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AN INERTIAL SELF ADAPTIVE ALGORITHM FOR
SOLVING EQUILIBRIUM, FIXED POINT AND

PSEUDOMONOTONE VARIATIONAL INEQUALITY
PROBLEMS IN HILBERT SPACES.

O.J. OGUNSOLA 1, O. K. OYEWOLE 2

ABSTRACT. In this paper, we study an iterative approximation of
a common solution to equilibrium, fixed point and variational in-
equality problems. We introduced an inertial Tseng method with a
viscosity approach for approximating a solution to the problem in
a Hilbert space. The two methods used in this research work en-
hance the convergence rate of the proposed algorithm. Under mild
conditions, we show that the sequence generated converges strongly
to a common solution of the fixed point and variational inequality
problems associated with demicontractive and pseudomonotone op-
erator which is also a solution to a generalized equilibrium problem.
Our results extend and improve several existing results in literature.

1. INTRODUCTION

Throughout this paper, R denotes the set of real numbers, N = {n ∈
Z|n ≥ 0} denotes the set of natural numbers, H a real Hilbert space
and C a nonempty, closed and convex subset of H. Let H be a real
Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥ · ∥. Let C be
a nonempty, closed and convex subset of H, let Φ : C ×C → R and
ϕ : C×C → R be two bifunctions. Then, the Generalized Equilibrium
Problem (GEP) is defined as finding a point x∗ ∈C such that

Φ(x∗,x)+ϕ(x∗,x)≥ 0, ∀x ∈C. (1.1)
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The set of solution of inequality (1.1) is denoted by GEP (Φ,ϕ). When
ϕ = 0 the GEP reduces to classical Equilibrium Problem (EP) intro-
duced by Blum and Oettli [7]. Over the years, the equilibrium problems
have proven to be very effective for studying a wide class of problems
in Network, transportation, image recovery, finance and Economics; see
[2, 9, 10, 13, 14, 31, 32, 35, 37, 40, 44, 47] and the references therein.
Also, the EP has served as a unifying framework for the study of Fixed
Point Problems (FPP), Saddle Point Problems (SPP), variational inclu-
sion problems, variational inequality problems, nonlinear complemen-
tary problems, the Nash equilibrium problems and so on. Many iterative
algorithms for solving EPs and related OPs have been studied and pro-
posed by several authors, see [1, 3, 11, 16, 24, 25, 28, 41, 54–56] .
Let S : C →C be a nonlinear mapping. A point x∗ ∈C is called a fixed
point of S if Sx∗ = x∗. The set of all fixed points of S, denoted by F(S)
is given as

F(S) = {x∗ ∈C : Sx∗ = x∗}. (1.2)

A lot of problems in sciences and engineering can be formulated as
finding solution of FPP of a nonlinear mapping. Recent studies of op-
timization problems (OPs) dealing with finding a common solution of
the set of fixed points of a nonlinear mapping and the set of solutions
to equilibrium problems have so far been carried out by many authors.
Some authors who have considered the problem of finding a common
solution between the sets of solution of equilibrium problems and fixed
point problems of a nonlinear mapping in inequality (1.1) and equation
(1.2) are in [26, 52, 55].
Let A : C → H be a nonlinear mapping. The VIP denoted by V I(C,A)
is to find x∗ ∈C such that

⟨Ax∗,x− x∗⟩ ≥ 0,∀x ∈C. (1.3)

Ever since the independent introduction of variational inequality theory
by Fichera and Stampacchia, it has become a vital tool in mathemati-
cal analysis and has applications in many fields of study such as opti-
mization theory, physics, economics, engineering and many others (See
[6, 20, 33, 34] and the references therein ). Over the years, various ef-
fective solution methods have been investigated and developed to solve
the problems of VIP (See [12, 46, 57] and the references therein).
It is our concern in this article to study a common solution to the equi-
librium problem, variational inequality and fixed point problem. The
potential application to mathematical models whose constraints can be
expressed as fixed point problems and equilibrium problems is the mo-
tivation for studying such a common solution problem. For this reason,
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several researchers have considered iterative approximations of solution
to fixed point and optimization problems in different spaces of choice
(see [26, 27, 29, 50] and the references therein). In 2008, Plubtieng et al.
[43] introduced the following iterative scheme for finding the common
element of the set of fixed points of a nonexpansive mapping, the set of
solutions of an equilibrium problem and the set of solutions of the vari-
ational inequality for an α-inverse stongly monotone mappings. They
showed that the sequence converges strongly to a common element of
the three sets under consideration. To be precised, they proposed the
following iterative method:

Algorithm 1.1.
F(un,y)+ 1

rn
⟨y−un,un − xn⟩ ≥ 0 ∀y ∈C.

yn = PC(un −λnAun).

xn+1 = αnu+βnxn + γnSPC(yn −λnAyn).

Recently, Gang et al. [22] proposed the following inertial Tseng’s ex-
tragradient algorithm for approximating the common solution of pseu-
domonotone variational inequality problem and fixed point problem for
nonexpansive mappings in real Hilbert spaces:

Algorithm 1.2.

x0,x1 ∈ H.

wn = xn +θn(xn − xn−1).

yn = PC(wn − γAwn).

zn = yn − γ(Ayn −Awn).

xn+1 = αn f (xn)+(1−αn)[βnSzn +(1−βn)zn].

where f is a contraction, S is a nonexpansive mapping, A is pseu-
domonotone, L-Lipschitz and sequentially weakly continuous and γ ∈
(0, 1

L). The authors proved a strong convergence result for the proposed
algorithm under some suitable conditions.
Owolabi et al. [42] proposed the following iterative scheme for finding
common solutions to equilibrium problem, variational inclusion prob-
lem and fixed point problem for an infinite family of strict pseudocon-
tractive mappings.

Algorithm 1.3.

α̂n =

{
min

{
α, θn

∥xn−xn−1∥

}
, if xn ̸= xn−1,

α, otherwise.
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wn = xn +αn(xn − xn−1),

F(un,y)+ 1
rn
(y−un,un −wn)≥ 0, ∀y ∈ H,

vn = δnwn +(1−δn)un,

zn = (I +λnB)−1(I −λnA)vn,

xn+1 = βn f (xn)+ξnxn +µnWnzn.

Motivated by the above results, we consider the problem of approximat-
ing a common solution to an equilibrium problem, fixed point problem
and variational inequality problem in a real Hilbert space. An inertial
Tseng iterative method is introduced and combined with the viscosity
technique. We showed that the ensuing sequences from this method
converge under some mild conditions to a common solution to the fixed
point problem and variational inequality problem associated with demi-
contractive and pseudomonotone operators which is also a solution to a
generalized equilibrium problem.
The organizational structure of our paper is built as follows. In Section
2, we give relevant definitions and lemmas needed for use in the subse-
quent sections. In Section 3, we propose an algorithm and analyze its
convergence in Section 4. We give numerical examples of our proposed
algorithm in Section 5 and finally in Section 6, we give a concluding
remark.

