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THE RADIAL PART OF AN INVARIANT DIFFERENTIAL
OPERATOR ON THE EUCLIDEAN MOTION GROUPS

U. N. BASSEY1 AND U. E. EDEKE2

ABSTRACT. Let G be the Euclidean motion group realised as the
semi direct product of Rn and SO(n), that is, G = Rn ⋊SO(n). The
pair (Rn ⋊ SO(n),SO(n)) is called the Gelfand pair. In this work,
among other things, spherical analysis on the pair is presented, in-
cluding an explicit determination of spherical function for G.

1. INTRODUCTION

The notion of Gelfand pair was first noticed in the study of infinite di-
mensional irreducible unitary representations of semisimple Lie groups.
Since then it has been applied also to analysis on symmetric spaces.
Spherical analysis on a Gelfand pair (G,K) is the analogue of Fourier
analysis on Rn or on the torus T. Precisely, (G,K) is a Gelfand pair if
the convolution algebra L1(K\G/K) is commutative.

It has been recognised that many of the special functions introduced
in analysis are closely related to the theory of linear representations of
Lie groups. Prominent among such functions are the spherical function.
The theory of spherical functions generalizes both the classical Laplace
spherical harmonics and continuous characters of Lie groups. Spherical
functions play an important part in the modern theory of infinite di-
mensional linear representations of Lie groups. In this work we discuss
spherical functions on the Euclidean motion groups. Jean Dieudonne
[4] has mentioned, without any proof, that the spherical function for
SE(2) is a Bessel function of order zero. It is our purpose in this work
to develope a proof of this result and, as our result shows, it turns out
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that the spherical functions for the Gelfand pair (G,K) is a spherical
Bessel function.

This work is arranged as follows. Section 2 contains preliminaries
concerning spherical functions on locally compact groups, one parame-
ter subgroups and vector fields on SE(2). The main results of this work
concerning spherical functions on G and the pair (G,K) are given in
section 3.

2. PRELIMINARIES

This section contains preliminaries about one-parameter subgroups, vec-
tor fields and spherical functions on G. We start with one parameter
subgroups of SE(2) in subsection 2.1 followed by vector fields in sub-
section 2.2 while spherical functions are discussed in subsection 2.3.

2.1. One-parameter subgroup of SE(2).

We begin this section by identifying the Lie algebra of SE(n) denoted
by se(n). This Lie algebra is the sub-algebra of gl(n+1,R) given as

se(n) =
{

X =

 T E
0 0

 : E ∈ Rn, T ∈ so(n)
}
.

Here, gl(n+1,R) is the Lie algebra of the general linear group GL(n+
1,R) consisting of real matrices A of order n+ 1 with the Lie bracket
[A,B] = AB−BA for A,B ∈ gl(n+1,R); so(n) =

{
A ∈ gl(n+1,R)|A+

At = 0
}

is the Lie algebra of SO(n); T is a skew - symmetric matrix;
and E is a vector in Rn ([3],p.11). In particular, the Lie group SE(2)
admits a three dimensional Lie algebra se(2) whose basis elements are

X1 =


0 0 1
0 0 0
0 0 0

, X2 =


0 0 0
0 0 1
0 0 0

, X3 =


0 −1 0
1 0 0
0 0 0

.
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These basis elements obey the commutation relations [X1,X2] = 0,
[X2,X3] = X1 and [X3,X1] = X2 as shown below

[X1,X2] = X1X2 −X2X1

=


0 0 1
0 0 0
0 0 0




0 0 0
0 0 1
0 0 0

−


0 0 0
0 0 1
0 0 0




0 0 1
0 0 0
0 0 0



=


0 0 0
0 0 0
0 0 0

−


0 0 0
0 0 0
0 0 0


= 0.

[X2,X3] = X2X3 −X3X2

=


0 0 0
0 0 1
0 0 0




0 −1 0
1 0 0
0 0 0

−


0 −1 0
1 0 0
0 0 0




0 0 0
0 0 1
0 0 0



=


0 0 0
0 0 0
0 0 0

−


0 0 −1
0 0 0
0 0 0



=


0 0 1
0 0 0
0 0 0


= X1.

