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CONTROL OF SOME NONLINEAR FUZZY SYSTEMS WITH
FUZZY CONTROL INPUTS
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ABSTRACT. The study of control theory has become very popular
with mathematicians, engineers and computer scientists because of
its wide applications in communications and the design of artifi-
cially intelligent machines. More often than not, researchers focus
on building models whose control parameters are crisp when the
real life situations they are modelling are fuzzy. In the recent times,
some have built models which have fuzziness into the control input.
The limitation of this is that, while control may be fuzzy, uncer-
tainty and the fuzziness in the system is not captured. This research
focuses on modelling a system whose information matrix and the
control input(s) are both fuzzy. The model developed was applied
to a real life Chua electrical system and the numerical simulation
confirms that the model is more efficient.

1. NOTATIONS, SYMBOLS AND PRELIMINARIES

Henceforth, P is a positive definite symmetric constant matrix whose
transpose is PT = P> 0 (P> 0 ⇒ λi > 0, where λ ′

i s are the eigenvalues
of P), and λN(P),λX(P) represent the eigenvalue of P with minimum
value and eigenvalue of P with maximum value, respectively. Consider
R as the set of real numbers and ||y|| = (∑n

i=1 y2
i )

1
2 as the Euclidean

norm on y ∈ Rn. Fuzzy less than, approximately and approximately
less or equal to are respectively ≲, ≊ and ⪅.
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2. BACKGROUND TO THE STUDY

Many methods has been deployed to stabilize non-linear system [3].
Some of these methods include switching control system, impulsive
control system, intermittent control system e.t.c [1]. Pulse control sys-
tem has been applied in different fields such as artificial satellites, in-
formation communication technology and chaotic synchronization [18].
Most researchers considered an instantaneous stochastic impulse occur-
ring at some specific points in time. But [3] introduced two time win-
dows which are subdivisions of the period T within which the control
input can occur alternately. In 2019, Feng et al[4] introduced a kind of
bounded control which occurs at any point within the time window of
the period. This method, however still introduces a crisp control which
does not take care of the uncertainties or fuzziness that normally would
occur in real life.

Zadeh [18], in his seminal paper, was able to establish that physical
and electrical systems require fuzziness because the classical method
cannot adequately give a general solution to the uncertainties that may
occur in real life. He was able to construct a membership function such
that each element of a set could have partial membership.

Moreover, [20] was able to come up with a realistic problems, in
which case the control input was fuzzy and the impulsive control sys-
tem of such better models the alternate control system was. In other
words, his research was able to take care of the uncertainties that may
arise with P. One limitation of the ensuing model is that the Linear
Matrix Inequality (LMI) obtained was very lengthy and might require
a more complicated computer skill or complexity. [22] was able to in-
vestigate similar situation but introduced a delay to the system, which
makes a significant improvement to the previous work that was fuzzy
but the challenges encountered at [20] previously still remain.

The goal of this paper is to develop a model that leads to a simpler
LMI and that responds better to uncertainties in a more realistic way.
Indeed, we developed a system where the control inputs and the sys-
tem information matrix are all fuzzy. This system will better represent
realities.

3. MOTIVATION AND MODEL FORMULATION

A nonlinear system of the form{
ẋ(t)= Ax(t)+ f (x(t))+u(t),
x(t0) = x0,

(1)
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is such that x(t) ∈ IRn is the state variable, A ∈ IRn×n is a constant ma-
trix which contains the system information, and the value of mapping
f : IRn −→ IRn at 0 is 0. Besides, D= diag(d1,d2, · · · ,dn)≥ 0 is a diag-
onal matrix such that || f (x)||2 ≤ xTDx.

Consider that

u(t) =
{

Kx(t),nT ≤ t < nT +µ,
0,nT +µ ≤ t < (n+1)T. (2)

Then, u(t) in system (1) is as illustrated in (2), where K is the control
that occurs intermittently. But Feng et al. [3] proposed an alternate
control

u(t) =
{

C1x(t),nT ≤ t < nT +µ,
C2x(t),nT +µ ≤ t < (n+1)T, (3)

where constant matrices C1,C2 ∈ Rn×n are control matrices, the non-
negative T is the period and µ ∈ (0,T ).

