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A SEVENTH-ORDER COMPUTATIONAL ALGORITHM FOR
THE SOLUTION OF STIFF SYSTEMS OF DIFFERENTIAL
EQUATIONS

R. O. AKINOLA! AND A. S. AKOH?

ABSTRACT. In this paper, we present a computationally cheap sec-
ond derivative block hybrid method for the numerical solution of
systems of stiff initial valued ordinary differential equations. Re-
sults of numerical experiments which validates our theoretical re-
sults are presented by figures and tables.

1. INTRODUCTION

A stiff system of differential equations refers to a set of differential
equations in which the solution changes rapidly over a specific region of
the problem domain. Such systems often arise in various scientific and
engineering fields, including physics, chemistry, and mechanics. Solv-
ing stiff systems of differential equations accurately and efficiently is a
challenging task, requiring the use of specialized numerical methods.
In recent years, researchers have developed a variety of numerical
methods to tackle the difficulties associated with stiff systems of dif-
ferential equations. One such method is the Seventh Order Second
Derivative Block Hybrid Method, which combines the advantages of
higher-order accuracy with the simplicity and efficiency of block meth-
ods. This method has shown promising results in solving stiff systems
by providing accurate solutions while reducing computational cost.
Several researches have focused on the implementation and numerical
algorithms of A-stable second derivative block hybrid method. Ramos
et al, [1] proposed a new 2-step hybrid block method with 10th order
convergence for numerical integration of initial value systems. Their
method is A-stable and outperforms similar methods in solving such
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problems, as shown by numerical experiments. Besides, Skwame et
al., [2] introduced a new A-stable backward difference second deriva-
tive linear multistep method for solving stiff ordinary differential equa-
tions. The method was derived using power series as basis functions
and involves multi-step interpolation and collocation techniques. Their
analysis confirmed that the method is consistent, zero-stable, and has
a uniform order of twelve. Additionally, the region of absolute sta-
bility was plotted, demonstrating the A-stability of the method. Singh
et al, [3] introduced an optimized hybrid block method for numerical
integration of initial value ordinary differential systems. The method
bypassed the first Dahlquist’s barrier on linear multi-step methods. The
scheme achieved fifth-order accuracy and A-stability by optimizing off-
grid points to minimize local truncation errors.

Akinfenwa et al., [4] proposed a hybrid second derivative three-step
method of order seven for solving first order stiff differential equations.
The hybrid second derivative block backward differentiation formula
is concurrently applied to the first order stiff systems to generate the
numerical solution that do not coincide in time over a given interval.

Although there is no paucity of research on this method, there is
however, further potential areas of improvement regarding the A-stable
second derivative block hybrid method including investigating adap-
tive step size selection strategies and higher-order accuracy. The lack
of such stability properties makes the continuous solution not reliable
Yakubu et al., [5]. Hence, the need for a modification that involves
incorporating the A-stable second derivative of the solution into the
integration scheme, resulting in the enhanced stability property. This
study builds on the existing works to derive block hybrid methods that
show a high order of accuracy with very low error constants. In all the
above mentioned literatures, our proposed method uses different off-
grid points which were well selected for better accuracy.

2. THE HEART OF THE MATTER

In this section, we show how the new method is derived using an inter-
polation and collocation approach, presented a result with proof which
shows a condition on the step size 4 under which the corresponding ma-
trix is nonsingular as well as the final presentation of the new second
derivative block hybrid method. The general form of a k-step second
derivative block hybrid method for the numerical solution of a system
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of ordinary differential equation is [3]]

J

k
Bign+js (2.1)
j=0

k k
yx) =Y oy +h Y Bifarj+ 1
i=0 =0

J

where the as, B}s and 7;’s are unknown coefficients to be found,

Yn+j :y(xn-l-jh),

is the numerical approximation to the exact solution

!

y (anrj) = fn+j = f(xn +jhay(xn+jh))a

and

"

y (xn—i-j) :fn+j =f (xn+jh7y(xn+jh)) = &n+j-

In addition,

k
aj(X):ZajJ_Hx], for j=0,1,---,k—1,
Jj=0

k
ﬁj(x):z:ﬁj,j—l—lxj, for j=0,1,---,k—1,
j=0
and
k .
Yj(x):Zyj’j_,_]xJ, for j=0,1,--- k—1.
j=0

To get oj(x), B;(x) and y;(x), Sirisena et al (2004) arrived at a matrix
equation of the form

DC =1,
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where [ is an identity matrix of dimension (¢t +m) X (t +m), D and C
are of the same dimensions

