h3 −140a6h2 −96a7h+84a8

]
63h6 gn+ 1

2

+

[
−h8 +14a2h6 −28a3h5 −21a4h4 +84a5h3 −28a6h2 −48a7h+28a8

]
28h6 gn+1.

If we substitute a = 0 into the continuous formulation above, then we have

yn+1 = yn+
h
[
759 fn +1864 fn+ 1

2
+1134 fn+1 +24 fn+ 3

2
− fn+2

]
+h2

[
45gn −120gn+ 1

2
−135gn+1

]
3780

.

Substituting a = h
2 into the continuous scheme above, then

yn+ 1
2
= yn +

h
[
186367 fn +235792 fn+ 1

2
+58212 fn+1 +3632 fn+ 3

2
−163 fn+2

]
967680

+
h2
[
10590gn −57360gn+ 1

2
−13500gn+1

]
967680

.

Evaluate the continuous scheme at a =−h/2 to obtain the scheme

yn+ 3
2
= yn +

h
[
8333 fn +23088 fn+ 1

2
+17388 fn+1 +5008 fn+ 3

2
−57 fn+2

]
35840

+
h2
[
570gn +720gn+ 1

2
+2700gn+1

]
35840

.

Evaluating the continuous scheme at a =−h gives the discrete scheme

yn+2 = yn +
h
[
−128 fn +1512 fn+1 −608 fn+ 1

2
+992 fn+ 3

2
+122 fn+2

]
945

+
h2
[
−30gn −480gn+ 1

2
−540gn+1

]
945

.
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The seventh-order second derivative block hybrid method is now summarised
below

yn+1 = yn +
h
[
759 fn +1864 fn+ 1

2
+1134 fn+1 +24 fn+ 3

2
− fn+2

]
+h2

[
45gn −120gn+ 1

2
−135gn+1

]
3780

yn+ 1
2
= yn +

h
[
186367 fn +235792 fn+ 1

2
+58212 fn+1 +3632 fn+ 3

2
−163 fn+2

]
967680

+
h2
[
10590gn −57360gn+ 1

2
−13500gn+1

]
967680

yn+ 3
2
= yn +

h
[
8333 fn +23088 fn+ 1

2
+17388 fn+1 +5008 fn+ 3

2
−57 fn+2

]
35840

(2.6)

+
h2
[
570gn +720gn+ 1

2
+2700gn+1

]
35840

yn+2 = yn +
h
[
−128 fn +1512 fn+1 −608 fn+ 1

2
+992 fn+ 3

2
+122 fn+2

]
945

+
h2
[
−30gn −480gn+ 1

2
−540gn+1

]
945

.

2.1. Convergence Analysis. The crux of the matter in this section is to ex-
amine properties of the new second derivative block hybrid method where we
calculated the order, examined its zero stability, consistency and convergence.
method. In addition, we present the seventh order Newton based algorithm
for the solution of linear and nonlinear stiff systems of differential equations.
Since Newtons’ method relies on the nonsingularity of the Jacobian matrix,
we state a theorem with proof that the Jacobian obtained from the new method
is nonsingular at the root using elementary row operations. While the results
holds at the root, it is also holds when not at root.

To find the order of the new method, we use the second derivative block
hybrid method (2.6) above to obtain

α0 =−


1
1
1
1

 , α1 =


1
0
0
0

 , α 1
2
=


0
1
0
0

 , α 3
2
=


0
0
1
0

 , α2 =


0
0
0
1

 ;
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and

β0 =



253
1260

186367
967680

8333
35840

−128
945


, β1 =



3
10

77
1280

621
1280

8
5


, β 1

2
=



466
945

14737
60480

1443
2240

−608
945


, β 3

2
=



2
315

227
60480

313
2240

992
945


, β2 =



− 1
3780

− 163
967680

− 57
35840

122
945


;

and the second derivative countinuous coefficient are:

γ0 =



1
84

353
32256

57
3584

− 2
63


, γ 1

2
=



− 2
63

− 239
4032

9
448

−32
63


, γ1 =



− 1
28

− 25
1792

135
1792

−4
7


.