Thus, (1) becomes{
ẋ(t)= Ax(t)+ f (x(t))+C1x(t),nT ≤ t < nT +µ,
ẋ(t)= Ax(t)+ f (x(t))+C2x(t),nT +µ ≤ t < (n+1)T. (4)

In case where C2 = 0, (2) is obtained from (3).

However, no such precise values of C1 and C2 exist in real life [4].
Hence, Onasanya et al. [20] introduced fuzzy intensity (readers can also
check [21]) of the controls set as

C1 ≤ Cα1 , C2 ≤ Cα2

where α1C1 =Cα1,α2C2 =Cα2 are fuzzy control matrices, with α1,α2 ∈
[0,1].

In this case, the control is either fuzzy intermittent (when either α1 or
α2 is zero) or fuzzy alternate (when α1,α2 ∈ (0,1]).

Modifying (4), we obtain{
ẋ(t)≊Ax(t)+ f (x(t))+Cα1x(t),nT ≤ t < nT +µn,
ẋ(t)≊Ax(t)+ f (x(t))+Cα2x(t),nT +µn ≤ t < (n+1)T. (5)

Thus, the fuzzified form of the control (3) is

u(t)α =

{
Cα1x(t),nT ≤ t < nT +µ,
Cα2x(t),nT +µ ≤ t < (n+1)T. (6)
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(6) is equivalent to

u(t)α =

{
α1C1x(t),nT ≤ t < nT +µ,
α2C2x(t),nT +µ ≤ t < (n+1)T. (7)

From the foregoing, it can be seen that both the intermittent (2) and
alternate control (3) have been generalized by (6).

However, the system parameter matrix A has always been left crisp,
which is also not realistic. This paper was motivated by the works of
[3] and [20]. It is of interest to build a model with fewer LMI terms in
which, not only the control inputs are fuzzy but also, the system param-
eter matrix A is fuzzy. This system will be much more flexible to adapt
to changing uncertainties in the real life situations it models.

4. PRELIMINARY

Definition 1:[18] A fuzzy subset A of X , with grade of membership of
x ∈ A as µA : X −→ [0,1], is the ordered pair A= {(x,µA(x)) : x ∈ X}.
Lemma 1:[11] Let ∆1,∆2 be n× s real matrices and M an n× n real
matrix such that matrix M = MT > 0, then

∆
T
1 ∆2 +∆

T
2 ∆1 ≤ ∆

T
1 M∆1 +∆

T
2 M−1

∆2. (8)

Remark 1:[3, 4, 20] Note that for M =MT , (αM)T =αMT for a real α .
Let M = ε∆3, where ε > 0 is a scalar. Then, MT = (ε∆3)

T = ε∆T
3 = ε∆3

and M−1 = (ε∆3)
−1 = ε−1∆

−1
3 . Hence, the inequality in (8) becomes

∆
T
1 ∆2 +∆

T
2 ∆1 ≤ ε∆

T
1 ∆3∆1 + ε

−1
∆

T
2 ∆

−1
3 ∆2. (9)

This result implies that

2xT y ≤ εxT x+
1
ε

yT y. (10)

Lemma 2:[1] The LMI [
M(y) W (y)

W (y)T N(y)

]
> 0,

such that M(y) = M(y)T ,N(y) = N(y)T and W (y)T affinely depend on
y, is equivalent to

N(y)> 0, M(y)−W (y)N(y)−1W (y)T > 0.
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5. MAIN RESULTS

5.1 Classical (Non-fuzzy) Control

Theorem 1: Subject to the fact that

||x(t)||<

√
λX(P)
λN(P)

||x0||e[−β (t−T )],

where β = |a|µ−b(T−µ)
2T > 0, then the solution of the system (4) assumes

exponential stability given that there exist constants δ1,δ2,b > 0, a < 0
and a square matrix PT = P> 0 such that

(1) δ1P2 + 3
δ1
(ATA+D+C2

1)+aP≤ 0,
(2) δ2P2 + 3

δ2
(ATA+D+C2

2)−bP≤ 0
(3) |a|µ −b(T −µ)> 0, for any t > 0.