1 X
I xpp
I Xpir1
0 1
p=1|0 1
0 1
0 0
0 0
0 0

X, x, x,
2 3 4
Xn+1 Xnt1 Xn+1
2 3 4
Xntr—1 xn+t—1 Xptr—1
2x, 3x2 4x
2 3
21 34 A%,
2 3
Wnpi-1 I AN
2
2 6x,, 12x;,
2 6x 12x2
n+1 n+1
2
2 OxXnr—1 12x,,, 4

+m—1
x; m
xl-&-m—l

n+1

xt-&-m—l

n+t—1

(t+m— 1)qu+m+2
(t+m—1)xtm=2
(l‘+n’l* 1)xt+m—2

(t+m—1)(t +2—m)xtm=3

n+1

n+t—1

(t+m—1)(t+m—2)x 3
(t+m—1><t+m(;§))x2i’?f |

The matrix (2.2) is the multi-step collocation matrix of dimension (¢ 4 m) x
(t 4+ m). For C we also define a matrix of dimension (¢ 4 m) x (¢t +m) whose
columns gives the continuous coefficient as:

L a(),j+m

0,1,

O —1,j+m

,k—1and yj(x);j=0,1,--

hBo1 - hBm—1.1
hBoz---hBm—12

hBO,jer t hﬁmfl,thm

d—1.

hz?’o.,l
hz?’o,z

2
h Y0, j4+m

hz?’m—l,l
hz?’m—l,z

2
h }/mfl,thm |

(2.3)
where ¢ is the number of interpolation points while m is the number of collo-
cation points used respectively. The columns of the matrix
C = D! gives the continuous coefficients oj(x);j =0,1--- ,k—1, B;j(x);j =
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Thus, the matrix D in (2.2]) in our case becomes

1 x, x2 x xd x x8

0 1 2x, 3x2 4x3 Sxt 6x)

0 1 2x,.1 3%, 4, 5x*, 6,

2 n+s5 n+x n+s n+s

0 1 2w 3xy, 4, Sx 6oy,
D=0 1 2x,.3 3xr21+% 4xr31+% 5x2+% 6xfl+% 7x

2 3 4 5
0 1 2642 3G, 4G S,n 65,

0 0 2 6x,, 12x2 20x3 30x4

n n n

n+§ I’l-‘ri n+§

0 0 2 6xn+% 2%, 20x° , 30x* 42xfl

0 0 2 6wy 120, 20x,, 30xi., 42

219

56x2+1 |

By replacing Xopd with x,41 — %, Xp = Xp+1 — h, Xy 3 = Xntl + % and x40 =

Xp+1+ h, we obtained the determinant of D as

25515h%
64

detD = —

This now leads to the following result.
Theorem 1: Given that € > 0, then

1
64e |
h> [25515] '

If in addition € = 2752, h > 0.1861, then the D matrix is nonsingular.

Proof: Since by assumption £ > 0, then let

25515h% -
64

This implies
1

64e |5
25515

64¢
h > ——
25515’
Now, substituting £ = 272 yields

and h>{

, [ 64e rls_ [64><2_52

1
25
25515 25515 ] = 0-1861.

Therefore, if 4 > 0.1861 then the determinant of D will be nonzero, ensuring

the nonsingularity of D.

O



220 R. O. AKINOLA AND A. S. AKOH

We state categorically here that the above result is purely theoretical and
does not influence the choice of step sizes in actual computations as shown in

[6].

In our case, equation (2.1) the continuous formulation is

5 2
y(x) = aOyn+hZijn+j+h2Zngn+j
=0 =0
= Ooynth [ﬁOfn +B%fn+% +B1fn+1 +ﬁ%fn+% +B2fn+2 (2.4)

+h? [}’ogn + V1841 +NE&n+1|-

Observe that since we have proved that D is nonsingular under a certain
condition on &, we are now at liberty to find the inverse. Upon inverting D and
replacing a with x, + &, the elements of the first row constitutes the following
continuous coefficients:

o = 1,

B 759h8 — 1715431 4 2415a*h* + 5271a°h® — 7945a%h> — 33004’ h 4 451548
(N )

37804
B, — 466h® — 30800 > — 210a*h* + 72244 h® — 2660a%h* — 38404’ h+2100a®
: 945h7 ’
_ =3h*+10ah’ —40a’ k> + 15a*h* + 78a°h* — 50a°h? — 40a” h + 30a®
ﬁl - - 1047 ’
B - —6h8 +280a*h> — 1050a*h* + 1176a°h + 140a%h* — 960a’ h + 4204
P 945K ’
By — —h® +35a°h> — 105a*h* + 21a° > + 245a°h? — 3004’ h+ 1054
> 378047 ’
_3R¥—14a’k0 +21a*h* + 42a° 1P — 70a°h? — 240’ h + 424
o= 2526 ’
~ —2h8 =564k’ 4+ 42a*h* + 168a° b — 140a°h? — 96a’ h + 844
o= 6345 ’
y —h® + 14a’h® — 28a°h® — 21a*h* + 84ah® — 28a°h? — 484" h+ 284
1 = .