[X3,X1] = X3X1 −X1X3

=


0 −1 0
1 0 0
0 0 0




0 0 1
0 0 0
0 0 0

−


0 0 1
0 0 0
0 0 0




0 −1 0
1 0 0
0 0 0



=


0 0 0
0 0 1
0 0 0

−


0 0 0
0 0 0
0 0 0
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=


0 0 0
0 0 1
0 0 0


= X2.

We are now ready to discuss the one-parameter subgroups of the Lie
group SE(2). This is important for defining the left or right invariant
differential operators on SE(2). Before going on, we define the one-
parameter subgroup of a (real) Lie group G in general.

2.1.1 Definition[7]. Let G be a linear Lie group. A function γ :R→G
is a one-parameter subgroup of G if
(a) γ is continuous,
(b) γ(0) = I, where I is the identity element of G,
(c) γ(t + s) = γ(t)γ(s), for all s, t ∈ R.

There is an important theorem for calculating the one parameter sub-
group of a linear Lie group which we state in theorem 2.1.2 below.

2.1.2 Theorem ([8], Theorem 1.1.1, p. 4) Let γ : R → GL(n,R) be
a one-parameter subgroup of GL(n,R). Then γ is a C∞ and γ(t) =
exp(tA), with A = γ ′(0). In fact, γ is even and real analytic.

Putting t = 1, then γ(1) = exp(A) and since the exponential map exp(.)
is always defined from the Lie algebra of a Lie group to the Lie group
itself, it stands to reason that A is an element of the Lie algebra gl(n,R).
We can now calculate the one-parameter subgroups of SE(2) using the
formula specified in theorem 2.1.2. For X1, the corresponding one-
parameter subgroup is

γ1(t) = exp(tX1)

= I + tX1 +
t2X2

2!
+

t3X3

3!
+ ....

Since

X2
1 =


0 0 1
0 0 0
0 0 0




0 0 1
0 0 0
0 0 0

=


0 0 0
0 0 0
0 0 0

= Xn
1 , ∀ n > 2,
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we have

γ1(t) = I + tX1 =


1 0 0
0 1 0
0 0 1

+ t


0 0 1
0 0 0
0 0 0

=


1 0 t
0 1 0
0 0 1

 .

Similarly, the one-parameter subgroup of SE(2) corresponding to X2 is

γ2(t) = exp(tX2) = I + tX2 +
t2X2

2
2!

+
t3X3

2
3!

+ ....

But

X2
2 =


0 0 0
0 0 1
0 0 0




0 0 0
0 0 1
0 0 0

=


0 0 0
0 0 0
0 0 0

= Xn
2 , ∀ n > 2.

Therefore,

γ2(t) = I + tX2 =


1 0 0
0 1 1
0 0 1

+ t


0 0 0
0 0 1
0 0 0

=


1 0 0
0 1 t
0 0 1

 .

Finally, γ3(t) is obtained as

γ3(t) = exp(tX3) = I+ tX3 +
t2X2

3
2!

+
t3X3

3
3!

+ ... (2.1)

Now

X2
3 =


0 −1 0
1 0 0
0 0 0




0 −1 0
1 0 0
0 0 0

=


−1 0 0
0 −1 0
0 0 0

 ,

X3
3 =


−1 0 0
0 −1 0
0 0 0




−1 0 0
0 −1 0
0 0 0

=


0 1 0
−1 0 0
0 0 0

 ,

X4
3 =


0 1 0
−1 0 0
0 0 0




0 −1 0
1 0 0
0 0 0

=


1 0 0
0 1 0
0 0 0

 ,
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X5
3 =


1 0 0
0 1 0
0 0 0




0 −1 0
1 0 0
0 0 0

=


0 −1 0
1 0 0
0 0 0

 ,

X6
3 =


0 −1 0
1 0 0
0 0 0




0 −1 0
1 0 0
0 0 0

=


−1 0 0
0 −1 0
0 0 0

 .