2. PRELIMINARIES

Let H be a real Hilbert space and C be a nonempty, closed and convex
subset of H. The weak convergence of xn to x is denoted by xn ⇀ x as
n → ∞, while the strong convergence of xn to x is written as xn → x as
n → ∞.

Lemma 2.1. [15] For each x,y ∈ H and δ ∈ R, there holds

(1) ∥x+ y∥2 ≤ ∥x∥2 +2⟨y,x+ y⟩
(2) ∥x+ y∥2 = ∥x∥2 +2⟨x,y⟩+∥y∥2.
(3) ∥δx+(1−δ )y∥2 = δ∥x∥2 +(1−δ )∥y∥2 −δ (1−δ )∥x− y∥2.

For all x ∈ H, there exists a unique nearest point in C, denoted by PCx,
such that

∥x−PCx∥ ≤ ∥x− y∥, ∀y ∈C.

PC is called metric projection of H onto C. It is known that PC is nonex-
pansive.
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Lemma 2.2. [23] Let C be a nonempty, closed and convex subset of a
real Hilbert space H. For any x ∈ H and z ∈C, we have

z = PCx ⇔ ⟨x− z,z− y⟩ ≥ 0 ∀y ∈C.

Lemma 2.3. [23] Let C be a closed and convex subset in a real Hilbert
space H and let x ∈ H. Then we have the following:

(1) ∥PCx−PCy∥2 ≤ ⟨PCx−PCy,x− y⟩ ∀ y ∈ H.

(2) ∥x−PCx∥2 ≤ ∥x− y∥2 −∥y−PCx∥2 ∀ y ∈C.

Definition 2.4 ([48][58]). Let H be a real Hilbert space and let C be a
nonempty, closed and convex subset of H. For any elements x,y ∈C, a
mapping A : C → H is said to be:
(1) c-strict pseudocontractive, if there exists c ∈ [0,1) such that

∥Ax−Ay∥2 ≤ ∥x− y∥2 + c∥x−Ax− (y−Ay)∥2,

(2) c-demicontractive, if for any x ∈C and q ∈ F(A) with c ∈ [0,1),

∥Ax−q∥2 ≤ ∥x−q∥2 + c∥x−Ax∥2,

(3) pseudomonotone, if

⟨Ax,y− x⟩ ≥ 0 ⇒ ⟨Ay,y− x⟩ ≥ 0,

(4) sequentially weakly continuous on H, if for each sequence {xn}, we
have

xn ⇀ x ⇒ Axn ⇀ Ax.

Definition 2.5. [19] A bounded linear operator D on H is called strongly
positive if there exists a constant γ̂ > 0 such that

⟨Dx,x⟩ ≥ γ̂∥x∥2, ∀x ∈ H.

Lemma 2.6. [18] Let Φ : C×C →R and ϕ : C×C →R be two bifunc-
tions satisfying the following assumptions:
(C1) Φ(x,x)≥ 0 ∀x ∈C;
(C2) Φ is monotone i.e Φ(x,y)+Φ(y,x)≤ 0 ∀x,y ∈C;
(C3) Φ is upper hemicontinuous , i.e for each x,y,z ∈C limsup

t→∞

Φ(tz+

(1− t)x,y)≤ Φ(x,y);
(C4) For each x ∈C fixed, the function y 7→ Φ(x,y) is convex and lower
semicontinuous;
(C5) ϕ(x,x)≥ 0 for all x ∈C;
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(C6) For each y ∈C fixed, the function x → ϕ(x,y) is upper semicontin-
uous;
(C7) For each x ∈C fixed, the function y → ϕ(x,y) is convex and lower
semicontinuous,
and assume that for fixed r > 0 and z ∈C, there exists a nonempty com-
pact subset K of H and x ∈C∩K such that:

Φ(y,x)+ϕ(y,x)+
1
r
⟨y− x,x− z⟩< 0,∀y ∈C \K

.

Lemma 2.7. [18] Let C be a nonempty, closed and convex subset of a
real Hilbert space H. Assume that the bifunction Φ,ϕ : C×C → R be
bifunctions satisfying the assumptions C1-C7 in Lemma 2.6 and ϕ is
monotone.
For r > 0 and for all x ∈ H define a mapping T (Φ,ϕ)

r : H →C as follows:

T (Φ,ϕ)
r (x) = {z ∈C : Φ(z,y)+ϕ(z,y)+

1
r
⟨y− z,z− x⟩ ≥ 0,∀y ∈C}.

Then, the following hold:
(i) T (Φ,ϕ)

r is single-valued;
(ii) T (Φ,ϕ)

r is firmly nonexpansive i.e

∥T (Φ,ϕ)
r x−T (Φ,ϕ)

r y∥2 ≤ ⟨T (Φ,ϕ)
r x−T (Φ,ϕ)

r y,x− y⟩ ∀x,y ∈ H.

(iii) F(T (Φ,ϕ)
r ) = GEP(Φ,ϕ).

(iv) GEP(Φ,ϕ) is compact and convex.

Lemma 2.8. [45] Let {an} be a sequence of non-negative real numbers,

{αn} be a sequence in (0,1) with
∞

∑
n=1

αn = ∞ and {bn} be a sequence

of real numbers. Assume that an+1 ≤ (1−αn)an +αnbn for all n ≥ 1.
If limsup

k→∞

bnk ≤ 0 for every subsequence {ank} of {an} satisfying

liminf
k→∞

(ank+1 −ank)≥ 0,

then lim
n→∞

an = 0.

Lemma 2.9. [39] Let D be a self-adjoint strongly positive bounded lin-
ear operator on a Hilbert space with coefficient γ̄ > 0 and 0 < ρ ≤
∥D∥−1. Then ∥I −ρD∥ ≤ 1−ργ̄.
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Lemma 2.10. [5] Consider the problem with C being a nonempty, closed,
convex subset of a real Hilbert space H and A : C → H being pseu-
domonotone and continuous. Then p is a solution of inequality (1.3) if
and only if

⟨Ax,x− p⟩ ≥ 0, ∀x ∈C.

3. MAIN RESULTS

In this section, we introduce a new inertial projection and viscosity ap-
proximation method with a self adaptive technique for solving general-
ized equilibrium problem, fixed point and variational inequality prob-
lems. The following conditions are assumed throughout the paper.
Assumption 3.1. Suppose:
Condition A.

(A1) The feasible set C is a nonempty, closed and convex subset of a
real Hilbert space H;

(A2) The associated operator A : H →H is pseudomonotone, L-Lipschitz
and sequentially weakly continuous on bounded subset of H;

(A3) Φ,ϕ : C×C →R are two bifunctions satisfying the assumptions
in Lemma 2.6 and GEP(Φ,ϕ) is the solution set of generalized
equilibrium problem of the two bifunctions.