28ht
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The continuous formulation becomes
B (75918 — 171503 +2415a*h* + 5271a° 1 — 7945a%h* — 3300a’ h 4451548
yx) =ya+ 378007 n
[466h® — 30804 h° —210a*h* + 72240 b — 2660a°h* — 3840a’ h 4-2100a" |

* 94547 Tut

[—3h% 4 10ah’” — 40a>h° + 15a*h* + 78a° h* — 50a®h?* — 40a’h+ 304" |
1047 fn+1

[—6h® +280a’h> — 1050a*h* + 11764 + 140a°h?* — 960a’ h + 420a° |

- 94517 Juts
2.5)

[— 8 +35a%h° —105a*h* + 216> 3 + 245a°h* — 300a” h + 10548
- 37804

(30 —14a° 15 + 21a*h* + 42a° h* — 70a°h?* — 24a’h + 424° |
* 25216 §n

[—2h% —56a°h> 4+ 42a*h* 4 168a° h* — 140a°h* — 96a’ h+ 844" |
* 631 Bntg

[~ + 1402 — 286315 — 21a*h* + 84a5h* — 28aSh® — 48a”h + 284"
+ 28h6 8n+1-

n+2

If we substitute a = 0 into the continuous formulation above, then we have

h [759 Fu 18641, 1 + 113401 +24f, 3 _fn—&-Z} e [45gn ~120g,, ) — 135841

3780
Substituting a = % into the continuous scheme above, then

Ynt1=Yn+

h {186367]’” + 235792fn+% +58212fp 1 + 3632fn+% — 163fn+2}
967680
W [10590gn - 57360gn+% — 13500841
967680 '
Evaluate the continuous scheme at a = —h /2 to obtain the scheme
h [8333fn + 23088fn+% + 17388 f41 + 5008fn+% — 57f,,+2}
35840
K2 [570gn +720,, 1 +2700g41

ynJr% =Yn+

+

yn-‘r% =Int

_l’_

35840
Evaluating the continuous scheme at a = —#h gives the discrete scheme
h [—128fn +1512f,41 — 608fn+% +992fn+% +122f,40
Yra2 = Int 945
X % [—30g,, —480g,,, 1 — 5408, 1

945
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The seventh-order second derivative block hybrid method is now summarised
below

hp@ﬂ+&%%@5+HMﬁH+QMﬁ%—ﬂHyHﬁP%W—H%H%—B%HJ

Yn+1 =Yn+ 3780

h [186367 fa+235792, 4 +58212, 1 +3632f, 3 — 163 fm}
967680
h2[10590gn——57360gn+%——13500gn+1
967630
h[8333ﬁf+23088ﬁH%-+17388ﬁﬂ4—+5008ﬁH%-—57ﬁﬁa}
35840

yn+% =Int

+

Va3 =¥nt
2.6)

h2[570gn4—720gn+%—%2700gn+]]

35840
h{—lz&ﬂ+4512ﬁ+1—6O&Q+%+992&+%+122§+4
945
h2[——3Ogn——480gn+%——540gn+1}
945

+

Ynt2 =Yn+

+

2.1. Convergence Analysis. The crux of the matter in this section is to ex-
amine properties of the new second derivative block hybrid method where we
calculated the order, examined its zero stability, consistency and convergence.
method. In addition, we present the seventh order Newton based algorithm
for the solution of linear and nonlinear stiff systems of differential equations.
Since Newtons’ method relies on the nonsingularity of the Jacobian matrix,
we state a theorem with proof that the Jacobian obtained from the new method
is nonsingular at the root using elementary row operations. While the results
holds at the root, it is also holds when not at root.