To obtain the order, we substitute the above continuous coefficients into the
following and after routine algebraic substitutions

C0 = α0 +α1 +α 3
2
+α2 +α 1

2
= 0;

C1 =

[
α1 +

(3
2

)
α 3

2
+2α2 +

(1
2

)
α 1

2

]
− (β0 +β1 +β 3

2
+β2 +β 1

2
) = 0;

C2 =
1
2!

[
α1 +

(
1
2

)2

α 1
2
+

(
3
2

)2

α 3
2
+22

α2

]
−
[

β1 +

(
3
2

)
β 3

2
+(2)β2 +

(
1
2

)
β 1

2

]
− (γ0 + γ 1

2
+ γ1) = 0;

C3 =
1
3!

[
α1 +

(
3
2

)3

α 3
2
+23

α2 +

(
1
2

)3

α 1
2

]
−
(

1
2

)[
β1 +

(
3
2

)2

β 3
2
+(2)2

β2 +

(
1
2

)2

β 1
2

]
−
[(

1
2

)
γ 1

2
+ γ1

]
= 0;

C4 =
1
4!

[
α1 +

(
3
2

)4

α 3
2
+24

α2 +

(
1
2

)4

α 1
2

]
− 1

3!

[
β1 +

(
3
2

)3

β 3
2
+(2)3

β2 +

(
1
2

)3

β 1
2

]
− 1

2!

[(
1
2

)2

γ 1
2
+ γ1

]
= 0;

C5 =
1
5!

[
α1 +

(
3
2

)5

α 3
2
+25

α2 +

(
1
2

)5

α 1
2

]
− 1

4!

[
β1 +

(
3
2

)4

β 3
2
+(2)4

β2 +

(
1
2

)4

β 1
2

]
− 1

3!

[(
1
2

)3

γ 1
2
+ γ1

]
= 0;
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C6 =
1
6!

[
α1 +

(
3
2

)6

α 3
2
+26

α2 +

(
1
2

)6

α 1
2

]
− 1

5!

[
β1 +

(
3
2

)5

β 3
2
+(2)5

β2 +

(
1
2

)5

β 1
2

]
− 1

4!

[(
1
2

)4

γ 1
2
+ γ1

]
= 0;

C7 =
1
7!

[
α1 +

(
3
2

)7

α 3
2
+27

α2 +

(
1
2

)7

α 1
2

]
− 1

6!

[
β1 +

(
3
2

)6

β 3
2
+(2)6

β2 +

(
1
2

)6

β 1
2

]
− 1

5!

[(
1
2

)5

γ 1
2
+ γ1

]
= 0;

C8 =
1
8!

[
α1 +

(
3
2

)8

α 3
2
+28

α2 +

(
1
2

)8

α 1
2

]
− 1

7!

[
β1 +

(
3
2

)7

β 3
2
+(2)7

β2 +

(
1
2

)7

β 1
2

]
− 1

6!

[(
1
2

)6

γ 1
2
+ γ1

]
= 0;

C9 =
1
9!

[
α1 +

(
3
2

)9

α 3
2
+29

α2 +

(
1
2

)9

α 1
2

]
− 1

8!

[
β1 +

(
3
2

)8

β 3
2
+(2)8

β2 +

(
1
2

)8

β 1
2

]
− 1

7!

[(
1
2

)7

γ 1
2
+ γ1

]
̸= 0.

2.2. Region of Absolute Stability of the Block Hybrid Method. Okuonghae
and Ikhile [8] proposed the use of transforming the block method into general
linear methods by expressing the new second derivative block hybrid method
as

Au1 = Bu2 +Cu3 +Eu4 +Pu5 +Qu6,

where the matrices are as defined below

A =


a11 a12 · · · a1k
a21 a22 · · · a2k

...
... · · ·

...
ak1 ak2 · · · akk

 , B =


b11 b12 · · · b1k
b21 b22 · · · b2k

...
... · · ·

...
bk1 bk2 · · · bkk

 ,

C =


c11 c12 · · · c1k
c21 c22 · · · c2k
...

... · · ·
...

ck1 ck2 · · · ckk

 , E =


e11 e12 · · · e1k
e21 e22 · · · e2k
...

... · · ·
...

ek1 ek2 · · · ekk

 ,

P =


p11 p12 · · · p1k
p21 p22 · · · p2k
...

