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CONVERGENCE OF IMPLICIT NOOR ITERATIVE
SEQUENCE TO THE FIXED POINT OF A

GENERALIZED NON-EXPANSIVE MAPPING IN
UNIFORMLY CONVEX SPACE

G. AKINBO1, AND O. O. FABELURIN2

Abstract. We establish the convergence and stability of an
implicit iterative sequence in approximating fixed points of a
class of nonexpansive mappings in uniformly convex Banach
space and contractive mappings in Banach space. The result
obtained is an extension of several others in the literature.

1. INTRODUCTION

Let (X, d) be a metric space. A mapping W : X×X× [0, 1] −→ X
is called a convex structure on X if for each (x, y, λ) ∈ X×X×[0, 1]
and u ∈ X, we have

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

The metric space X, together with convex structure W , is called
a convex metric space. A nonempty subset K of X is said to be
convex if W (x, y, λ) ∈ K for all (x, y, λ) ∈ K × K × [0, 1]. All
normed spaces and their convex subsets are convex metric spaces,
but not all convex metric spaces are embedded in a normed space
[20].
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2. PRELIMINARIES

Consider the selfmapping T : K −→ K and sequences {an}∞n=0, {bn}∞n=0

and {cn}∞n=0 of real numbers in [0, 1]. The following scheme in con-
vex metric spaces is called Noor iteration:

xn = W (xn−1, T yn−1, an)
yn−1 = W (xn−1, T zn−1, bn)
zn−1 = W (xn−1, Txn−1, cn), n = 0, 1, 2, ...
It is well known that the Ishikawa and Mann iterations are easily
obtainable from the Noor iteration. The convergence of the three-
step iterations to fixed points and common fixed points have been
studied extensively. For example, see Owojori and Imoru [17,18],
Noor [15], Khan et al. [14], Chugh et al. [5] and so on.
Given any initial approximation x0 ∈ K, and sequences {an}∞n=0, {bn}∞n=0

and {cn}∞n=0 of real numbers in [0, 1], the implicit Noor iteration is
defined in a convex metric space as:
xn = W (yn−1, Txn, an)
yn−1 = W (zn−1, T yn−1, bn)
zn−1 = W (xn−1, T zn−1, cn), n = 0, 1, 2, ...
The Implicit Noor iterative scheme is expressed in a linear space as
follows.

xn = anyn−1 + (1− an)Txn,
yn−1 = bnzn−1 + (1− bn)Tyn−1

zn−1 = cnxn−1 + (1− cn)Tzn−1,
(1)

n = 0, 1, 2, ..., where {an}∞n=0, {bn}∞n=0 and {cn}∞n=0 are sequences of
real numbers in [0, 1].
The Implicit Ishikawa and Implicit Mann iterations are obtained
by putting cn = 1 and cn = bn = 1 respectively.
T is called a contraction if there exists k ∈ [0, 1) such that d(Tx, Ty) ≤
kd(x, y) for all x, y ∈ X. In case k = 1, so that d(Tx, Ty) ≤ d(x, y),
the mapping T is said to be nonexpansive.
In a complete metric space, the Banach’s contraction mapping prin-
ciple guarantees the existence of a fixed point of a contraction map-
ping T, it also establishes convergence of the Picard iterative se-
quence xn+1 = Txn, n = 0, 1, 2, ... to the fixed point. In addition,
the theorem gives the following error estimates involved in the ap-
proximation of the fixed point.
d(xn, p) ≤ kn(1− a)−1d(x0, x1), n ≥ 1 (a priori error estimate),
d(xn, p) ≤ (1−a)−1d(xn, xn+1), n ≥ 1 (a posteriori error estimate).
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Considerable effort has been made by several authors targeted at
extending the Banach’s contraction principle. In this direction,
Kannan [12], Zamfirescu [21], Berinde [4], Akram [2], among sev-
eral others, introduced interesting classes of contractive mappings
such as weak contractions, φ-contractions, A-contractions, et c.
In 2015, Chugh et al.[5] used the following contractive definition
to obtain convergence and stability results for the implicit Noor
iteration in convex metric spaces:
Let φ : R+ −→ R+ be a monotonic increasing function, with

φ(0) = 0, such that d(Tx, Ty) ≤ φ(d(x, Tx)) + ad(x, y), a ∈
[0, 1), ∀x, y ∈ X.