Proof: Consider the function

V = xTPx, (11)

whence
λN(P)||x||2 ≤V ≤ λX(P)||x||2. (12)

For nT ≤ t < nT +µm, using (4), (9), (10) and (11)

V̇ (x(t)) = 2xTPẋ

≤ δ1(Px)T (Px)+
1
δ1

ẋT ẋ

≤ δ1xTP2x+
1
δ1

[Ax+ f (x)+C1]
T [Ax+ f (x)+C1]

≤ xT [δ1P2 +
3
δ1

(ATA+D+C2
1)+aP]x−aV

≤−aV, for some real number a.

(13)

In particular,

V (x(t))≤V (x(nT )−)e−a(t−nT ). (14)

Similarly, for nT +µ ≤ t < (n+1)T ,

V̇ (x(t)) = 2xTPẋ

= xT [δ2P2 +
3
δ2

(ATA+D+C2
2)−bP]x+bV

≤ bV, for some real number b.

(15)
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This implies that

V (x(t))≤V (x(nT +µ)−)eb(t−nT−µ). (16)

From the proof in [3], for any positive t, we can obtain that

1) if nT ≤ t < nT +µ , i.e.,
t −µ

T
< n ≤ t

T
, then

V (x(t)) ≤ V (x0)e−naµ−a(t−nT )+nb(T−µ). (17)

So
V (x((nT +µ)−))≤V (x0)e−(n+1)aµ+nb(T−µ).

2) Also, if nT +µ ≤ t < (n+1)T , i.e.,
t
T

< n+1 ≤ t +T −µ

T
, then

we have that

V (x(t)) ≤ V (x((nT +µ)−))eb(t−nT−µ)

≤ V (x0)e−(n+1)aµ+nb(T−µ)+b(t−nT−µ).
(18)

Case 1 If b ≥ 0: From (17) we can have

V (x(t)) ≤ V (x0)e−naµ+nb(T−µ), (19)

where nT ≤ t < nT + µ . Then, ∃ a < 0 with |a| > b and −n|a|µ +
nb(T −µ)< 0 such that

V (x(t)) ≤ V (x0)e−n|a|µ+nb(T−µ)

≤ V (x0)e−naµ+nb(T−µ) (20)

Hence, from (20),

V (x(t)) ≤ V (x0)e−n|a|µ+nb(T−µ)

= V (x0)e−(|a|µ−b(T−µ))n

≤ V (x0)e−(|a|µ−b(T−µ)) t−µ

T

≤ V (x0)e−(|a|µ−b(T−µ)) t−T
T .

(21)

Also, from (18) we have

V (x(t)) ≤ V (x0)e−(n+1)aµ+nb(T−µ)

≤ V (x0)e−(n+1)aµ+(n+1)b(T−µ),
(22)

where nT +µ ≤ t < (n+1)T and t
T < (n+1).

Then, there exists such a < 0 with |a|> b such that

V (x(t)) ≤ V (x0)e−(n+1)|a|µ+(n+1)b(T−µ)

≤ V (x0)e−(n+1)aµ+(n+1)b(T−µ).
(23)
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Hence, from (23), we have

V (x(t)) ≤ V (x0)e−(n+1)|a|µ+(n+1)b(T−µ)

= V (x0)e−(|a|µ−b(T−µ))(n+1)

≤ V (x0)e−(|a|µ−b(T−µ)) t
T

≤ V (x0)e−(|a|µ−b(T−µ)) t−µ

T

≤ V (x0)e−(|a|µ−b(T−µ)) t−T
T .