... · · ·
...

pk1 pk2 · · · pkk

 , and Q =


q11 q12 · · · q1k
q21 q22 · · · q2k

...
... · · ·

...
qk1 qk2 · · · qkk

 ,
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as well as the vectors

u1 =


yn+1
yn+2

...
yn+k

 , u2 =


yn−1
yn−2

...
yn

 , u3 =


fn+1
fn+2

...
fn+k

 ,

u4 =


fn−1
fn−2

...
fn

 , u5 =


gn+1
gn+2

...
gn+k

 , and u6 =


gn−1
gn−2

...
gn

 .
The second derivative block hybrid method (2.6) can be transformed into



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





yn+1

yn+ 1
2

yn+ 3
2

yn+2


=



0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1





yn−1

yn−2

yn−3

yn


+



3
10

466
945

2
315 − 1

3780

77
1280

14737
60480

227
60480 − 163

967680

621
1280

1443
2240

313
2240 − 57

35840

8
5 −608

945
992
945

122
945





fn+1

fn+ 1
2

fn+ 3
2

fn+2



+



0 0 0 253
1260

0 0 0 186367
967680

0 0 0 8333
35840

0 0 0 −128
945





fn−1

fn−2

fn−3

fn


+



− 1
28 − 2

63 0 0

− 25
1792 − 239

4032 0 0

135
1792

9
448 0 0

−4
7 −32

63 0 0





gn+1

gn+ 1
2

gn+ 3
2

gn+2



+



0 0 0 1
84

0 0 0 353
32256

0 0 0 57
3584

0 0 0 − 2
63





gn−1

gn−2

gn−3

gn


.

We substituted the above matrices into the characteristic equation

det[r(A−Cz−Pz2)− (B+Ez+Qz2)] = 0, (2.7)
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where y′ = λy,y′′ = λ 2y,z = λh and z2 = λ 2h2 are the usual test equations.
Now, The characteristic equation reduces to

ρ(r,z) =−
6r3z7 +

(
76r3 −2r4

)
z6 +

(
43r4 +589r3

)
z5 +

(
3248r3 −488r4

)
z4 +

(
3500r4 +12980r3

)
z3

53760

−
(
36240r3 −16080r4

)
z2 +

(
43680r4 +63840r3

)
z−53760r4 +53760r3

53760
= 0.

Differentiating the above stability polynomial with respect to z yields

∂ρ(r,z)
∂ z

=−
42r3z6 +

(
456r3 −12r4

)
z5 +

(
215r4 +2945r3

)
z4 +

(
12992r3 −1952r4

)
z3

53760

−
(
10500r4 +38940r3

)
z2 +

(
72480r3 −32160r4

)
z+43680r4 +63840r3

53760
.

We plotted the region of absolute stability of the method using Newton’s
method for finding the roots of the stability polynomial above. The method
is A−stable as shown in Figure 1. It is easily seen that the new method has a
large stability region.

-10 -8 -6 -4 -2 0 2
-6

-4

-2

0

2

4

6

Re(z)

Im
(z

)

Fig. 1. Region of absolute stability of the second derivative block hybrid

method.
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2.3. Zero Stability. In order to examine the zero-stability of the methods, we
let z = 0 in (2.7) such that

det[R(A−Cz−Pz2)− (B+Ez+Qz2)] = det[RA−B]

=

∣∣∣∣∣∣∣∣
R 0 0 −1
0 R 0 −1
0 0 R −1
0 0 0 R−1

∣∣∣∣∣∣∣∣
= R4 −R3

= R3(R−1) = 0.

The roots of the stability polynomial are {0,0,0,1}. Since the roots of stability
polynomial did not exceed one in absolute value sense, the second derivative
block hybrid method is zero stable. The properties of the new method are sum-
marized in Table 1.