Chugh et al proved that the sequence {xn} defined by the implicit
Noor scheme converges faster than the implicit Mann and implicit
Ishikawa iterations to the fixed point of T . Moreover, implicit it-
erations generally converge faster than the corresponding explicit
iterations. (See Theorem 13 of [5])
An iterative process f(T, xn) is said to be T -stable if and only if
a sequence {νn} in X (arbitrarily close to {xn}) converges to the
fixed point of T. In 1988, Harder and Hicks [7,8] gave the formal
definition of the stability of general iterative procedures. Some of
the authors who contributed remarkably to the study of stability of
iterative processes are Berinde[3], Imoru and Olatinwo[9], Jachym-
ski[11], Osilike[16] and others.
Chugh et al [5] proved that the implicit Noor iteration is T -stable

for the class T of quasi-contractive operators satisfying d(Tx, Ty) ≤
φ(d(x, Tx)) + ad(x, y), a ∈ [0, 1), ∀x, y ∈ X.
Definition 1: A Banach space X is said to be uniformly convex
if given any positive number ϵ there exists δ > 0 such that for all
x, y ∈ X with ||x|| ≤ 1, ||y|| ≤ 1 and ||x − y|| ≥ ϵ, the inequality
||x+ y|| ≤ 2(1− δ) holds.
The modulus of convexity ofX is the function δX : (0, 2] −→ [0, 1]

defined by

δX(ϵ) = inf{1− ||x+ y||
2

: ||x|| = ||y|| = 1, ||x− y|| = ϵ}. (2)

X is uniformly convex if and only if δX(ϵ) > 0 ∀ ϵ ∈ (0, 2]

Several authors have presented quite a number of interesting re-
sults on the convergence of multiple-step iterations to fixed points
and common fixed points in convex metric spaces. A few of them
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are highlighted below.

In 2006, Lin Wang [23] introduced the following iteration scheme:

x1 ∈ K;
xn+1 = P ((1− αn)xn + αnT1(PT1)

n−1yn);
yn = P ((1− βn)xn + βnT2(PT2)

n−1xn, n ≥ 1,
(W )

where {αn}, {βn} are real sequences in [ϵ, 1 − ϵ] for some ϵ > 0.
He took K as a nonempty closed convex nonexpansive retract of
a real uniformly convex Banach space E and T1, T2 : K −→ E
as nonself asymptotically nonexpansive mappings with sequences
{kn}, {ln} ⊂ [1,∞), limn→∞ kn = 1, limn→∞ ln = 1. In proving the
convergence of the sequence generated by the scheme (W) to a
common fixed point of T1 and T2, the following conditions were im-
posed:
(i) One of T1 and T2 must be completely continuous or demicom-
pact;
(ii)

∑∞
n=1 (kn − 1) < ∞,

∑∞
n=1 (kn − 1) < ∞.

Shahzad and Udomene [22] obtained similar convergence results
in a nonempty closed convex subset of a real uniformly convex Ba-
nach space. In their work, they studied the sequence {xn} generated
by

x1 ∈ K, xn+1 = (1−αn)xn+αnS
n[(1−βn)xn+βnT

nxn], n ≥ 1, (S)

where {αn}, {βn} are sequences in [0, 1]. Here, S and T are asymp-
totically quasi-nonexpansive selfmappings of K
Yildirim [24], 2013, considered the following iterative procedure:

x0 ∈ K, xn = αnxn−1 + βnI
nxn + γnT

n
1 +n T

n
2 xn, n ∈ N, (Y )