(A4) The mapping S : H −→ H is c-demicontractive.
(A5) The solution set Ω :=GEP(Φ,ϕ)∩F(S)∩V I(C,A) is nonempty;

Condition B.
(B1) The function f : H −→ H is ρ-contractive with ρ ∈ [0,1) and

the mapping D : H → H is a strongly positive bounded linear
operator with coefficient γ̄ such that 0 < γ < γ̄

ρ
;

(B2) The control sequence {αn}, satisfy

{αn} ⊂ (0,1), lim
n→∞

αn = 0 and
∞

∑
n=0

αn = ∞;

(B3) The control sequence {εn}, such that {εn} ⊂ [0,∞) and εn =
◦(αn),

(B4) liminf
n→∞

(βn − c)> 0.

We now present our Algorithm.

Algorithm 3.1. Inertial self adaptive method.
Initialization: Given δ > 0,γ1 > 0,φ ∈ (0,1). Let x0,x1 ∈ H be two ini-
tial points.
Iterative steps: Calculate xn+1 as follows;
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sn = xn +δn(xn − xn−1),

un = T (Φ,ϕ)
r (sn),

vn = PC(un − γnAun),

zn = vn − γn(Avn −Aun),

xn+1 = αnξ f (xn)+(I −αnD)(βnzn +(1−βn)Szn),

(3.1)

where δn and γn are updated by (3.2) and (3.3) respectively.

δn =

{
min

{
εn

∥xn−xn−1∥ , δ

}
, if xn ̸= xn−1,

δ , otherwise.
(3.2)

γn+1 =

{
min

{
φ∥un−vn∥
∥Aun−Avn∥ , γn

}
, if Aun −Avn ̸= 0

γn, otherwise.
(3.3)

Remark 3.2. By condition B3, one can verify from equation (3.3) that
lim
n→∞

δn
αn
∥xn − xn−1∥ = 0. Indeed, we see that δn∥xn − xn−1∥ ≤ εn, ∀n

combined with lim
n→∞

εn
αn

= 0 gives lim
n→∞

δn
αn
∥xn − xn−1∥ ≤ lim

n→∞

εn
αn

= 0.

4. CONVERGENCE ANALYSIS

We first establish some lemmas needed to prove the strong convergence
theorem for the proposed algorithm.

Lemma 4.1. [58] The sequence γn given by Equation (3.3) is nonin-
creasing and lim

n→∞
γn = γ ≥ min{γ1,

φ

L}.

Lemma 4.2. Let {un} and {vn} be two sequences generated by Algo-
rithm 3.1 such that conditions (A1)-(A3) hold. If there exists a subse-
quence {unk} which is weakly convergent to u ∈ H and limk→∞ ∥unk −
vnk∥= 0, then u ∈V I(C,A).

Proof. From Equation (3.1), vn = PC(un − γnAun). By the characteriza-
tion of the projection map we have

⟨unk − γnkAunk − vnk ,x− vnk⟩ ≤ 0, ∀x ∈C,

which implies that
1

γnk

⟨unk − vnk ,x− vnk⟩ ≤ ⟨Aunk ,x− vnk⟩, ∀x ∈C.



38 O .J. OGUNSOLA AND O. K. OYEWOLE

From this we obtain
1

γnk

⟨unk − vnk ,x− vnk⟩+ ⟨Aunk ,vnk −unk⟩ ≤ ⟨Aunk ,unk⟩, ∀x ∈C. (4.1)

Since the subsequence {unk} is weakly convergent to u ∈ H, then {unk}
is a bounded subsequence. By the Lipschitz continuity of A and ∥unk −
vnk∥ → 0, we have that {Aunk} and {vnk} are bounded as well. Since
γnk ≥ min{γ1,

φ

L}, by applying inequality (4.1) we have

liminf
k→∞

⟨Aunk ,x−unk⟩ ≥ 0,∀x ∈C. (4.2)

Observe that

⟨Avnk ,x− vnk⟩= ⟨Avnk −Aunk ,x−unk⟩+ ⟨Aunk ,x−unk⟩+ ⟨Avnk ,unk − vnk⟩.
(4.3)

Since ∥unk − vnk∥ → 0, then by the Lipschitz continuity of A we have
limk→∞ ∥Aunk − Avnk∥ = 0. This combined with inequality (4.2) and
Equation (4.3) implies

liminf
k→∞

⟨Avnk ,x− vnk⟩ ≥ 0.

Now, let {Φk} be a decreasing sequence of positive numbers such that
Φk → 0 as k → ∞. Let Nk represent the smallest positive integer for any
k such that

⟨Avn j ,x− vn j⟩+Φk ≥ 0 ∀ j ≥ Nk. (4.4)

Clearly, the sequence {Nk} is increasing since {Φk} is decreasing. From
{vNk} ⊂ C, for any k, suppose AvNk ̸= 0 (otherwise vNk is a solution of
inequality (1.3)), let

ΨNk =
AvNk

∥AvNk∥2 .

Then, ⟨AvNk ,ΨNk⟩= 1 for each k. From inequality (4.4), we obtain

⟨AvNk ,x+ΦkΨNk − vNk⟩ ≥ 0 ∀k.

By the pseudomonotonicity of A, we get

⟨A(x+ΦkΨNk),x+ΦkΨNk − vNk⟩ ≥ 0,

which gives

⟨Ax,x− vNk⟩ ≥ ⟨Ax−A(x+ΦkΨNk),x+ΦkΨNk − vNk⟩−Φk⟨Ax,ΨNk⟩.
(4.5)

We now show that limk→∞
ΦkΨNk = 0. We get that vNk ⇀ u since unk ⇀ u

and limk→∞
∥unk − vnk∥ = 0. From {vn} ⊂ C, we have u ∈ C. By the

sequentially weak continuity of A on C, we have {Avnk} ⇀ Au. We
can assume that Au ̸= 0 (otherwise, u is a solution of inequality (1.3)).
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Since the norm mapping is sequentially weakly lower semicontinuous,
we have:

0 < ∥Au∥ ≤ lim
k→∞

∥Avnk∥.

By the fact that {vNk} ⊂ {vnk} and Φk → 0 as k → ∞, we have

0 ≤ limsup
k→∞

∥ΦkΨNk∥= limsup
k→∞

(
Φk

∥Avnk∥

)
≤

limsup
k→∞

Φk

liminf
k→∞

∥Avnk∥
= 0,

which implies that limsup
k→∞

ΦkΨNk = 0. From the facts that A is Lips-

chitz continuous, {vNk} and {ΨNk} are bounded and lim
k→∞

ΦkΨNk = 0, it

follows from inequality (4.5) that

liminf
k→∞

⟨Ax,x− vNk⟩ ≥ 0.

Hence, we obtain

⟨Ax,x−u⟩= lim
k→∞

⟨Ax,x− vNk⟩= liminf
k→∞

⟨Ax,x− vNk⟩ ≥ 0, ∀x ∈C.