Table 1. Properties of the new second derivative block hybrid method.

yn+i Order Error Constants Consistency? Zero Convergence?
C9 ̸= 0 Stability?

yn+1 7 4.6749023×10−8 Yes Yes Yes
yn+ 1

2
7 3.3466303×10−8 Yes Yes Yes

yn+ 3
2

7 1.4480279×10−7 Yes Yes Yes
yn+2 7 -1.4566011×10−6 Yes Yes Yes

So far, we have characterized the basic properties of the new block hybrid
method. In the next brief but concise discussion, we give a guideline on how
to find the Jacobian of the given system of differential equations and how to
make them algorithm-ready for computation. The general form of a second
order system of ordinary differential equation is

y′′(x) = f(x,y,y′),

with initial conditions for x ∈ [a,b]

y(x0) = y0, and y′(x0) = y′0,

such that

y(x) =


y1(x)
y2(x)

...
yn(x)

 , f(x,y) =


f1(x,y)
f2(x,y)

...
fn(x,y)

 .
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Since y′(x,y) = f(x,y) is the general first order ordinary differential equation,
then

y′′(x,y) = f′(x,y) = g(x,y).
It is not difficult to see that the Jacobian of g(x,y) is

gy(x,y) = fx(x,y)+ fy(x,y)y′(x)
= fx(x,y)+ fy(x,y)f(x,y),

where fy(x,y) is the Jacobian of f(x,y).
Next, we present the new block hybrid method as a system of non-linear

equations as well as its corresponding Jacobian.
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Since our algorithm relies on Newton’s method, we need to show that the
Jacobian of the second derivative block hybrid method is non-singular, which
we state with a proof below.

Theorem 2: The Jacobian J in (2.9) is non-singular at the root.
Proof : We perform elementary row operations on J above and it reduces to

∼



1
120

∂g
n+ 1

2
∂g

n+ 1
2

h2−1864
∂ f

n+ 1
2

∂y
n+ 1

2

h

135
∂gn+1
∂gn+1

h2−1134
∂ fn+1
∂ fn+1

h+3780
−

8
∂ f

n+ 3
2

∂y
n+ 3

2

h

45
∂gn+1
∂gn+1

h2−378
∂ fn+1
∂ fn+1

h+1260
κ

0 1 κ µ

0 0 1 ν1

0 0 0 1


, (2.10)

where

κ =

∂ fn+2
∂yn+2

h

135 ∂gn+1
∂gn+1

h2 −1134 ∂ fn+1
∂ fn+1

h+3780
,
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Since the echelon form (2.10) of J consists of four pivots, J is non-singular
at the root. □

2.4. Algorithm. Since we have shown that the Jacobians are non-singular, In
the discussions below, we present Newton based algorithms for the solution
of systems of initial value problems arising from the above method. We state
clearly that the algorithm is self-starting and do not rely on predictors or cor-
rectors to start. The starting values are the initial values of the differential
equations.

Algorithm 2.1. Input : h, tol, system of differential equations to be solved,
their initial values and corresponding Jacobians.
For k = 1,2,3, · · · , until convergence
Form

v(k) =



y(k)n+1

y(k)
n+ 1

2

y(k)
n+ 3

2

y(k)n+2


,

Compute J(v(k)).
Find the L and U factors of J(v(k)), that is J(v(k)) = LU.

Solve the triangular system Lw(k) =−F(v(k)) for w(k).
Solve the triangular system U∆v(k) = w(k) for ∆v(k).
Increment v(k+1) = v(k)+∆v(k).
Output: y(k+1)

n+1 .

Note that for a lack of space, we could not define F(v(k)) used in the above
algorithm and that is why we are using landscape, where
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2.5. Numerical Experiments. In this important section, we are concerned
about the performance of the new second derivative block hybrid method on
some stiff systems of ordinary differential equations. We compare our result
with those of Yakubu et al [5], [10] and [11]. Results are presented by Ta-
ble and Figures which validate the new method for the numerical solution of
systems of stiff initial-valued ordinary differential equations. In each of the
examples in this section, we used a constant step size of 0.1.

Example 2.1. The well-known stiff system of Kaps [9]

f(x,y) =

y′1(x)

y′2(x)

=

−1002y1(x)+1000y2
2(x)

y1(x)− y2(x)2 − y2(x)

 ,
which satisfies the y1(0) = 1 and y2(0) = 1.