(24)

Case 2 If b < 0:
From (17) we can have

V (x(t)) ≤ V (x0)e−naµ+nb(T−µ), (25)

where nT + µ ≤ t < (n+ 1)T and t
T < (n+ 1). Then, ∃ a < 0 with

|a|> b and −n|a|µ +nb(T −µ)< 0 such that

V (x(t)) ≤ V (x0)e−n|a|µ+nb(T−µ)

≤ V (x0)e−naµ+nb(T−µ) (26)

Hence, from (26),

V (x(t)) ≤ V (x0)e−n|a|µ+nb(T−µ)

= V (x0)e−(|a|µ−b(T−µ))n

≰ V (x0)e−(|a|µ−b(T−µ))(n+1)

< V (x0)e−(|a|µ−b(T−µ)) t
T

< V (x0)e−(|a|µ−b(T−µ)) t−µ

T

< V (x0)e−(|a|µ−b(T−µ)) t−T
T .

(27)

Hence, the inequalities (21) and (24) are not obtainable.
Also, from (18) we have

V (x(t)) ≤ V (x0)e−(n+1)aµ+nb(T−µ), (28)

where nT +µ ≤ t < (n+1)T and t
T < (n+1).

Then, such a < 0, with |a|> b, exists such that

V (x(t)) ≤ V (x0)e−(n+1)|a|µ+nb(T−µ)

≤ V (x0)e−(n+1)aµ+nb(T−µ).
(29)

Hence, from (29), we have

V (x(t)) ≤ V (x0)e−(n+1)|a|µ+nb(T−µ)

≰ V (x0)e−(n+1)|a|µ−(n+1)b(T−µ)

= V (x0)e−(|a|µ+b(T−µ))(n+1)

≤ V (x0)e−(|a|µ−b(T−µ)) t
T

< V (x0)e−(|a|µ−b(T−µ)) t−µ

T

< V (x0)e−(|a|µ−b(T−µ)) t−T
T .

(30)
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V (x(t))≤V (x0)e−(|a|µ−b(T−µ)) t−T
T , (31)

and V (x(t)) → 0 as t → ∞ for |a|µ − b(T − µ) > 0, and by (11), (12)
and (31),

||x(t)||<

√
λx(P)
λn(P)

||x0||e[−β (t−T )],

where β = |a|µ−b(T−µ)
2T .

Furthermore, conditions (1) and (2) in Theorem 1 are respectively
equivalent to [ 3

δ1
(ATA+D+C2

1)+aP −P
−P −δ

−1
1 I

]
≤ 0, (32)

and [ 3
δ2
(ATA+D+C2

2)−bP −P
−P −δ

−1
2 I

]
≤ 0, . (33)

5.2 Fuzzy Control

Also, we can modify system (5) to become{
ẋ(t)≊Aα3x(t)+ f (x(t))+Cα1x(t),nT ≤ t < nT +µn,
ẋ(t)≊Aα3x(t)+ f (x(t))+Cα2x(t),nT +µn ≤ t < (n+1)T. (34)

in which case we can obtain a fuzzy symmetric positive definite matrix
P(α1α2α3) which depends on the uncertainties αi ∈ (0,1](i = 1,2,3) in
the system. Hence the following theorem is a generalised form of The-
orem 1.

Theorem 2: Subject to the fact that

||x(t)||<

√
λX(P(α1α2α3))

λN(P(α1α2α3))
||x0||e[−β (t−T )],

where β = |a|µ−b(T−µ)
2T > 0, then the solution of the system (34) as-

sumes exponential stability given that there exist constants δ1,δ2,b > 0,
a < 0 and a square matrix PT

(α1α2α3)
= P(α1α2α3) > 0 such that

(1) δ1P2
(α1α2α3)

+ 3
δ1
(AT

α3
Aα3 +D+C2

α1
)−aP(α1α2α3) ≤ 0,

(2) δ2P2
(α1α2α3)

+ 3
δ2
(AT

α3
Aα3 +D+C2

α2
)−aP(α1α2α3) ≤ 0,

(3) |a|µ −b(T −µ)> 0, for any t > 0.
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Proof: For nT ≤ tT + µ , it can be seen from the proof of Theorem
1 that

V̇α(x(t))⪅−aVα . (35)

Particularly,
Vα(x(t))⪅Vα(x(nT )−)e(−a(t−nT )).