To find the order of the new method, we use the second derivative block
hybrid method above to obtain

e =
O = OO
- o O O
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and
[ 253 7 M3 7 [ 466 7 M2 ] .
1260 10 945 315 3780
186367 77 14737 227 163
967680 1280 60480 60480 967680
Bo= , Bi= , Bi= . Bi= , Ba= ;
8333 621 2 1443 2 313 57
35840 1280 2240 2240 35840
_ 128 8 __ 608 992 122
[ 7945 L 5 L™ 945 ] L 945 L 945

and the second derivative countinuous coefficient are:

rL ] M _2 7 r_ 1 7
84 63 28
353 239 25
32256 4032 1792

Y= y Y= , h=

57 2 9 135
3584 443 1792
_2 _3 _4

L~ 63 L ~ 63 L —7

To obtain the order, we substitute the above continuous coefficients into the
following and after routine algebraic substitutions
%=%+m+%+m+%:&

C = |:061+ (%) OC% +20p+ (%) OC;:| _(B0+ﬁl+ﬁ%+ﬁ2+ﬁ%) =0;

G = % [061 + <;>206; + (;)206; +22062] - [51 + <§) ﬁ% +(2)B2 + <;> ﬁ;]
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C6—61![a1+<§>6a3+26a2+<;>606; —51![ﬁ1+<§>Sﬁg+(2)sﬁz+<;>sﬁ;]
1T/
) e
C7:71!{(X1+<2>7Oh+2 a2+(2>7a1]—61![ﬁ1+<;>6[3;+(2)652+<;>6[31]
11/’
s (3) men] o
nggl!{a1+<2>8az+2 a2+<2>8aé]—71![[31+(3>7l33+(2)7[32+(;)7131]
1[/1\°
“allz) nen] o
nggl![a1+<>9a3+29oc2+(2>9a%]—81![ﬁ1+<§)8ﬁ3+(2)8ﬁ2+<;)gﬁl]

2.2. Region of Absolute Stability of the Block Hybrid Method. Okuonghae
and Ikhile [8] proposed the use of transforming the block method into general
linear methods by expressing the new second derivative block hybrid method
as

Auy = Bujy + Cuz + Euy + Pus + Qug,
where the matrices are as defined below

an ap - aig bii by - b
a ax - axy byy by - by
A - ) B == )
lak1 ary v agk bii b -+ bk
cii ci2 ot Clk el en - e
1 € ot O e exn - ey
C — b E - )
(ck ket Gk ekl ey v ek
p11 p1z2 - Pl qi1 412 - g1k
p21 p22 - P q21 4922 - g
P=| . ; . |,and Q= | . . s
| Pkl P2 " Pkk qkl  4qk2 - YGkk
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as well as the vectors

u; =

Uy =

The second derivative block hybrid method (2.6) can be transformed into

[1 0 0 0]
0100

0010

00 0 1]

Yn+1
Yn+2

_yn+k

_fnfl
fnfz

|/
[ Ynt1]
yn+%

yn+%

LYn+2 ]

0

0

0

u =

us =

1T q 3
Ll [y o
77
L] [ yn—2 1280
+
621
L |3 1280
L] |8
253 1 1 q r
1260 Jn—1
186367 | | ¢
967680 n—=2
_|_
8333
35840 Jn-3
128
9451 L f” J L
I -
84 8n—1
353
32256 | | 8n—2
57
3584 8n-3
2
—63d L8]

-yn—l- fn—',—l
Yn—2 fn+2
. y uz = . )
L In i fn+k
_gn+1_ 8n—1
8n+2 8n—2
. , and ug = .
| 8n+k | 8n

225

We substituted the above matrices into the characteristic equation

466 2 1 9r -
%5 315 3780 i
14737 227 163 £
60430 60480 967680 n+5
1443 313 57 f.s
2240 2240 35840 n+3
_ 608 992 122
945 945 945 Lfn+2]
1 2 slE .
—73 — 6 0 0 8n+1
25 239
TT1792 T 4032 0 0 g’”f%
135 9
1792 ms 0 O 8443
4 32
-7 ~& 0 0] Lgn2l
2.7

det[r(A —Cz— Pz*) — (B+Ez+Q7%)] =0,
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where y = Ay,y" = A%y,z = Ah and 72 = A2h? are the usual test equations.
Now, The characteristic equation reduces to

613z + (7613 — 2r*) 28 + (43r* +-5897°) 2 + (3248r° — 488r%) * + (3500/* + 129807°) 2

plr) = 53760
(36240r° — 160807*) 2 + (43680r* -+ 638407 ) z — 53760r* + 53760r°
53760

Differentiating the above stability polynomial with respect to z yields

op(rz) 4270+ (4567 —121%) 2 + (215r* 4294517 ) 2* + (129927 — 1952r%) 2
dz 53760
(10500* 4 389407°) 22 + (72480r° — 32160r*) z+ 43680r* + 638407

53760

We plotted the region of absolute stability of the method using Newton’s
method for finding the roots of the stability polynomial above. The method
is A—stable as shown in Figure 1. It is easily seen that the new method has a
large stability region.