By invoking Lemma 2.10, we obtain u ∈V I(C,A) as required. □

Lemma 4.3. Let {unk} be a subsequence of {un} defined by Algorithm
3.1 such that unk ⇀ u ∈ C. Suppose ∥unk − snk∥ → 0 as k → ∞. Then
u ∈ GEP(Φ,ϕ).

Proof. Since unk = T (Φ,ϕ)
r (snk), we have

Φ(unk ,y)+ϕ(unk ,y)+
1
r
⟨y−unk ,unk − snk⟩ ≥ 0, ∀y ∈C.

It follows from the monotonicity of Φ and ϕ that
1
r
⟨y−unk ,unk − snk⟩ ≥ Φ(y,unk)+ϕ(y,unk).

It follows from ∥unk − snk∥→ 0 and unk ⇀ u, that

Φ(y,u)+ϕ(y,u)≤ 0, ∀y ∈C.

Let yt = ty+(1− t)u for any t ∈ (0,1] and y ∈C. Then, we have yt ∈C
and hence

Φ(yt ,u)+ϕ(yt ,u)≤ 0.
Using the assumptions C1 and C4 in Lemma 2.6, we get

0 ≤ Φ(yt ,yt)+ϕ(yt ,yt)

≤ t(Φ(yt ,y)+ϕ(yt ,y))+(1− t)(Φ(yt ,u)+ϕ(yt ,u))

≤ Φ(yt ,y)+ϕ(yt ,y). (4.6)



40 O .J. OGUNSOLA AND O. K. OYEWOLE

Hence we have Φ(yt ,y)+ϕ(yt ,y)≥ 0. Letting t → 0 and using assump-
tion C3 in Lemma 2.6, by the upper semicontinuity of ϕ , we have

Φ(u,y)+ϕ(u,y)≥ 0, ∀y ∈C.

Therefore u ∈ GEP(Φ,ϕ). □

Lemma 4.4. Let sequences {un}, {vn} and {zn} be given as in Algo-
rithm 3.1 and suppose Assumptions A and B hold. Then we have the
following.

∥zn − p∥2 ≤ ∥un − p∥2 − (1−φ
2 γ2

n

γ2
n+1

)∥un − vn∥2, ∀p ∈ Ω.

Proof. Using the definition of zn, we have

∥zn − p∥2 = ∥vn − γn(Avn −Aun)− p∥2

= ∥vn − p∥2 + γ
2
n∥Avn −Aun∥2 −2γn⟨vn − p,Avn −Aun⟩

= ∥un − p∥2 +∥vn −un∥2 +2⟨vn −un,un − p⟩+ γ
2
n∥Avn −Aun∥2

−2γn⟨vn − p,Avn −Aun⟩
= ∥un − p∥2 +∥vn −un∥2 −2⟨vn −un,vn −un⟩+2⟨vn −un,vn − p⟩
+ γ

2
n∥Avn −Aun∥2 −2γn⟨vn − p,Avn −Aun⟩

= ∥un − p∥2 −∥vn −un∥2 +2⟨vn −un,vn − p⟩+ γ
2
n∥Avn −Aun∥2

−2γn⟨vn − p,Avn −Aun⟩. (4.7)

From vn = PC(un − γnAun) and the property of metric projection, we
get ⟨vn − un + γnAun,vn − p⟩ ≤ 0 which implies ⇒ ⟨vn − un,vn − p⟩ ≤
−γn⟨Aun,vn − p⟩.
Using this and Equation (3.3) in Equation (4.7), we have:

∥zn − p∥2 ≤ ∥un − p∥2 −∥vn −un∥2 −2γn⟨Aun,vn − p⟩+φ
2 γ2

n

γ2
n+1

∥un − vn∥2

−2γn⟨vn − p,Avn −Aun⟩

≤ ∥un − p∥2 −
(

1−φ
2 γ2

n

γ2
n+1

)
∥un − vn∥2 −2γn⟨vn − p,Avn⟩.

(4.8)

From p ∈ V I(C,A), we have ⟨Ap,vn − p⟩ ≥ 0. We obtain from the fact
that A is pseudomonotone, that

⟨Avn,vn − p⟩ ≥ 0.
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It follows therefore, from inequality (4.8), that

∥zn − p∥2 ≤ ∥un − p∥2 −
(

1−φ
2 γ2

n

γ2
n+1

)
∥un − vn∥2.

□

Lemma 4.5. Let {xn} be a sequence generated by Algorithm 3.1. Then,
{xn} is bounded. Consequently, the sequences {zn},{vn}, {un} and
{wn} are bounded.

Proof. Let p ∈ Ω, then from Equation 3.1 we have that

∥sn − p∥= ∥xn +δn(xn − xn−1)− p∥
≤ ∥xn − p∥+δn∥xn − xn−1∥

= ∥xn − p∥+αn.
δn

αn
∥xn − xn−1∥. (4.9)

From Remark 3.2, we have δn
αn
∥xn − xn−1∥→ 0, thus there exists a con-

stant N1 > 0, such that

δn

αn
∥xn − xn−1∥ ≤ N1, ∀n ≥ 1. (4.10)

Hence,

∥sn − p∥ ≤ ∥xn − p∥+αnN1, ∀n ≥ n0. (4.11)

Again from Algorithm 3.1, we have

∥un − p∥= ∥T Φ,ϕ
r sn −T Φ,ϕ

r p∥
≤ ∥sn − p∥. (4.12)

Now, let yn = βnzn +(1−βn)Szn. Then,

∥yn − p∥2 = ∥βnzn +(1−βn)Szn − p∥2

= ∥βn(zn − p)+(1−βn)(Szn − p)∥2

= βn∥zn − p∥2 +(1−βn)∥Szn − p∥2 −βn(1−βn)∥zn −Szn∥2

≤ βn∥zn − p∥2 +(1−βn)[∥zn − p∥2 + c∥zn −Szn∥2]−βn(1−βn)∥zn −Szn∥2

= ∥zn − p∥2 +(1−βn)c∥zn −Szn∥2 −βn(1−βn)∥zn −Szn∥2

= ∥zn − p∥2 − (1−βn)(βn − c)∥zn −Szn∥2

≤ ∥zn − p∥2, (4.13)

which implies that ∥yn − p∥ ≤ ∥zn − p∥.
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Finally,

∥xn+1 − p∥= ∥αnξ f (xn)+(I −αnD)yn − p∥
= ∥αnξ f (xn)−αnDp+(I −αnD)(yn − p)∥
≤ αn∥ξ f (xn)−Dp∥+(1−αnγ̂)∥zn − p∥
≤ αn(∥ξ f (xn)−ξ f (p)∥+∥ξ f (p)−Dp∥)+(1−αnγ̂)∥zn − p∥
≤ αnξ ρ∥xn − p∥+αn∥ξ f (p)−Dp∥+(1−αnγ̂)(∥xn − p∥+αnN1)