Similarly, for nT +µ ≤ t < (n+1)T ,

V̇α(x(t)) ⪅ bVα . (36)

Furthermore, for any positive t,

Vα(x(t))≲Vα(x0)e−(|a|µ−b(T−µ)) t−T
T . (37)

If β = |a|µ−b(T−µ)
2T > 0, Vα(x(t)) approaches zero as t tends to become

large, and by (11), (12) and (37),

||x(t)||≲

√
λX(P(α1α2α3))

λN(P(α1α2α3))
||x0||e[−β (t−T )].

In addition, condition (1) and (2) in Theorem 2 are respectively equiv-
alent to[

3
δ1
(AT

α3
Aα3 +D+C2

α1
)+aP(α1α2α3) −P(α1α2α3)

−P(α1α2α3) −δ
−1
1 I

]
≤ 0, (38)

and [
3
δ2
(AT

α3
Aα3 +D+C2

α2
)+bP(α1α2α3) −P(α1α2α3)

−P(α1α2α3) −δ
−1
2 I

]
≤ 0. (39)

6. NUMERICAL SIMULATIONS

Remark 2: It is important to note that the control matrices C1 and C2
in [3] will not simultaneously produce the P and the control graph it
reported.

Example 1: Consider the Chua’s system ẋ1 = ϖ(x2 − x1 − i(x1))
ẋ2 = x1 − x2 − x3
ẋ3 =−ηx2

(40)

for which

i(x1) = dx1 +0.5(c−d)(|x1 +1|− |x1 −1|),c < d < 0 are constants.
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Then, (40) can be written as

ẋ = Ax+h(x),
where ϖ =−9.2156, η = 15.9946, c =−1.24905, d =−0.75735 and

A=

−2.2362 9.2156 0
1 −1 1
0 −15.9946 0

 .

For

h(x) =

−0.5(c−d)(|x+1|− |x−1|)
0
0

 ,

and
|| f (x)||2 ≤ ω

2(c−d)2,

it can be taken that D= diag(ω2(c−d)2,0,0).

In what follows in Figure 1 is the chaotic graph of the Chua’s system
40.
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FIGURE 1. Chaotic Classical Chua’s System

When T = 10, µ = 3, −aµ −b(T −µ) > 0 and a = −4.6667×105,
then b = 2.0×105. Choosing

C1 = diag(−3.5,−2.1,−1.2),

C2 = diag(−3.0,−1.0,−1.0),
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and setting these as the constraints for the LMI (32), a feasible solution
P was obtained. The chaotic system was controlled as shown in Figure
2.

P=

0.1273 0.0013 0.0011
0.0013 0.1088 0.0000
0.0011 0.0000 0.0920

×10−03
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FIGURE 2. Controlled Classical Chua’s System

Even for fuzzy matrix A0.9, the system (40) is still chaotic as shown
in Figure 3. Hence, the system parameters can be around what they
usually are.

Also, choosing

Cα1 = C0.8 = diag(−2.8,−1.68,−0.96),

Cα2 = C0.9 = diag(−2.7,−0.9,−0.9),
and

A0.9 =

−1.8113 7.4646 0
0.8100 −0.8100 0.8100

0 −12.9556 0


as the constraints for the LMIs (38), we obtain a feasible solution P(α1,α2,α3)

which depends on the uncertainty levels of Aα3 , Cα1 and Cα2 in the sys-
tem. When