Fig. 1. Region of absolute stability of the second derivative block hybrid
method.
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2.3. Zero Stability. In order to examine the zero-stability of the methods, we

let z=0in (2.7) such that

det[R(A — Cz — Pz?) — (B+ Ez+ Qz%)] = det[RA — B]

R 0 0 -1
0 RO -1
0 0 R -1
0 0 0 R—1
=R'—R
=R} R-1)=0.

The roots of the stability polynomial are {0,0,0,1}. Since the roots of stability
polynomial did not exceed one in absolute value sense, the second derivative
block hybrid method is zero stable. The properties of the new method are sum-

marized in Table 1.

Table 1. Properties of the new second derivative block hybrid method.

Ynti Order  Error Constants  Consistency? Zero Convergence?
Co #0 Stability?

Vntl 7 4.6749023 1078 Yes Yes Yes

Yary 1 3.3466303x10°° Yes Yes Yes

Yari T 1.4480279x 107 Yes Yes Yes

Voo 1 -1.4566011x107° Yes Yes Yes

So far, we have characterized the basic properties of the new block hybrid
method. In the next brief but concise discussion, we give a guideline on how
to find the Jacobian of the given system of differential equations and how to
make them algorithm-ready for computation. The general form of a second

order system of ordinary differential equation is

y'(x) =f(x,y,y),

with initial conditions for x € [a, b]

¥(x0) = Yo,

such that

f(xvy) =

and y'(xo0) = ¥o,

fi(x,y)
f(x,y)

a ()}7 y)
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Since y'(x,y) = f(x,y) is the general first order ordinary differential equation,
then

y'(r,y) =f(xy) =g(xy).
It is not difficult to see that the Jacobian of g(x,y) is
gy(ry) = L(oy)+h(xy)yK)
= L(xy) +(xy)fCry),
where fy(x,y) is the Jacobian of f(x,y).

Next, we present the new block hybrid method as a system of non-linear
equations as well as its corresponding Jacobian.



229

A SEVENTH-ORDER COMPUTATIONAL ALGORITHM ...

(60

L Lo

[ i Y6, e Sp6. ‘e sv6 e S¥6 e sv6 | e svo
T YeTl i 1266 Frigp 08T T T, 809 86 HOYS T TTo YeIsT
o opgse £ '6p opsse _J %0 opgoe  T"6o opse ItUCp opgse  I*U6p op8SE
tHifo YLS T o Y8005 Chug 0 HOTL — Tau o Y880€T 150 HO0LT 1T e Y8RELL
=r
e 089L96 g €0 089L96 T:% 089196 f:% 089096 _ o 089.96 + o 089L96
cHifo Ye9l [ “o YT€9€ Chug 0 ZM09€ELS mtw 0 YT6LSET Fi8p 400SET T THip YTOLSET
THisp 08¢ £ 016 T oase n T osLe e 0sie e osle
oy mtwm Uy T:mm 0TI Ly xm yp98T T80 YSET L0 YpeTT
ST poyow PLIGAY YO0[q SATBALIOP PUOIIS I} JO URIQOOR[ YL
) . 9740 . : _ue_ g
HU80ps — 1808 — :m%# M+ Tt\ e+ 66+ T 800 — YIS+ wSL y
08SE g Eug
<
1@82 + T80z + QCL M+ TQ LS — 18005 + 1+ 88T+ T /88067 + mmmw_ Y
089.96 g Frug
T 4
iéoomﬁ — TS09¢6 — :%o%o; M+ TE €91 — < ze9c + Y ziess + T zoLseT+ Y Bmow; y
08LE e v

u u oy
E@mﬁ — THSog L%i M+ TE SR TR+ T o8] +§£ Y



230 R. O. AKINOLA AND A. S. AKOH

Since our algorithm relies on Newton’s method, we need to show that the
Jacobian of the second derivative block hybrid method is non-singular, which

we state with a proof below.

Theorem 2: The Jacobian J in (2.9) is non-singular at the root.