= (1−αn(γ̂ −ξ ρ))∥xn − p∥+αn∥ξ f (p)−Dp∥+(1−αnγ̂)αnN1

= (1−αn(γ̂ −ξ ρ))∥xn − p∥+αn(γ̂ −ξ ρ)
{∥ξ f (p)−Dp∥

γ̂ −ξ ρ
+

(1−αnγ̂)

γ̂ −ξ ρ
N1

}
≤ (1−αn(γ̂ −ξ ρ))∥xn − p∥+αn(γ̂ −ξ ρ)N2, (4.14)

where N2 = supn∈N

{
∥ξ f (p)−Dp∥

γ̂−ξ ρ
+ (1−αnγ̂)

γ̂−ξ ρ
N1

}
. Therefore, {∥xn − p∥}

is bounded and thus {xn} is bounded. Consequently, {sn},{un},{zn},{A(un)}
and {S(zn)} are bounded. □

Lemma 4.6. Suppose {xn} is the sequence generated by Algorithm 3.1,
then the following inequality hold for all p ∈ Ω and n ∈ N

∥xn+1 − p∥2 ≤
[

1− 2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

]
∥xn − p∥2

+
2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

(
αnγ̂2

2(γ̂ −ξ ρ)
N4 +

(1−αnγ̂)2

2αn(γ̂ −ξ ρ)
αn∥xn − xn−1∥2

+
1

(γ̂ −ξ ρ)
⟨ξ f (p)−Dp,xn+1 − p⟩

)
− (1−αnγ̂)2

(1−αnξ ρ)
(1−βn)(βn − c)∥zn −Szn∥2,

(4.15)

and

∥xn+1 − p∥2 ≤
[

1− 2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

]
∥xn − p∥2

+
2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

(
αnγ̂2

2(γ̂ −ξ ρ)
N4 +

(1−αnγ̂)2

2αn(γ̂ −ξ ρ)
αn∥xn − xn−1∥2

+
1

(γ̂ −ξ ρ)
⟨ξ f (p)−Dp,xn+1 − p⟩

)
− (1−αnγ̂)2

(1−αnξ ρ)
∥un − sn∥2

− (1−αnγ̂)2

(1−αnξ ρ)

(
1−φ

2 γ2
n

γ2
n+1

)
∥un − vn∥2. (4.16)



ITERATIVE METHOD... 43

Proof. Clearly, it follows from Equation (3.2) that

∥sn − p∥2 = ∥xn +δn(xn − xn−1)− p∥2

= ∥xn − p+δn(xn − xn−1)∥2

= ∥xn − p∥2 +2δn⟨xn − p,xn − xn−1⟩+δ
2
n ∥xn − xn−1∥2

≤ ∥xn − p∥2 +2δn∥xn − p∥∥xn − xn−1∥+δ
2
n ∥xn − xn−1∥2

= ∥xn − p∥2 +δn∥xn − xn−1∥(2∥xn − p∥+δn∥xn − xn−1∥)

≤ ∥xn − p∥2 +αn ·
δn

αn
N3∥xn − xn−1∥,

where N3 = supn∈N(2∥xn − p∥+δn∥xn − xn−1∥). From Equation (3.2),
we have,

∥xn+1 − p∥2 = ∥αn(ξ f (xn)−Dp)+(I −αnD)(yn − p)∥2

≤ (1−αnγ̂)2∥yn − p∥2 +2αn⟨ξ f (xn)−Dp,xn+1 − p⟩.
(4.17)

Observe that

2αn⟨ξ f (xn)−Dp,xn+1 − p⟩= 2αnξ ⟨ f (xn)− f (p),xn+1 − p⟩
+2αn⟨ξ f (p)−Dp,xn+1 − p⟩
≤ αnξ ρ(∥xn − p∥2 + xn+1 − p∥2)

+2αn⟨ξ f (p)−Dp,xn+1 − p⟩
= αnξ ρ∥xn − p∥2 +αnξ ρ∥xn+1 − p∥2

+2αn⟨ξ f (p)−Dp,xn+1 − p⟩. (4.18)

Combining inequality (4.17) and inequality (4.18), we have

∥xn+1 − p∥2 ≤ (1−αnγ̂)2∥yn − p∥2 +2αn⟨ξ f (xn)−Dp,xn+1 − p⟩
= (1−αnγ̂)2∥yn − p∥2 +αnξ ρ∥xn − p∥2 +αnξ ρ∥xn+1 − p∥2

+2αn⟨ξ f (p)−Dp,xn+1 − p⟩
≤ (1−αnγ̂)2(∥zn − p∥2 − (1−βn)(βn − c)∥zn −Szn∥2)



44 O .J. OGUNSOLA AND O. K. OYEWOLE

+αnξ ρ∥xn − p∥2 +αnξ ρ∥xn+1 − p∥2 +2αn⟨ξ f (p)−Dp,xn+1 − p⟩

≤ (1−αnγ̂)2
(
∥un − p∥2 − (1−βn)(βn − c)∥zn −Szn∥2

)
+αnξ ρ∥xn+1 − p∥2 +αnξ ρ∥xn − p∥2 +2αn⟨ξ f (p)−Dp,xn+1 − p⟩

≤ (1−αnγ̂)2
(
∥sn − p∥2 − (1−βn)(βn − c)∥zn −Szn∥2

)
+αnξ ρ∥xn+1 − p∥2 +αnξ ρ∥xn − p∥2 +2αn⟨ξ f (p)−Dp,xn+1 − p⟩

≤ (1−αnγ̂)2
(
∥xn − p∥2 +αn

δn

αn
N3∥xn − xn−1∥− (1−βn)(βn − c)∥zn −Szn∥2

)
+αnξ ρ∥xn+1 − p∥2 +αnξ ρ∥xn − p∥2 +2αn⟨ξ f (p)−Dp,xn+1 − p⟩
= [1−2αnγ̂ +(αnγ̂)2 +αnξ ρ]∥xn − p∥2 +2αn⟨ξ f (p)−Dp,xn+1 − p⟩

+(1−αnγ̂)2
(

αn
γn

αn
N3∥xn − xn−1∥2 − (1−βn)(βn − c)∥zn −Szn∥2

)
+αnξ ρ∥xn+1 − p∥2.

Consequently, we obtain

∥xn+1 − p∥2 ≤ (1−2αnγ̂ +(αnγ̂)2 +αnξ ρ)

(1−αnξ ρ)
∥xn − p∥2 +

(1−αnγ̂)2

(1−αnξ ρ)

(
αn

δn

αn
N3∥xn − xn−1∥

− (1−βn)(βn − c)∥zn −Szn∥2
)
+

2αn

(1−αnξ ρ)
⟨ξ f (p)−Dp,xn+1 − p⟩.