where {αn}, {βn}, {γn} and {θn} are real sequences in (0, 1) satis-
fying αn + βn + γn + θn = 1. I is taken to be an asymptotically
quasi-nonexpansive mapping, and T1, T2 are asymptotically quasi
I-nonexpansive mappings. It was proved that if K is a nonempty
closed convex subset of real uniformly convex Banach space X, and
if T1, T2 and I are uniformly L-Lipschitzian, then the iterative se-
quence (Y) converges to the common fixed point of T1, T2 and I,
provided the following conditions are satisfied:
(i) αn + βn + γn + θn = 1;
(ii) δM < 1;
(iii)

∑∞
n=1(1− αn)(h

2
n − 1) < ∞,

where δ = supn (1− αn),M = supn h
2
n ≥ 1.
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In this work, we shall prove the convergence of the implicit Noor
iteration (1) to the fixed point of the class of nonepansive mappings
T satisfying

||Tx−Ty|| ≤ max{||x−y||, 1
2
(||x−Tx||+||y−Ty||), 1

2
(||x−Ty||+||y−Tx||)}

(3)
for all x, y ∈ X.
Our results are intended to be obtained with minimal conditions
being imposed on the control sequences {an}, {bn} and {cn}. The
following Lemmas shall be useful in the proof of our main theorems.
Lemma 1 (Groetsch[6]): Let X be a uniformly convex Banach
space, and let u, v ∈ X. If ||u|| ≤ 1, ||v|| ≤ 1 and ||u− v|| ≥ ϵ > 0,
then ||λu+ (1− λ)v|| ≤ 1− 2λ(1− λ)δ(ϵ) for 0 ≤ λ ≤ 1.
Lemma 2:(See [4, 5, 14]) Let δ be a real number such that 0 ≤
δ < 1, and let {ϵn}∞n=0 be a sequence of positive numbers such that
limn→∞ ϵn = 0. If a sequence of positive numbers {un}∞n=0 satisfies

un+1 ≤ δun + ϵn, n = 0, 1, 2, ...,

then, limn→∞ un = 0.

3. MAIN RESULTS

The statements and proofs of our theorems are presented in this
section.
Theorem 1: Let K be a nonempty closed convex subset of a
uniformly convex space X, and let a self-mapping T : K −→ K
satisfy inequality (3). If T has a fixed point in K, then the im-
plicit Noor iteration (1) converges to a fixed point of T, provided
0 < α ≤ an ≤ β < 1.
Proof: For any x ∈ K and p ∈ FT = {x ∈ K : x = Tx}, using (3),
with the triangle inequality ||x−Tx|| ≤ ||x−p||+||Tx−p||, we have

||Tx− p|| = ||Tx− Tp|| ≤ max{||x− p||, ||x− p||+ ||Tx− p||
2

},

that is,

||Tx− p|| ≤ ||x− p||. (4)
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Now, from (1) and (4),

||zn−1 − p|| = ||cnxn−1 + (1− cn)Tzn−1 − p||
= ||cn(xn−1 − p) + (1− cn)(Tzn−1 − p)||
≤ cn||xn−1 − p||+ (1− cn)||Tzn−1 − p||
≤ cn||xn−1 − p||+ (1− cn)||zn−1 − p||

Therefore,

||zn−1 − p|| ≤ ||xn−1 − p|| (5)

Also,

||yn−1 − p|| = ||bnzn−1 + (1− bn)Tyn−1 − p||
= ||bn(zn−1 − p) + (1− bn)(Tyn−1 − p)||
≤ bn||zn−1 − p||+ (1− bn)||Tyn−1 − p||
≤ bn||zn−1 − p||+ (1− bn)||yn−1 − p||

Therefore, ||yn−1 − p|| ≤ ||zn−1 − p|| ≤ ||xn−1 − p||.
Moreover,

||xn − p|| = ||anyn−1 + (1− an)Txn − p||
= ||an(yn−1 − p) + (1− an)(Txn − p)||
≤ an||yn−1 − p||+ (1− an)||Txn − p||
≤ an||yn−1 − p||+ (1− an)||xn − p||