P(0.8,0.9,0.9) =

 0.8041 −0.0029 −0.0001
−0.0029 0.8452 −0.0001
−0.0001 −0.0001 0.8094

×10−03
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FIGURE 3. Chaotic Chua’s System for A0.9

the fuzzy chaotic system illustrated in Figure 3 is controlled as shown
in Figure 4.
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FIGURE 4. Controlled Chua’s System for C0.8, C0.9 and A0.9

It should be noted that, while [20] and [22] have not been able to make
matrix A fuzzy, this paper has achieved that.
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7. COMPARISON OF RESULTS

It is worthy of note that it took about 12 units of time to control in [3]
and 5 units of time in [20] but the time taken in this new method is about
4 unit of time. The LMI terms are reduced. In addition, there is more
flexibility for A,C1 and C2 in the new method of this paper.

8. CONCLUSION

For fuzzy parameters Aα3 of the system and the fuzzy control matrices
Cα1 and Cα2 introduced into the system, we are able to obtain a suitable
positive definite symmetric matrix P(α1,α2,α3) which depends on the un-
certainties of the system. The control matrices obtained tend to control
the system faster with less energy than the control in [3] and [20]. Be-
sides, the fizziness introduced into the system afford the opportunity for
the system to be naturally flexible. This method could also be tried in
some other systems such as biological and financial systems in which
uncertainties do occur.

ACKNOWLEDGEMENTS

We sincerely thank the our Chief Host, Director-General/Chief Execu-
tive of the National Mathematical Centre (NMC), Prof. Promise Mebine,
the Deputy Director, Prof. B. O. Oyelami, the Director/Co-Ordinator of
the Mathematics Programme, Prof. James Ajie, and all other members
of staff of the NMC. In particular, we express our deep appreciation to
the National Mathematical Centre for its commitment to advancing re-
search and education in the field of Mathematics. Our appreciation also
goes to the coordinators of the research groups, Professor Okhuonguae
Daniel and Dr B. O. Onasanya. We also cannot forget our supportive
friends, Prof. Yuming Feng, Cheng Gia, Shisian Zhu, for their contri-
butions to the success of this research.

REFERENCES
[1] S. O. Kim, Thermal stability of a reactive non-Newtonian flow in a sphere, Int. Commu.

Heat and Mass Transfer 60 (1) 70-81, 2009.
[2] L. C. Evans and P. A. Alli, Partial Differential Equations, American Mathematical Society,

Providence, Rhode Island, 1998.
[3] H. A. Okoye, How to define reasonably weighted Sobolev spaces, Ph.D. thesis, University

of Uyo, Uyo, Akwa Ibom State, Nigeria, 2009.
[1] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System

and Control Theory, Philadelphia: SIAM, 1994.



242B. O. ONASANYA, O. I. OLUSOLA, J. FELIX, N. M. ADO AND O. C. AKEREMALE

[2] E. H. Connell, Elements of Abstract and Linear Algebra, Florida: Orange Grove Texts Plus,
2009.

[3] Y. Feng, C. Li, T. Huang and W. Zhao, Alternate control systems, Advances in Differential
Equations, 305 1–9, 2014.

[4] Y. Feng, Z. Wang, X. Liu and W. Zhang, A nonlinear impulsive control system with im-
pulsive time windows and un-fixed coefficient of impulsive intensity, 2019 6th International
Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), Chongqing,
China, 2019, 67-71, doi: 10.1109/ICCSS48103.2019.9115475.

[5] C. Hu, H. Jiang and Z. Teng, Fuzzy impulsive control and synchronization of general chaotic
system, Acta Appl. Math., 109, 463–485, 2010.

[6] J. Huang, C. Li and Q. Han, Quasi-stabilization of chaotic neural networks with parame-
ter mismatch by periodically intermittent control, Proceeding of CSIE 2009, Los Angeles,
California, USA, March 31- April 2 2009.

[7] J. Huang, C. Li and X. He, Stabilization of memristor-based chaotic system by intermittent
control and fuzzy processing, Int. J. Control Autom. Syst. vol., 11 (3) 643–647, 2013.