=
(1−2αnγ̂ +αnξ ρ)

(1−αnξ ρ)
∥xn − p∥2 +

(1−αnγ̂)2

(1−αnξ ρ)

(
αn

δn

αn
N3∥xn − xn−1∥

− (1−βn)(βn − c)∥zn −Szn∥2
)
+

(αnγ̂)2

(1−αnξ ρ)
∥xn − p∥2

+
2αn

(1−αnξ ρ)
⟨ξ f (p)−Dp,xn+1 − p⟩

=

[
1− 2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

]
∥xn − p∥2

+
2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

(
αnγ̂2

2(γ̂ −ξ ρ)
N4 +

(1−αnγ̂)2

2αn(γ̂ −ξ ρ)
αn∥xn − xn−1∥2

+
1

(γ̂ −ξ ρ)
⟨ξ f (p)−Dp,xn+1 − p⟩

)
− (1−αnγ̂)2

(1−αnξ ρ)
(1−βn)(βn − c)∥zn −Szn∥2,
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where N4 := sup{∥xn − p∥2 : n ∈ N}. Similarly, we have

∥xn+1 − p∥2 ≤ (1−αnγ̂)2∥yn − p∥2 +2αn⟨ξ f (xn)−Dp,xn+1 − p⟩
= (1−αnγ̂)2∥yn − p∥2 +αnξ ρ∥xn − p∥2 +αnξ ρ∥xn+1 − p∥2

+2αn⟨ξ f (p)−Dp,xn+1 − p⟩
≤ (1−αnγ̂)2∥zn − p∥2 +αnξ ρ∥xn − p∥2 +αnξ ρ∥xn+1 − p∥2

+2αn⟨ξ f (p)−Dp,xn+1 − p⟩

≤ (1−αnγ̂)2
(
∥un − p∥2 −

(
1−φ

2 γ2
n

γ2
n+1

)
∥un − vn∥2

)
+αnξ ρ∥xn+1 − p∥2 +αnξ ρ∥xn − p∥2 +2αn⟨ξ f (p)−Dp,xn+1 − p⟩,

which implies

∥xn+1 − p∥2 ≤ (1−αnγ̂)2
(
∥sn − p∥2 −un − sn∥2 −

(
1−φ

2 γ2
n

γ2
n+1

)
∥un − vn∥2

)
+αnξ ρ∥xn+1 − p∥2 +αnξ ρ∥xn − p∥2 +2αn⟨ξ f (p)−Dp,xn+1 − p⟩

≤ (1−αnγ̂)2
{
∥xn − p∥2 +αn

δn

αn
N3∥xn − xn−1∥−∥un − sn∥2

−
(

1−φ
2 γ2

n

γ2
n+1

)
∥un − vn∥2

}
+αnξ ρ∥xn+1 − p∥2

+αnξ ρ∥xn − p∥2 +2αn⟨ξ f (p)−Dp,xn+1 − p⟩
= [1−2αnγ̂ +(αnγ̂)2 +αnξ ρ]∥xn − p∥2

+(1−αnγ̂)2
{

αn
γn

αn
N3∥xn − xn−1∥2 −∥un − sn∥2

−
(

1−φ
2 γ2

n

γ2
n+1

)
∥un − vn∥2

}
+αnξ ρ∥xn+1 − p∥2 +2αn⟨ξ f (p)−Dp,xn+1 − p⟩.

Thus

∥xn+1 − p∥2 ≤ (1−2αnγ̂ +(αnγ̂)2 +αnξ ρ)

(1−αnξ ρ)
∥xn − p∥2

+
(1−αnγ̂)2

(1−αnξ ρ)

(
αn

δn

αn
N3∥xn − xn−1∥−∥un − sn∥2
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−
(

1−φ
2 γ2

n

γ2
n+1

)
∥un − vn∥2

)
+

2αn

(1−αnξ ρ)
⟨ξ f (p)−Dp,xn+1 − p⟩.

=
(1−2αnγ̂ +αnξ ρ)

(1−αnξ ρ)
∥xn − p∥2 +

(αnγ̂)2

(1−αnξ ρ)
∥xn − p∥2

+
2αn

(1−αnξ ρ)
⟨ξ f (p)−Dp,xn+1 − p⟩

+
(1−αnγ̂)2

(1−αnξ ρ)

(
αn

δn

αn
N3∥xn − xn−1∥−∥un − sn∥2 −

(
1−φ

2 γ2
n

γ2
n+1

)
∥un − vn∥2

)
=

[
1− 2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

]
∥xn − p∥2 +

2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

(
αnγ̂2

2(γ̂ −ξ ρ)
N4

+
(1−αnγ̂)2

2αn(γ̂ −ξ ρ)
αn∥xn − xn−1∥2

+
1

(γ̂ −ξ ρ)
⟨ξ f (p)−Dp,xn+1 − p⟩

)
− (1−αnγ̂)2

(1−αnξ ρ)
∥un − sn∥2

− (1−αnγ̂)2

(1−αnξ ρ)

(
1−φ

2 γ2
n

γ2
n+1

)
∥un − vn∥2.

Thus the required inequalities are obtained. □

Theorem 4.7. Suppose that conditions A and B hold. Then the iterative
sequence {xn} generated by Algorithm 3.1 converges to u ∈ Ω where
u = PΩ f (u).

Proof. Let u = PΩ f (u). From Lemma 4.6, we obtain

∥xn+1 −u∥2 ≤
[

1− 2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

]
∥xn −u∥2

+
2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

(
αnγ̂2

2(γ̂ −ξ ρ)
N4 +

(1−αnγ̂)2

2αn(γ̂ −ξ ρ)
αn∥xn − xn−1∥2

+
1

(γ̂ −ξ ρ)
⟨ξ f (p)−Dp,xn+1 −u⟩

)
− (1−αnγ̂)2

(1−αnξ ρ)
(1−βn)(βn − c)∥zn −Szn∥2,

(4.19)
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and

∥xn+1 −u∥2 ≤
[
1− 2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

]
∥xn −u∥2

+
2αn(γ̂ −ξ ρ)

(1−αnξ ρ)

(
αnγ̂2

2(γ̂ −ξ ρ)
N4 +

(1−αnγ̂)2

2αn(γ̂ −ξ ρ)
αn∥xn − xn−1∥2

+
1

(γ̂ −ξ ρ)
⟨ξ f (p)−Dp,xn+1 −u⟩

)
− (1−αnγ̂)2

(1−αnξ ρ)
∥un − sn∥2

− (1−αnγ̂)2

(1−αnξ ρ)

(
1−φ

2 γ2
n

γ2
n+1

)
∥un − vn∥2, (4.20)

From inequality (4.19), it follows that

(1−αnγ̂)2

(1−αnξ ρ)
(1−βn)(βn − c)∥zn −Szn∥2 ≤ ∥xn −u∥2 −∥xn+1 −u∥2 +

2αn(γ̂ −ξ ρ)