Proof : We perform elementary row operations on J above and it reduces to

dg af

af

1202 21864 "2 g "3,
dg | Iy g dy 3
1 nts nts _ nt+s
98t 30 9fn+1 98n+1 12 47 Intl
135 g 2 — 1134 77 13780 45 Gt 12 =378 1L et 1260
~ 10 1 K
0 0 1
0 0 0
where
af;H—Z
K yn+2h

T 2e9%1 12 I )
13558250 2 — 11345241 4 3780

Vi

. (2.10)
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Since the echelon form (2.10) of J consists of four pivots, J is non-singular
at the root. U

2.4. Algorithm. Since we have shown that the Jacobians are non-singular, In
the discussions below, we present Newton based algorithms for the solution
of systems of initial value problems arising from the above method. We state
clearly that the algorithm is self-starting and do not rely on predictors or cor-
rectors to start. The starting values are the initial values of the differential
equations.

Algorithm 2.1. Input : s, tol, system of differential equations to be solved,
their initial values and corresponding Jacobians.

For k=1,2,3,---, until convergence
Form
— (k) -
Ynt+1
(k)
ynJr%
vk — 7
(k)
yn-‘r%
(k)
LVn+2
Compute J(v(¥)).
Find the L and U factors of J(v¥)), that is J(v(¥)) = LU.
Solve the triangular system Lw®) = —F(v(¥)) for w(¥).

Solve the triangular system UAv*) = w®) for Av(%),
Increment v+ = vy 1 Ay(K),
Output: ygfl]).

Note that for a lack of space, we could not define F(v(¥)) used in the above
algorithm and that is why we are using landscape, where



R. O. AKINOLA AND A. S. AKOH

234

Sv6

— Ul Thug

Sy

Ty Ctu
AIJOX\ i MowT@om\v M+ ANEQI €266+ T R09— 1T TISTHY wﬁwv:

0¥85¢

g g

1+ug frug ug Thu L 1+u fu u
00LT+ 0TL+Y80LS | U+ | THYLS— € 8005+ TTH/88¢LT+ T /880€T+" cces U

08996

_ug g

< e <
A:@ooﬂm -1 iwoom%kwo%o_v i+ ANE €o1— ¢ fzeoe+ 1+ T1z8s+ T fToLsETH L9598 _v y

08LE
Tu Ctu u Tu Ctu tu Ctu u
IFUEGeT— 178001 =186 | Y+ SHY =€ Jye+"TYperi+ 1 Syo81+6SL |y

a1




A SEVENTH-ORDER COMPUTATIONAL ALGORITHM ... 235

2.5. Numerical Experiments. In this important section, we are concerned
about the performance of the new second derivative block hybrid method on
some stiff systems of ordinary differential equations. We compare our result
with those of Yakubu et al [S]], [10] and [11]]. Results are presented by Ta-
ble and Figures which validate the new method for the numerical solution of
systems of stiff initial-valued ordinary differential equations. In each of the
examples in this section, we used a constant step size of 0.1.

Example 2.1. The well-known stiff system of Kaps [9]
Y, (x) —1002y; (x) + 1000y3 (x)
f(x,y) = = :
Y5 (x) Y1 (x) = y2(x)* = y2(x)
which satisfies the y; (0) = 1 and y,(0) = 1.
The Jacobian of the above matrix is given by

—1002 2000y,

fy(an) =
1 —2y-1

We need to calculate g(x,y) as follows
glxy) = f(xy) +(xy)f(ry)

fy(xvy)f(xay)
[—1002 2000y, | [ 1000y3(x) — 1002y (x)

1 2y =1 [—3x)?—y2(x) +y1(x)
[—2000y3 — 1004000y2 -+ 2000y, y, -+ 1004004y,

2y3 +1003y3 + (1 —2y1) y» — 1003y,
Its corresponding Jacobian is given by

2000y, + 1004004 2000y, — 6000y2 — 2008000y,

gy(X,Y) =
—2y, — 1003 —2y1 + 6y3 + 2006y, + 1

We plugged these values of f(x,y),fy(x,y),g(x,y),gy(x,y) into Algorithm [2.1]
and the results of our approximations are as shown in Fig. 2 and Table 2.