Since X6
3 = X2

3 , the exponential series (2.1) terminates at X5
3 . Therefore

γ3(t) = I + tX3 +
t2X2

3
2!

+
t3X3

3
3!

+
t4X4

3
4!

+
t5X5

3
5!

=


1 0 0
0 1 0
0 0 0

+ t


0 −1 0
1 0 0
0 0 0

+
t2

2!


−1 0 0
0 −1 0
0 0 0

+
t3

3!


0 1 0
−1 0 0
0 0 0



+
t4

4!


1 0 0
0 1 0
0 0 0

+
t5

5!


0 −1 0
1 0 0
0 0 0



=


1− t2

2! +
t4

4! + ... −t + t3

3! −
t5

5! + ... 0
t − t3

3! +
t5

5! + ... 1− t2

2! +
t4

4! + ... 0
0 0 1



=


cost −sint 0
sint cost 0
0 0 1

 .

2.2. Vector Fields on SE(2).
We begin this section by describing the tangent vector and the vector

field of a given differentiable manifold M. Thereafter, an explicit form
of vector fields for SE(2) are presented.

2.2.1 Definition. Let M be a C∞ - manifold and let p ∈ M. A tangent
vector at a point p is a mapping L : C∞(p)→ R such that for α,β ∈ R
(i) L(α f1 + β f2) = αL( f1)+ βL( f2); (ii) L( f1 f2)(p) = L( f1) f2(p)+
f1(p)L( f2).
Condition (i) expresses linearity of L while condition (ii) is the Leibnitz
rule. The set of all tangent vectors at p ∈ M is denoted by Tp(M) and is
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called tangent space. A tangent bundle T (M) over an n - dimensional
manifold M is the union of all tangent spaces Tp(M) of M.

We are now ready to define the concept of a vector field on a given
differentiable manifold.

2.2.2 Definition. A vector field on M (also called the global section
of the tangent bundle) is a map

X : M → T (M)

defined by M ∋ p 7→ X(p) = Xp ∈ Tp(M) ∀p ∈ M and such that π ◦
X = IdM, where IdM is the identity map on M and π : T (M) → M. A
vector field X on a manifold M is called a C∞ - vector field if for every
f ∈C∞(M), the function X f is in C∞(M).

The explicit form of vector fields on SE(2) are presented in what fol-
lows. Let (x,y,θ) be a system of coordinates on SE(2), with x,y ∈ R
and θ ∈ T = R/2πZ. Let D(SE(2)) be the space of C∞ functions on
SE(2) with compact support. For X1,X2 ∈ R2, X3 ∈ SO(2) and for
f ∈ D(SE(2)), the corresponding left invariant vector fields for SE(2)
are given as follows.

(X1SE(2) f )(x,y,θ) = cosθ
∂ f
∂x

+ sinθ
∂ f
∂y

,

(X2SE(2) f )(x,y,θ) =−sinθ
∂ f
∂x

+ cosθ
∂ f
∂y

,

(X3SE(2) f )(x,y,θ) =
∂ f
∂θ

.

Also, for g ∈ D(R2) and h ∈ D(SO(2)), the vector fields are given as

(XR2g)(x,y) =
∂g
∂x

,

(XR2g)(x,y) =
∂g
∂y

,

(XSO(2)h)(θ) =
∂h
∂θ

.

These vector fields are now used to discuss invariant differential op-
erators on SE(2) in what follows below.

2.2.3 Definition. Let G be a Lie group. Let x,g ∈ G, then the left
and right actions of G are respectively defined as

Lg(x) = gx
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and
Rg(x) = xg.

A linear differential operator P on G is said to be left or right invariant if
it commutes with the left or right action of G. That is to say, P satisfies
the following condition

P( f Lg) = (P f )Lg

or
P( f Rg) = (P f )Rg,

for all g ∈ G, f ∈C∞(G). The operator P is said to be bi-invariant if it
is left and right invariant. Let U (g) be regarded as the algebra of left
invariant differential operators on G, where g is the Lie algebra of G.
Let Z(g) be the center of U (g), then the elements of Z(g) are the bi-
invariant differential operators on G. A differential operator P on SE(2)
defined as ([2], p.7)

P = ∑
α,β ,γ∈N

aαβγXα

1SE(2)X
β

2SE(n)X
γ

3SE(2)

is an invariant differential operator and so P ∈ U (g). The next propo-
sition gives explicit forms of P when it is K-bi-invariant and SE(2)-bi-
invariant.