(1−αnξ ρ)
M′,

(4.21)

where M′ = sup{bn : n ∈ N} and
bn := αnγ̂2

2(γ̂−ξ ρ)
N4+

(1−αnγ̂)2

2αn(γ̂−ξ ρ)
αn∥xn−xn−1∥2+ 1

(γ̂−ξ ρ)
⟨ξ f (u)−Du,xn+1−

u⟩.
Next we show that {xn} converges to u. Set an := ∥xn −u∥2 and ξn :=
2αn(γ̂−ξ ρ)
(1−αnξ ρ)

. It is easy to see from inequality (4.19) that the inequality:

an+1 ≤ (1−ξn)an +ξnbn.

holds. To conclude, we have to show that limsup
k→∞

bnk ≤ 0 whenever a

subsequence {ank} of {an} satisfies

liminf
k→∞

(ank+1 −ank)≥ 0. (4.22)

Indeed, let {ank} be a subsequence of {an} satisfying inequality (4.22),
we obtain from inequality (4.19) that

limsup
k→∞

(1−αnγ̂)2

(1−αnkξ ρ)
(1−βnk)(βnk − c)∥znk −Sznk∥

2 ≤ limsup
k→∞

(ank −ank+1)

+2M′ (γ̂ −ξ ρ)

(1−αnkξ ρ)
lim
k→∞

αnk =− liminf
k→∞

(ank+1 −ank)≤ 0 (4.23)

which implies that

lim
k→∞

∥znk −Sznk∥= 0. (4.24)
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Using inequality (4.20) and following the same process as in inequality
(4.19), we have that

lim
k→∞

∥unk − snk∥= lim
k→∞

∥unk − vnk∥= 0. (4.25)

From Algorithm 3.1, we see that ∥snk −xnk∥=αnk

δnk
αnk

∥xnk −xnk−1∥. Thus

lim
k→∞

∥snk − xnk∥= 0. (4.26)

It follows from ∥unk −xnk∥ ≤ ∥unk − snk∥+∥snk −xnk∥, Equation (4.25)
and Equation (4.26), that

lim
k→∞

∥unk − xnk∥= 0. (4.27)

Observe also that

∥ynk − znk∥= ∥βnk(znk − znk)+(1−βnk)(Sznk − znk)∥
≤ βnk∥(znk − znk)∥+(1−βnk)∥(Sznk − znk)∥.

Thus, by Equation (4.24), we obtain

lim
k→∞

∥ynk − znk∥= 0. (4.28)

By using Equation (4.25) and Equation(4.27), we get

∥vnk − xnk∥ ≤ ∥vnk −unk∥+∥unk − xnk∥→ 0, as k → ∞. (4.29)

From the definition of zn, Equation (4.24) and Equation (4.29) we have

∥znk − xnk∥= ∥vnk − xnk − γnk(Avnk −Aunk)∥
≤ ∥vnk − xnk∥+ γnk∥Avnk −Aunk∥

≤ ∥vnk − xnk∥+
φγnk

γnk+1

∥vnk −unk∥→ 0, as k → ∞. (4.30)

By using triangular inequality, Equation (4.28) and Equation (4.30), we
obtain

∥ynk − xnk∥ ≤ ∥ynk − znk∥+∥znk − xnk∥→ 0, as k → ∞. (4.31)

Again, from Algorithm 3.1, we have by using assumption B2 and in-
equality (4.31), that

∥xnk+1 − xnk∥= ∥αnkξ f (xnk)+(I −αnkD)ynk − xnk∥
= ∥αnkξ f (xnk)−αnkDxnk +(I −αnkD)(ynk − xnk)∥
≤ αnk∥ξ f (xnk)−Dxnk∥+(1−αnk γ̂)∥ynk − xnk∥→ 0, as k → ∞.

(4.32)
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We next show that limsup
k→∞

bnk ≤ 0. Clearly, it suffices to show that

limsup
k→∞

⟨ξ f (u)− Du,xnk+1 − u⟩ ≤ 0. Let {xnk j
} be a subsequence of

{xnk} such that

lim
j→∞

⟨ξ (u)−Du,xnk j
−u⟩= limsup

k→∞

⟨ξ f (u)−u,xnk −u⟩. (4.33)

Since {xnk} is bounded, there exists a subsequence {xnk j
} of {xnk} such

that xnk j
⇀ u∗ ∈ H. Thus, we have by inequality (4.30), that znk j

⇀

u∗. Since I-S is demiclosed at zero, it follows from (4.24), that u∗ ∈
F(S). Also, from Equation (4.25), and Lemma 4.2, we obtain that u∗ ∈
V I(C,A). Again from Equation (4.25), inequality (4.27) and Lemma
4.3, we get that u∗ ∈ GEP(Φ,ϕ). We therefore conclude that u∗ ∈ Ω.
From u = PΩ f (u), it follows from Equation (4.33), that

limsup
k→∞

⟨ξ f (u)−D(u),xnk −u⟩= lim
j→∞

⟨ξ f (u)−D(u),xnk j
−u⟩

= ⟨ξ f (u)−Du,u∗−u⟩ ≤ 0.

We obtain from this and inequality (4.32), that

limsup
k→∞

⟨ξ f (u)−D(u),xnk+1 −u⟩= limsup
k→∞

⟨ξ f (u)−D(u),xnk+1 − xnk⟩

+ limsup
k→∞

⟨ξ f (u)−D(u),xnk −u⟩

= ⟨ξ f (u)−Du,u∗−u⟩ ≤ 0. (4.34)

Applying Lemma 2.8 to inequality (4.19) together with the fact that
lim
n→∞

δn
αn
∥xn−xn−1∥= 0 and condition B2, we deduce that lim

k→∞
∥xn−u∥=

0 as desired. □

Remark 4.8. This result has extended the result obtained in [42] and
other results in this direction.

As direct consequences of Theorem 4.7, we obtain the following corol-
laries.
If ϕ = 0, then we obtain the following as a consequence of Theorem
4.7.

Corollary 4.9. Suppose conditions A and B hold. Let C be a nonempty,
closed and convex subset of H. Let S : H → H be a c-demicontractive
mapping and Φ be a bifunction from C×C to R satisfying conditions
(C1)−(C4) in Lemma 2.6 such that Ω = EP(Φ)∩F(S)∩V I(C,A) ̸= /0.
Choose δ ,γ1 > 0, φ ∈ (0,1) and δn be given as in (3.2). Let {xn} be the
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sequence generated as follows:

sn = xn +δn(xn − xn−1),

Φ(un,y)+ 1
rn
⟨y−un,un − sn⟩ ≥ 0 ∀y ∈ H,

yn = PC(un − γnAun),

zn = yn − γn(Ayn −Aun),

xn+1 = αnϕ f (xn)+(I −αnD)(βnzn +(1−βn)Szn,

(4.35)

and

γn+1 =

{
min

{
φ∥xn−yn∥
∥Axn−Ayn∥ ,γn

}
, if Axn −Ayn ̸= 0,

γn, otherwise.