Therefore,

||xn − p|| ≤ ||yn−1 − p|| ≤ ||zn−1 − p|| ≤ ||xn−1 − p||. (6)

{||xn − p||} is a monotone decreasing sequence in R+. It therefore
converges to a real number l ≥ 0.
Let u = yn−1−p

||xn−1−p|| , v = Txn−p
||xn−1−p|| , then ||u|| ≤ 1, ||v|| ≤ 1, ||u− v|| =

||yn−1−Txn||
||xn−1−p|| ≥ ||yn−1−Txn||

D
, where D = ||x0 − p|| ≠ 0 Then, from

Lemma 1,

||anu+ (1− an)v|| ≤ 1− 2an(1− an)δ

(
||yn−1 − Txn||

D

)
.

That is,

||xn − p|| ≤
[
1− 2an(1− an)δ

(
||yn−1 − Txn||

D

)]
||xn−1 − p||.

It follows by induction that,

||xn − p|| ≤ D
n∏

k=1

[
1− 2ak(1− ak)δ

(
||yk−1 − Txk||

D

)]
.

Since ||yk−1−Txk|| ≤ ||yk−1− p||+ ||Txk − p|| ≤ 2||xk−1− p||, then
{||yk−1−Txk||} is a bounded sequence, and lim sup ||yk−1 − Txk|| =
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h ∈ [0,∞). There exists some natural number N such that ||yni−1−
Txni

|| ≥ h
2
for all ni > N. Thus, since δ(ϵ) is nondecreasing,

||xn − p|| ≤ D

n∏
j=N+1

[
1− 2aj(1− aj)δ

(
h

2D

)]
and using the condition: 0 < α ≤ an ≤ β < 1, we obtain

||xn − p|| ≤ D

[
1− 2α(1− β)δ

(
h

2D

)]n−N

Observe that 1− 2α(1− β)δ
(

h
2D

)
∈ (0, 1). Then, ||(xn − p)|| → 0

as n → ∞. The sequence {xn} converges to p.
Theorem 2: Let K be a nonempty closed convex subset of a

Banach space X, and let T be a self-mapping of K satisfying

||Tx−Ty|| ≤ λmax{||x−y||, 1
2
(||x−Tx||+||y−Ty||), 1

2
(||x−Ty||+||y−Tx||)}

(7)
for all x, y ∈ X with λ ∈ [0, 1). Then, for x0 ∈ K, the Implicit Noor
iterative sequence {xn} generated by (1), with 0 ≤ anbncn < β < 1,
converges to a fixed point of T .
Proof. Let x ∈ K and p ∈ FT . Then (7) yields

||Tx− p|| ≤ λ||x− p||. (8)

Therefore, given x0 ∈ K,

||xn − p|| = ||an(yn−1 − p) + (1− an)(Txn − p)||
≤ an||yn−1 − p||+ (1− an)||Txn − Tp||
≤ an||bn(zn−1 − p) + (1− bn)(Tyn−1 − p)||+ λ(1− an)||xn − p||

That is,

||xn − p|| ≤ an
1−λ(1−an)

||bn(zn−1 − p) + (1− bn)(Tyn−1 − p)||
≤ anbn

1−λ(1−an)
||cn(xn−1 − p) + (1− cn)(Tzn−1 − p)||+ λan(1−bn)

1−λ(1−an)
||yn−1 − p||

≤ anbncn
1−λ(1−an)

||xn−1 − p||+ λanbn(1−cn)
1−λ(1−an)

||zn−1 − p||+ λan(1−bn)
1−λ(1−an)

||yn−1 − p||

Since ||yn−1 − p|| ≤ ||zn−1 − p|| ≤ ||xn−1 − p||, we have

||xn − p|| ≤ anbncn(1− λ) + λan
1− λ(1− an)

||xn−1 − p||.