2.2.4 Proposition([2], lemma 11). Let P be left invariant linear dif-
ferential operator on SE(2).
(i) If P is K- bi-invariant, then

P = ∑
α,β∈N

aαβ (X
2
1SE(2)+X2

2SE(2))
αXβ

3SE(2).

(ii) If P is SE(2) - bi - invariant then

P = ∑
α∈N

aα

(
X2

1SE(2)+X2
2SE(2)

)α

.

Proof: (i) P is K - bi- invariant if and only if it satisfies [P,X3] = 0. This
condition, in symmetric algebra, is written as

[P,X3] =
∂ p
∂X1

[X1,X3]+
∂P
∂X2

[X2,X3]

=− ∂P
∂X1

X2 +
∂P
∂X2

X1

= 0.
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This implies that P is of the form

P = Q(X2
1 +X2

2 ,X
2
3 )

where Q is a polynomial of two variables, that is,

P = ∑
α,β∈N

aαβ (X
2
1SE(2)+X2

2SE(2))
αXβ

3SE(2)

(ii) P is SE(2)-bi-invariant if and only if it satisfies [P,X1] = [P,X2] =
[P,X3] = 0. In the symmetric algebra, we have

[P,X1] =
∂P
∂Y

[X2,X1]+
∂P
∂X3

[X3,X1]

=
∂P
∂X3

X2

= 0.

Therefore, ∂P
∂X3

= 0. Also,

[P,X2] = 0 ⇒ ∂P
∂X3

= 0

and since P is K-bi-invariant, we have

P = ∑
α∈N

aα

(
X2

1SE(2)+X2
2SE(2)

)α

. 2

An explicit invariant differential operator on SE(2), which is of inter-
est in what follows in section 3, is the Laplace-Beltrami operator given
by

∇
2 =

∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 +
∂ 2

∂ψ2 .

2.3. Spherical functions on locally compact groups.
Let G be a locally compact group, let K be a compact subgroup of

G and let L1(G) be a convolution algebra of integrable functions on G.
A bi-invariant function of a locally compact group is defined in 2.3.1
below.

2.3.1 Definition. A function

f : G → C
is said to be bi-invariant under K if it is constant on double coset of K.
That is, if f (k1gk2) = f (g) ∀k1,k2 ∈ K and ∀g ∈ G ([6] p.1).

Let Cc(G)K (resp. L1(G)K) be the set of continuous compactly sup-
ported (resp. L1) functions that are bi-invariant under K. Then Cc(G)K
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(resp. L1(G)K) is a subalgebra of Cc(G) (resp. L1(G)), and the pair
(G,K) is a Gelfand pair if certain conditions are satisfied. These condi-
tions are provided in the following definition.

2.3.2 Definition ([6], Definition 2). The pair (G,K) is called a Gelfand
pair if L1(G)K is a commutative algebra. In another formulation, the
pair (G,K) is a called a Gelfand pair if the Banach ∗ - algebra L1(K\G/K)
of a K-bi-invariant integrable functions on G is commutative.

An alternative definition of a Gelfand pair presented below may be
found in ([5]) as proposition 6.1.3.

2.3.3 Proposition. Let G be a locally compact group and K a compact
subgroup of G. Assume there exists a continuous involutive automor-
phism φ of G such that

φ(x) ∈ Kx−1K

for all x ∈ G. Then (G,K) is a Gelfand pair.
Given a function ϕ ∈C(G) ( not necessarily compactly supported), a

linear functional

χϕ : Cc(G)→ C

is defined as

χϕ( f ) =
∫

G
f (x)ϕ(x−1)dx.

We are now ready to define spherical function for a locally compact
group G, and it is given below.