Table 2. Comparing the absolute errors of the New Block Hybrid Method
with [5] on Example 2.1]

X Yy Yakubu et al [5] New Method

5 y; 1.228938367083599 x 1073 7.9078603859383074 x 10~%7
yo 1.800318343625484 x 107%  1.9170221584458025x 10~

50 y; 3.325679258575631 x 10~  6.3478672788605185x 10~*°
y2  5.804723043345561 x 107°7  4.0263603198079618x 10~26
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100
! 100!
0.8 —=yi(0) 1002
—#— yy(x) Exact 10
0.6 100
> 1095
0.4 1096
107
0.2 108
109
0 = 4o
0 5 10 15 20 = 100
x > 10
< 1072
=107
1 101
08 ) 107%
16
—6— yo(x) Exact 10
0.6 107
> 1078
0.4 1079
1020
0.2 102!
2
o 10

0 5 10 15 20 0 100 200 300 400 500
x Number of iterations

Fig. 2. A plot of the numerical and exact solutions on the left and the norm of

Av(®) versus number of iterations on the right on Example

We plotted the performance of the new second derivative block hybrid method
with the exact solution on Example [2.1) which is shown on the left side of
Fig. 2 (the new method depicts a great promise), while to the right of the
same figure is the variation of the norm of Av(®) versus number of iterations.
For x = 50, we see that aside the new method performing better than that of
Yakubu et al., [5]], Table 2 column 4 shows that the new method also out-
performs those of [10] and [11] albeit their respective absolute errors were
yi=7.14%x10"2" 3, =3.34x 10" and y; =7.38 x 10724y, =4.83 x 1072,

Example 2.2. The non-linear stiff problem

i (%) —0.013y; — 1000y1y3
flxy) = [y | = —2500y2y3 7
3(%) —0.013y; — 1000y;y3 —2500y2y3,

satisfying the initial conditions

1(0),y2(0),y3(0)]" =[1,1,0]",

is from Gear [[12] and has no known exact solution so we compare our solution
with octave ode15s [13]].

The Jacobian of the above system is
—0.013 — 1000y5 0 —1000y,
fy(x,y) = 0 —2500y3 —2500y; )

—0.013—1000y; —2500y; —1000y; — 2500y,
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and

g(x,y) = fy(x,y)f(x,y)
[—0.013 — 1000y; 0 —1000y; —0.013y; — 1000y y3

= 0 —2500y3 —2500y, —2500y2y3

| —0.013-1000y3 —2500y3 —1000y; —2500y> | | —0.013y; — 1000y1y3 — 2500y

[1000000y;y3 + (2500000y;y2 + 1000000y? +26y1 )ys + 13y3 4+ 1.69 x 10~y

= 6250000y2)2 + (6250000y2 4 2500000y, y2)ys 4 32.5y1y2 :

o
where

o = (6250000y; -+ 1000000y, )y3 + (6250000y3 + 5000000y, y>
+1000000y2 4 26y1)y3 4+ 32.5y1y2 + 13y +1.69 x 10~ 4y,

Similarly, the Jacobian of g(x,y) is

gy(x>Y) = [T K w] ’
where

1076(10"2y2 + (2.5 x 102y, +2 x 10'2y; +2.6 x 107)y3 +2.6 x 107y, + 169)
T= 0.5(5000000y,y3 + 65y-)

1070(10"2y3 + (5 x 102y, +2 x 10'2y; +2.6 x 107)y3 +3.25 x 107y, +2.6 x 107y; + 169)

obtained by differentiating g(x,y) partially with respect to y;. After differenti-
ating g(x,y) partially with respect to y,, we arrived at

2500000y, y3
K= 0.5(1.25 x 107y3 + (2.5 x 107y, 4 5000000y, )y3 + 65y1) ,

1076(6.25 x 10"y 4 (1.25 x 1013y, +5 x 10'2y;) y3 +3.25 x 107y1)

and

1075(2 x 10'2y1y3 4+2.5 x 1012y1y, + 1.0 x 10'%y? +2.6 x 107y;)
0= 0.5(2.5 x 107y5y3 + 1.25 x 107y3 + 5000000y, y,)

1075(2(6.25 x 10"y, 4+ 102y, )y3 +6.25 x 10'2y3 +5 x 1012y1y, + 10'2y7 +2.6 x 107y;)
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obtained by differentiating g(x,y) partially with respect to y3. We plugged
these values of f(x,y),fy(x,y),g(x,y),gy(x,y) into Algorithm [2.1| and the re-
sults are as shown in Fig. 3.

0.8
—*— y1(x)
0.6 —F— ya(x)
—— y3(X)
—©— y;(x) ode15s
0.4 Yo(x) ode15s |
—O— y3(x) ode15s
0.2 r

1.5

0.5

—*— yq(X]
—k— yo(X
—— y3(X)
—5— y1(X

Ya(X
—O— y3(X

ode15s
ode15s

ode15s | |

0

200
X

100

300

400

Fig. 3. The figure above shows the result of comparing the new method with
octave odelbs.