The Jacobian of the above matrix is given by

fy(x,y) =

−1002 2000y2

1 −2y2 −1

 .
We need to calculate g(x,y) as follows

g(x,y) = fx(x,y)+ fy(x,y)f(x,y)
= fy(x,y)f(x,y)

=

−1002 2000y2

1 −2y2 −1

 1000y2
2(x)−1002y1(x)

−y2(x)2 − y2(x)+ y1(x)


=

−2000y3
2 −1004000y2

2 +2000y1y2 +1004004y1

2y3
2 +1003y2

2 +(1−2y1)y2 −1003y1

 .
Its corresponding Jacobian is given by

gy(x,y) =

2000y2 +1004004 2000y1 −6000y2
2 −2008000y2

−2y2 −1003 −2y1 +6y2
2 +2006y2 +1

 .
We plugged these values of f(x,y), fy(x,y),g(x,y),gy(x,y) into Algorithm 2.1
and the results of our approximations are as shown in Fig. 2 and Table 2.

Table 2. Comparing the absolute errors of the New Block Hybrid Method
with [5] on Example 2.1.

x yi Yakubu et al [5] New Method
5 y1 1.228938367083599×10−03 7.9078603859383074×10−07

y2 1.800318343625484×10−06 1.9170221584458025×10−07

50 y1 3.325679258575631×10−05 6.3478672788605185×10−46

y2 5.804723043345561×10−07 4.0263603198079618×10−26
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Fig. 2. A plot of the numerical and exact solutions on the left and the norm of

∆v(k) versus number of iterations on the right on Example 2.1.

We plotted the performance of the new second derivative block hybrid method
with the exact solution on Example 2.1 which is shown on the left side of
Fig. 2 (the new method depicts a great promise), while to the right of the
same figure is the variation of the norm of ∆v(k) versus number of iterations.
For x = 50, we see that aside the new method performing better than that of
Yakubu et al., [5], Table 2 column 4 shows that the new method also out-
performs those of [10] and [11] albeit their respective absolute errors were
y1 = 7.14×10−21,y2 = 3.34×10−19 and y1 = 7.38×10−24,y2 = 4.83×10−25.

Example 2.2. The non-linear stiff problem

f(x,y) =


y′1(x)

y′2(x)

y′3(x)

=


−0.013y1 −1000y1y3

−2500y2y3

−0.013y1 −1000y1y3 −2500y2y3,

 ,

satisfying the initial conditions

[y1(0),y2(0),y3(0)]T = [1,1,0]T ,

is from Gear [12] and has no known exact solution so we compare our solution
with octave ode15s [13].

The Jacobian of the above system is

fy(x,y) =


−0.013−1000y3 0 −1000y1

0 −2500y3 −2500y2

−0.013−1000y3 −2500y3 −1000y1 −2500y2

 ,
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and

g(x,y) = fy(x,y)f(x,y)

=


−0.013−1000y3 0 −1000y1

0 −2500y3 −2500y2

−0.013−1000y3 −2500y3 −1000y1 −2500y2




−0.013y1 −1000y1y3

−2500y2y3

−0.013y1 −1000y1y3 −2500y2y3



=


1000000y1y2

3 +(2500000y1y2 +1000000y2
1 +26y1)y3 +13y2

1 +1.69×10−4y1

6250000y2y2
3 +(6250000y2

2 +2500000y1y2)y3 +32.5y1y2

α

 ,
where

α = (6250000y2 +1000000y1)y2
3 +(6250000y2

2 +5000000y1y2

+1000000y2
1 +26y1)y3 +32.5y1y2 +13y2

1 +1.69×10−4y1.

Similarly, the Jacobian of g(x,y) is

gy(x,y) =
[
τ κ ω

]
,

where

τ =


10−6(1012y2

3 +(2.5×1012y2 +2×1012y1 +2.6×107)y3 +2.6×107y1 +169)

0.5(5000000y2y3 +65y2)

10−6(1012y2
3 +(5×1012y2 +2×1012y1 +2.6×107)y3 +3.25×107y2 +2.6×107y1 +169)

 ,
obtained by differentiating g(x,y) partially with respect to y1. After differenti-
ating g(x,y) partially with respect to y2, we arrived at

κ =


2500000y1 y3

0.5(1.25×107y2
3 +(2.5×107 y2 +5000000y1)y3 +65y1)

10−6(6.25×1012y2
3 +(1.25×1013 y2 +5×1012y1)y3 +3.25×107y1)