2.3.4 Definition [1]. A spherical function

ϕ : G → C

for the Gelfand pair (G,K) is a K-bi-invariant C∞ - function on K with
ϕ(e) = 1 and satisfies one of the following three equivalent conditions

(1)
∫

K ϕ(xky)dx = ϕ(x)ϕ(y),
(2) f 7→

∫
G f (g)ϕ(g)dg is a homomorphism of Cc(K\G/K) into C,

(3) ϕ is an eigenfunction of each D ∈ D(G/K), where D(G/K) is
the algebra of K-invariant differential operators on G/K.

Also, a function ϕ ∈ C(G), ϕ ̸= 0, is said to be spherical if it is bi-
invariant under K and χϕ is a character of Cc(G)K . That is, ∀ f ,g ∈
Cc(G)K ,

χϕ( f ∗g) = χϕ( f ) ·χϕ(g).
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3. MAIN RESULTS

In this section, we determine an explicit form of the spherical function
for the Euclidean Motion group G = Rn ⋊ SO(n). Before going on,
we show that the pair (Rn ⋊ SO(n),SO(n)) is a Gelfand pair, where
G = Rn ⋊SO(n) is the general Euclidean motion group. Elements of G
are written as the pair g = (a,k) with a ∈ Rn, k ∈ SO(2) =: K. The pair
is seen as the product of the rotation and the translation over a. This
product is generally considered as an action of G on Rn defined as

g · x = k · x+a,

where a,x ∈ Rn and k ∈ SO(n). Now, given k,k′ ∈ K and a,a′ ∈ Rn,
one can define a product in G as (k,a)(k′,a′) = (k′ · a+ a′,kk′). This
shows that (k,a) = (k,0)(1,a) following the product defined above. Let
us define a map

φ : G → G

as

(k,a) 7→ (k,−a) or φ(k,a) = (k,−a)

Then φ is a continuous involutive automorphism of G and φ(k,a) =
[(k,0)(1,a)] = (k,0)(1,−a) = (k,0)(k,a)−1(k,0). Therefore, φ(g) ∈
Kg−1K, ∀g ∈ G. Hence, (G,K) is a Gelfand pair. This claim is sup-
ported by Proposition 2.1.3 above. Let us give an explicit derivation of
spherical function for G = Rn ⋊SO(n) as follows.

The Laplace-Beltrami operator on SE(2)(see ([9], p.5)) is given by

∇
2 =

∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 +
∂ 2

∂ψ2 (1)

Let the operator act on ϕ = ϕ(r,θ ,ψ), then

∇
2
ϕ =

∂ 2ϕ

∂ r2 +
1
r

∂ϕ

∂ r
+

1
r2

∂ 2ϕ

∂θ 2 +
∂ 2ϕ

∂ψ2 . (2)

We have the following elleptic partial differential equation

∂ 2ϕ

∂ r2 +
1
r

∂ϕ

∂ r
+

1
r2

∂ 2ϕ

∂θ 2 +
∂ 2ϕ

∂ψ2 = 0. (3)

Let us assume that the above equation has a solution of the form

ϕ(r,θ ,ψ) = R(r)F(θ)Ψ(ψ). (4)
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Now, 

∂ϕ

∂ r
= F(θ)Ψ(ψ)

∂R
∂ r

and
∂ 2ϕ

∂ r2 = F(θ)Ψ(ψ)
∂ 2R
∂ r2

∂ 2ϕ

∂θ 2 = R(r)Ψ(ψ)
∂ 2F
∂θ 2

∂ 2ϕ

∂ψ2 = R(r)F(θ)
∂ 2Ψ

∂ψ2 .

(5)

Substituting (5) into (3), we have

F(θ)Ψ(ψ)
∂ 2R(r)

∂ r2 +
1
r

F(θ)Ψ(ψ)
∂R(r)

∂ r
+

1
r2 R(r)Ψ(ψ)

∂ 2F
∂θ 2 +R(r)F(θ)

∂ 2Ψ

∂ψ2 = 0.