Fig. 3 showed that the new second derivative block hybrid method performs
at par with the well known stiff ode15s solver. Notice from the figure on the
left that we plotted the results in the range [0, 10] and [0,400] for x. This is to
properly see the trajectory of the solution.

Example 2.3. The well-known Fatunla problem [14]]

f(x,y)

) (%) —10 100
¥5(x) —100 —10
¥3(x) 0 0
wwl | o o
Vs (x) 0 0
_yg (x) | | 0 0

which satisfies the initial conditions

0 0
0 0
—4 0
0 -1
0 0
0 0

—0.1

[yl (O)vyl(o)7y3(0)7y4(0)7y5(0)7y6(0)] = [17 L1,1,1, 1]'
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Observe that

g(x,y) =fy(x,y)f(x,y)

[—10 100 0 0 0 0 | [—10y; + 100y, |
—100 =10 0 0 0 0 —100y; — 10y,

0 0 —4 0 0 0 —4y;

B 0 0 0 -1 0 0 —y4

0 0 0 0 —-05 0 —0.5ys
0 0 0 0 0 —01]| —0lys |

[—9900y, — 2000y |
2000y; — 9900y,

1 6y3

Y4

Vs
4

Y6
100

and the Jacobian
[—9900 —2000 0 O O O

2000 —-9%00 0 0 O O

0 00 16 0 0 O
gy(an):
0 0 01 0 O
0 0 0 01 0
0 0 0 0 0

L 100 4

Table 3. Comparing the absolute errors of the new method with those of [5]]
on Example 2.3
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1 1
0.8 —H—y, (0 0.8 —H— Y, (0
8 ? S exp(-10x)(cos(x)+sin(x) 0.6 —E— exp(-10x)(cOs(x)-sin(x))
> 02 & 0.4
0 D 0.2
0.2 0
o4 0.2
o 02 04 06 08 1 0 02 04 06 08 1
1
0.8 Y00 )
.06 TS exp(4Y S exp(x)
0.4
0.2
0
0 0.5 1 15 2 6 8
1 1
0.8 Y 0.8 —— Y0
0.6 —S— exp(-0.5%) 0.6 —S— exp(-0.1%)
>
0.4 0.4
0.2 0.2
0 0
0 2 4 6 8 10 0 10 20 30 40 50

Fig. 4. Exact solution versus the new method on the Fatunla problem on
Example[2.3]

Absolute Error

F | —¢— Absolute Error for y (x)
[ | —%— Absolute Error for y,(x)

Absolute Error for yz(x)
Absolute Error for y,(x)
Absolute Error for ys(x)
E —*— Absolute Error for yg(x)

RON=ZOORUSNEBN2OODNDNRBN2OODUNNABNOORIPNEDROAO
T TTTTTTT L

A AR AG063636666CENIMMRIRNRIMN

0 20 40 60 80 100
Number of iterations

Fig. 5. Plot of the absolute error against the number of iterations on Example

23

X Y Yakubu et al [5] New Method
yi 2.220446049250313x 1010 4.7592391018792229x 1022
5 1y, 1.318389841742373x107!¢ 5.6855380861750618x 10~

V3 0 9.9704102211086080 x 10~ 10
V4 0 7.0850105622049034 x 10~ %
y1  3.330669073875470x 101 0

50 y, 7.771561172376096x10~'6 0
y3  4.440892098500626 % 1016 0

V4 0 1.8319437858209123x 10793
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Results of numerical simulations on this example is as shown in Fig. 4, 5
and Table 3. Figure 4 is a plot of the exact solution versus the new 7th—order
block hybrid method, it shows that as x increases, the exact coincides with
the approximation solution. Since the step size is 0.1, it means we need 500
iterates to reach x = 50. However, because Fig. 5 is on a semilogy scale and
in order to visualize the y-labels, we restricted the range of x values from O to
100. Furthermore, for x =5, Table 3 showed that the new method outperforms
those of [S)] in two out of four y values. Nevertheless, for x = 50, we see that
the accuracy of the new method increased to three out of four. This confirms
the reliability of the new method for the numerical solution of stiff systems of
ordinary differential equations.

3. CONCLUDING REMARKS

We have shown that the new second derivative block hybrid method of order
seven with fewer function evaluations outperforms a fourteenth -order second
derivative block hybrid method of Yakubu et al., [5] which uses more function
evaluations and almost twice the size of the linear system presented in this
paper. The accuracy of our method must have been due to the large region of
stability. We recommend the new algorithm for the numerical approximation
of stiff initial valued systems of ordinary differential equations.
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