[8] T. Huang, C. Li and X. Liu, Synchronization of chaotic systems with delay using intermittent
linear state feedback, Chaos. 18 (3) 643–647, 2008.

[9] N. Li and J. Cao, Periodically intermittent control on robust exponential synchronization
for switched interval coupled networks, Neurocomputing, 131 (11) 52–58, 2014.

[10] C. Li, G. Feng and X. Liao, Stabilization of nonlinear systems via intermittent control, IEEE
Trans. Circuits Syst II, Express Briefs, 54 (11) 1019–1023, 2007.

[11] E. N. Sanchez and J. P. Perez, Input-to-state stability (ISS) analysis for dynamic Neural
Networks, IEEE Trans. Circuit Syst I, Fundam. Theory Appl., 46 (11) 1395–1398, 1999.

[12] L. Shilnikov, Chua’s circuit: rigorous results and future problems, Int. J. of Bifur. Chaos.,
4 489–519, 1994.

[13] Z.-P. Wang and H.-N. Wu, Fuzzy impulsive control for uncertain nonlinear systems with
guaranteed cost, Fuzzy Sets and Systems, 302 143–162, 2016.

[14] Y. Wang and H. Yu, Fuzzy synchronization of chaotic system via intamittent control, Chaos,
Soliton & Fractals, 106 154–160, 2018.

[15] T. Yang, Impulsive Control Theory, Berlin: Springer-Verlag, 2001.
[16] T. Yang, Impulsive control, IEEE Trans. Autom. Control, 44 (5) 1081–1083, 1999.
[17] T. Yang and L. O. Chua, Impulsive stabilization for control and synchronization of chaotic

systems: theory and application to secure communication, IEEE Trans. Circuit Syst. I,
Fundam. Theory Appl., 44 (10) 976–988, 1997.

[18] L. A. Zadeh, Fuzzy sets, Information and Control, 8 338–353, 1965.
[19] M. Zochowski, Intermittent Dynamical Control, Physica D., 145 (3–4) 181–190, 2000.
[20] B. O. Onasanya, S. Wen, Y. Feng, W. Zhang and N. Tang, On fuzzy alternate control

Systems, 2021 13th International Conference on Andvanced Computational Intelligence
(ICACI), Wanzhou, China, 2022, pp. 14-16.

[21] B. O. Onasanya, S. Wen, Y. Feng, W. Zhang and J. Xiong, Fuzzy coefficient of impulsive
intensity in a nonlinear impulsive control system, Nueral Processing Letters, 53 (6) 4639–
4657, 2021.

[22] N. Tang, Y. Feng, B. O. Onasanya and W. Zhang, Fuzzy Alternate Control Delayed Systems,
2022 8th International Conference on Information, Conference on Computer and Communi-
cation (ICCC), Tsinghua University, China, 2022, pp. 67-71, doi: 10.1109/ICCC56324.2022.10065957

1DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IBADAN, IBADAN, NIGERIA
E-mail address: babtu2001@yahoo.com
2DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ABUJA, ABUJA, NIGERIA
E-mail addresses: kemo4xrist@gmail.com
3DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ABUJA, ABUJA, NIGERIA
E-mail addresses: juliusfelix1254@gmail.com
4DEPARTMENT OF MATHEMATICS, NASARAWA STATE UNIVERSITY, KEFFI, NIGERIA
E-mail addresses: adodaniel580@gmail.com



CONTROL OF SOME NONLINEAR FUZZY SYSTEMS... 243

5DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY OF LAFIYA, NASARAWA, NIGERIA
E-mail addresses: akerel94@gmail.com


	1. NOTATIONS, SYMBOLS AND PRELIMINARIES
	2. BACKGROUND TO THE STUDY
	3. MOTIVATION AND MODEL FORMULATION
	4.  PRELIMINARY
	5. MAIN RESULTS
	6. NUMERICAL SIMULATIONS
	7. COMPARISON OF RESULTS
	8. CONCLUSION