(6)
Divide (6) by R(r)F(θ)Ψ(ψ), then we get

1
R(r)

∂ 2R(r)
∂ r2 +

1
R(r)r

∂R(r)
∂ r

+
1

F(θ)r2
∂ 2F(θ)

∂θ 2 +
1

Ψ(ψ)

∂ 2Ψ(ψ)

∂ψ2 = 0,

so that

1
R(r)

∂ 2R(r)
∂ r2 +

1
R(r)r

∂R(r)
∂ r

+
1

F(θ)r2
∂ 2F(θ)

∂θ 2 =− 1
Ψ(ψ)

∂ 2Ψ(ψ)

∂ψ2 .

(7)
The left hand side of (7) depends only on (r,θ) while the right hand side
depends only on ψ . We can equate each side to a constant, say −m2.
Thus we get

− 1
Ψ(ψ)

∂ 2Ψ

∂Ψ2 =−m2 ⇒ 1
Ψ(ψ)

∂ 2Ψ

∂Ψ2 = m2 ⇒ ∂ 2Ψ

∂Ψ2 = m2
Ψ(ψ), (8)

and
1

R(r)
∂ 2R
∂ r2 +

1
R(r)r

∂R
∂ r

+
1

F(θ)r2
∂ 2F
∂θ 2 =−m2. (9)

Multiplying (9) by r2, we get:

r2

R(r)
∂ 2R
∂ r2 +

r
R(r)

∂R
∂ r

+
1

F(θ)

∂ 2F
∂θ 2 =−m2r2

so that
r2

R(r)
∂ 2R
∂ r2 +

r
R(r)

∂R
∂ r

+m2r2 =− 1
F(θ)

∂ 2F
∂θ 2 . (10)

Again equate both sides of (10) to n2, where n is a constant:

r2

R(r)
d2R(r)

dr2 +
r

R(r)
dR(r)

dr
+m2r2 = n2 (11)
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− 1
F(θ)

d2F(θ)

dθ
= n2 (12)

We can now solve the ordinary differential equation:

r2

R(r)
d2R(r)

dr2 +
r

R(r)
dR(r)

dr
+m2r2 −n2 = 0. (13)

Next, we transform this equation into Bessel equation. To do this, we
let mr = x so that dx

dr = m. Then

dR(r)
dr

=
dR(r)

dx
dx
dr

= m
dR(r)

dx
.

Therefore,

d2R(r)
dr2 =

d
dr

(
dR
dr

)
=

d
dr

(
m

dR(r)
dx

)
= m

d2R(r)
dx2

dx
dr

= m
d2R(x)

dx2 m

= m2 d2R(x)
dx2 .

Equation (13) becomes

m2 r2

R(r)
d2R(r)

dx2 +
mr

R(r)
dR(r)

dx
+(m2r2 −n2) = 0. (14)

Multiply (14) by R(r) to get

m2r2 d2R(r)
dx2 +mr

dR(r)
dx

+(m2r2 −n2)R(r) = 0.

Set mr = x; m2r2 = x2, therefore,

x2 d2R(r)
dx2 + x

dR(r)
dx

+(x2 −n2)R(r) = 0.

This may be re-written as

d2R(r)
dx2 +

1
x

dR(r)
dx

+

(
1− n2

x2

)
R(r) = 0. (15)
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The differential equation (15) is a Bessel differential equation and it has
a solution of the form

Jλ (mr) = Γ

(
n
2

)
∞

∑
k=0

λ k

k!Γ(k+ n
2)

(
mr
2

)2k

(16)

= Γ

(
n
2

)(√
λ r
2

) 2−n
2

In−2
2

(√
λ r

)
, (17)

where Iν is the Bessel function of index ν . Different values of λ will
give different solutions. In our own case, we are considering SE(2), that
is, n = 2. Therefore, (17) can be further simplified to be

Jλ (mr) = Γ(1)
(√

λ r
2

)0

I2−2
2

(√
λ r

)
(18)

= I0

(√
λ r

)
. 2 (19)

Expression (19) is the desired spherical function for SE(2), generally
referred to as the Bessel function of order zero. Thus we have proved,
in particular, the following

3.1 Theorem. The spherical function on SE(2) is the Bessel function
I0 of order zero.
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