Then {xn} converges strongly to u ∈ Ω where u = PΩ f (u).

If S = I and δn = 0, then we obtain the following as a consequence of
Theorem 4.7.

Corollary 4.10. Suppose conditions A and B hold. Let C be a nonempty,
closed and convex subset of H. Let S : H → H be a c-demicontractive
mapping and let Φ be a bifunction from C×C → R satisfying (C1)−
(C4) such that Ω = EP(Φ)∩V I(C,A) ̸= /0. Choose γ1 > 0 and φ ∈
(0,1). Let {xn} be the sequence generated as follows:


Φ(un,y)+ 1

rn
⟨y−un,un − xn⟩ ≥ 0 ∀y ∈ H,

yn = PC(un − γnAun),

zn = yn − γn(Ayn −Aun),

xn+1 = αnϕ f (xn)+(I −αnD)zn,

(4.36)

and

γn+1 =

{
min

{
φ∥xn−yn∥
∥Axn−Ayn∥ ,γn

}
, if Axn −Ayn ̸= 0,

γn, otherwise.

Then {xn} converges strongly to u ∈ Ω where u = PΩ f (u).

5. NUMERICAL EXAMPLE

In this section, we present a numerical example to illustrate the be-
haviour of the sequence generated by Algorithm 3.1. All the programs
are implemented in MATLAB 2023b on a Intel(R)Core(TM) i5-8250S
CPU @1.60 GHz computer with RAM 8.00 GB.
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Example 5.1. Let H = ℓ2(R) be the linear space whose elements are
all 2-summable sequence {xi}∞

i=1 of scalars in R that is ℓ2(R) := {x =

(x1,x2,x3, · · ·),xi ∈ R and ∑
∞
i=1 |xi|2 < ∞} with the inner product ⟨·, ·⟩ :

ℓ2 × ℓ2 → R defined by ⟨x,y⟩ := ∑
∞
i=1 xiyi and the norm ∥.∥ : ℓ2 →

R by ∥x∥ℓ2 := (∑∞
i=1 |xi|2)

1
2 , where x = {xi}∞

i=1,y = {yi}∞
i=1. Let C :=

{x ∈ ℓ2(R) : ∥x∥ℓ2 ≤ 1} and A : C → ℓ2 be defined by A(x) =
(
∥x∥ℓ2 +

1
∥x∥ℓ2+1

)
x, ∀x ∈C. Let Φ : C×C →R be defined by Φ(x,y) = x2+xy−

2y2 and ϕ(x,y) =−2x2 + xy+ y2 for all x,y ∈C.
By some simple calculations, we arrive at

T φ ,ϕ
r sn =

sn

12r+1
.

Let S : ℓ2(R)→ ℓ2(R) be defined by Sx= 1
5x with ρ = 1

5 . Let D : H →H
be defined by Dx = x

3 for all x ∈ H with γ̄ = 1
3 , then we take γ = 1 which

satisfies 0 < γ < γ̄

ρ
.

We choose f (x) = x
2 ,ξ = 1

3 ,δ = 0.8,δn =
1

(n+1)2 ,γ1 = 3.1,φ = 0.7,αn =
1

n+1 and βn =
2n

5n+4 . We demonstrate the numerical behavior of the se-
quences generated by Algorithm 4.7 using different starting points of
x0 and x1. The process is terminated by using the stopping criterion
∥xn+1 − xn∥ ≤ ε, where ε = 10−4.

(Case 1): x0 = (0.6,0.5, · · · ,0, · · ·) and x1 = (1.1,0.1, · · · ,0, · · ·);
(Case 2): x0 = (0.1,0.5, · · · ,1, · · ·) and x1 = (1.1,1.2, · · · ,0, · · ·);
(Case 3): x0 = (1.1,1.5, · · · ,0, · · ·) and x1 = (0.7,0.9, · · · ,0, · · ·);
(Case 4): x0 = (1.3,0.0, · · · ,0, · · ·) and x1 = (1.9,0.0, · · · ,0, · · ·).

The report of this example is given in Figure 1.

Example 5.2. Let H = R2 be the two dimensional Euclidean space of
the real number with an inner product ⟨·, ·⟩ : R2×R2 →R be defined by
⟨x,y⟩= x · y = x1 · y1 + x2 · y2 where x = (x1,x2) ∈ R2 and a usual norm

R2 → R be defined by ∥x∥ =
√

x2
1 + x2

2 where x = (x1,x2) ∈ R2. Let

the mapping A : R2 →R2 be defined by Ax = (2x1−x2,x1+2x2) for all
x = (x1,x2) ∈ R2. Let the mapping Φ,ϕ : R2 ×R2 → R be defined by
Φ(x,y) =−x2+y2 ∀x,y ∈R2, and ϕ(x,y) =−2x2+xy+y2 ∀x,y ∈R2.
As before, it is easy to see that

T φ ,ϕ
r sn =

sn

5r+1
.

Let the mapping S : R2 → R2 be defined by Sx = 3x
4 . Let D : R2 → R2

be defined by Dx = x
6 ,∀x ∈ R2 with γ̄ = 1

6 , then we take γ = 1 which
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FIGURE 1. Example 5.1, Top left: Case 1; Top right:
Case 2; Bottom left : Case 3; Bottom right: Case 4.

satisfies 0 < γ < γ̄

ρ
. Let the mapping f : R2 →R2 be defined by f (x) =

x
5 ,∀x∈R2 then with ρ = 1

5 and let r = 1. The numerical behaviour of the
sequences generated by Algorithm 3.1, using different starting points is
shown as follows. We choose ξ = 1

3 ,δ = 0.9,δn =
1

(n+1)2 ,φ = 0.8,αn =
1

n+5 ,γ1 = 3.3,εn =
1

(n+5)3 and βn =
2n

5n+4 .

(Case A): x0 = (0.6,0.5) and x1 = (1.1,0.1);
(Case B): x0 = (0.1,0.5) and x1 = (1.1,1.2);
(Case C): x0 = (1.1,1.5) and x1 = (0.7,0.9);
(Case D): x0 = (1.1,0) and x1 = (1.9,0.7).

The report of this example is given in Figure 2.
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FIGURE 2. Example 5.2, Top left: Case 1; Top right:
Case 2; Bottom left : Case 3; Bottom right: Case 4.

6. CONCLUSION

In this paper, we have considered a problem of finding a common solu-
tion to an equilibrium, variational inequality and fixed point problems.
We introduced an iterative method which combines the inertial, Tseng
and viscosity techniques. The method is self-adaptive and thus indepen-
dent of the Lipschitz constant of the cost operator. Using these meth-
ods we have established a strong convergence result for approximating
a common solution to variational inequality problem and fixed point
problem associated with pseudomonotone and demicontractive opera-
tors and also a solution to a generalized equilibrium problem. By the
way of numerical illustrations, we displayed the convergence of our
proposed method.
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