 ,
and

ω =


10−6(2×1012y1y3 +2.5×1012y1y2 +1.0×1012y2

1 +2.6×107y1)

0.5(2.5×107y2y3 +1.25×107y2
2 +5000000y1y2)

10−6(2(6.25×1012y2 +1012y1)y3 +6.25×1012y2
2 +5×1012y1y2 +1012y2

1 +2.6×107y1)

 ,
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obtained by differentiating g(x,y) partially with respect to y3. We plugged
these values of f(x,y), fy(x,y),g(x,y),gy(x,y) into Algorithm 2.1 and the re-
sults are as shown in Fig. 3.
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Fig. 3. The figure above shows the result of comparing the new method with
octave ode15s.

Fig. 3 showed that the new second derivative block hybrid method performs
at par with the well known stiff ode15s solver. Notice from the figure on the
left that we plotted the results in the range [0,10] and [0,400] for x. This is to
properly see the trajectory of the solution.

Example 2.3. The well-known Fatunla problem [14]

f(x,y) =



y′1(x)

y′2(x)

y′3(x)

y′4(x)

y′5(x)

y′6(x)


=



−10 100 0 0 0 0

−100 −10 0 0 0 0

0 0 −4 0 0 0

0 0 0 −1 0 0

0 0 0 0 −0.5 0

0 0 0 0 0 −0.1





y1(x)

y2(x)

y3(x)

y4(x)

y5(x)

y6(x)


,

which satisfies the initial conditions

[y1(0),y2(0),y3(0),y4(0),y5(0),y6(0)] = [1,1,1,1,1,1].
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Observe that

g(x,y) = fy(x,y)f(x,y)

=



−10 100 0 0 0 0

−100 −10 0 0 0 0

0 0 −4 0 0 0

0 0 0 −1 0 0

0 0 0 0 −0.5 0

0 0 0 0 0 −0.1





−10y1 +100y2

−100y1 −10y2

−4y3

−y4

−0.5y5

−0.1y6



=



−9900y1 −2000y2

2000y1 −9900y2

16y3

y4

y5
4

y6
100


,

and the Jacobian

gy(x,y) =



−9900 −2000 0 0 0 0

2000 −9900 0 0 0 0

0 00 16 0 0 0

0 0 0 1 0 0

0 0 0 0 1
4 0

0 0 0 0 0 1
100


.

Table 3. Comparing the absolute errors of the new method with those of [5]
on Example 2.3.
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Fig. 4. Exact solution versus the new method on the Fatunla problem on
Example 2.3.
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Fig. 5. Plot of the absolute error against the number of iterations on Example
2.3.

x yi Yakubu et al [5] New Method
y1 2.220446049250313×10−16 4.7592391018792229×10−22

5 y2 1.318389841742373×10−16 5.6855380861750618×10−23

y3 0 9.9704102211086080×10−10

y4 0 7.0850105622049034×10−04

y1 3.330669073875470×10−16 0
50 y2 7.771561172376096×10−16 0

y3 4.440892098500626×10−16 0
y4 0 1.8319437858209123×10−023
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Results of numerical simulations on this example is as shown in Fig. 4, 5
and Table 3. Figure 4 is a plot of the exact solution versus the new 7th–order
block hybrid method, it shows that as x increases, the exact coincides with
the approximation solution. Since the step size is 0.1, it means we need 500
iterates to reach x = 50. However, because Fig. 5 is on a semilogy scale and
in order to visualize the y-labels, we restricted the range of x values from 0 to
100. Furthermore, for x = 5, Table 3 showed that the new method outperforms
those of [5] in two out of four y values. Nevertheless, for x = 50, we see that
the accuracy of the new method increased to three out of four. This confirms
the reliability of the new method for the numerical solution of stiff systems of
ordinary differential equations.

3. CONCLUDING REMARKS

We have shown that the new second derivative block hybrid method of order
seven with fewer function evaluations outperforms a fourteenth -order second
derivative block hybrid method of Yakubu et al., [5] which uses more function
evaluations and almost twice the size of the linear system presented in this
paper. The accuracy of our method must have been due to the large region of
stability. We recommend the new algorithm for the numerical approximation
of stiff initial valued systems of ordinary differential equations.
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