Applying the condition 0 ≤ anbncn < β < 1, we have

||xn − p|| ≤ β(1− λ) + λan
1− λ(1− an)

||xn−1 − p||
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Now, put k = β(1−λ)+λan
1−λ(1−an)

, then,

1− k = (1−β)(1−λ)
1−λ(1−an)

≥ (1− β)(1− λ),

so that 0 ≤ k ≤ 1− (1− β)(1− λ) < 1
Thence,

||xn − p|| ≤ k||xn−1 − p||
≤ kn||x0 − p||.

As n → ∞, we have ||xn − p|| → 0, so that the sequence {xn}
converges to p.
Next we prove that the implicit Noor iteration is T -stable. Lemma

2 shall be useful in our proof.
Theorem 3: Let K be a nonempty closed convex subset of a
Banach space X, and let T be a self-mapping of K satisfying (7)
with FT ̸= ϕ. Then, for x0 ∈ K, the Implicit Noor iterative sequence
{xn} generated by (1), with 0 ≤ anbncn < β < 1, is T -stable.
Proof. Suppose {νn}∞n=0 ⊂ K and ϵn = ||νn − [anµn−1 + (1 −
an)Tνn]||, n = 1, 2, 3, ..., where µn−1 = bnωn−1+(1−bn)Tµn−1, ωn−1 =
cnνn−1 + (1− cn)ωn−1. Let ϵn → 0 as n → ∞.
Then, using (8),

||νn − p|| ≤ ||νn − [anµn−1 + (1− an)Tνn]||+ ||anµn−1 + (1− an)Tνn − p||
= ϵn + ||an(µn−1 − p) + (1− an)(Tνn − p)||
≤ ϵn + an||µn−1 − p||+ (1− an)||Tνn − p||
≤ ϵn + an||µn−1 − p||+ (1− an)λ||νn − p||
≤ ϵn

1−λ(1−an)
+ an

1−λ(1−an)
[bn||ωn−1 − p||+ (1− bn)||Tµn−1 − p||]

≤ ϵn
1−λ(1−an)

+ anbn
1−λ(1−an)

[cn||νn−1 − p||+ (1− cn)||Tωn−1 − p||]
+ λan(1−bn)

1−λ(1−an)
||µn−1 − p||

≤ ϵn
1−λ(1−an)

+ anbn
1−λ(1−an)

[cn||νn−1 − p||+ λ(1− cn)||ωn−1 − p||]
+ λan(1−bn)

1−λ(1−an)
||µn−1 − p||

≤ ϵn
1−λ(1−an)

+ anbncn(1−λ)+λan
1−λ(1−an)

||νn−1 − p||,

since it is also true that ||µn−1 − p|| ≤ ||ωn−1 − p|| ≤ ||νn−1 − p||.
As in the proof of Theorem 2, we have k ∈ [0, 1) such that

||νn − p|| ≤ k||νn−1 − p||+ ϵn
1− λ(1− an)

.

Since the sequence {an} is bounded between 0 and 1, and limn→∞ ϵn =
0, by Lemma 2 we have limn→∞ ||νn − p|| = 0.
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Conversely, if limn→∞ νn = p then,

ϵn = ||νn − (anµn−1 + (1− an)Tνn)||
≤ [1 + λ(1− an)]||νn − p||+ [β(1− λ) + λan]||νn−1 − p||
≤ (1 + λ+ β − λβ)||νn−1 − p|| → 0 as n → ∞.

This completes the proof.

4. CONCLUDING REMARKS

The classes of nonexpansive mappings (3) and contractions (7) con-
tain several other prominent classes of mappings in fixed point the-
ory and applications, including the celebrated Banach contractions.
Chugh et al emphasized that the implicit Noor iteration has bet-
ter convergence rate compared with Mann, Ishikawa, Noor, implicit
Mann and implicit Ishikawa iterative procedures.
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