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CHEBYSHEV WAVELET COLLOCATION METHOD FOR

THE NUMERICAL SOLUTION OF ORDINARY

DIFFERENTIAL EQUATIONS

S. C. SHIRALASHETTI1 AND A. B. DESHI 2

ABSTRACT. Wavelet analysis is relatively new developed
mathematical tool for many problems. Wavelets permit the ac-
curate representation of a variety of functions and operators.
More over wavelets establish a connection with fast numerical al-
gorithms. In this paper, Chebyshev wavelet collocation method
is developed for the numerical solution of differential equations.
Numerical examples are presented to verify the efficiency and
accuracy of the proposed algorithm.
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1. INTRODUCTION

In the past few years, the study of solution of differential equa-
tions has been fascinated the interest of many mathematicians and
physicists. Many methods including numerical and perturbation
have been used to solve differential equations. From the literature,
it is observed that solving the differential equations representing
physical phenomenon, is the most challenging task and needs huge
efforts to handle the various problems. The preferred approach to
solve them is to articulate the solution as a linear combination of
so-called basis functions. These basis functions can for instance be
plane waves, splines or finite elements. In the recent past, authors
have worked with the finite elements and B-splines.
Wavelets have become a powerful tool for having applications in
almost all the science and engineering field. The focus of wavelets
has recently drawn a great deal of attention from mathematical sci-
entists in various disciplines. Wavelets theory is a relatively new
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and an emerging area in mathematical research. Many families of
wavelets have been proposed in the mathematical literature. In
which, most simple one is the Haar wavelet. Haar wavelet has been
used by many researchers because of its simplicity and better con-
vergence. Some of the work regarding Haar wavelet can be found
in [1-10]. The weaker side of using the Haar basis functions for
approximating smooth functions is that they are lower in accuracy
due to their non-smooth character. To cover this aspect, smooth
Chebyshev wavelet [11, 12] is considered to get more accurate ap-
proximation. Chebyshev polynomials have many applications in
numerical computations, interpolation, series truncation, etc. Since
from many years, the connection between orthogonal polynomials
and wavelet analysis has been explored. Chebyshev wavelet uses
the Chebyshev polynomials as bases. Because of their improved
smoothness and good interpolating properties, accuracy of Cheby-
shev wavelet is better than Haar wavelets.
The main objective of this paper is to develop Chebyshev wavelet
collocation method (CWCM) to solve linear and nonlinear ordinary
differential equations. The method consists of reducing the differ-
ential equation to a set of algebraic equations by first expanding the
Chebyshev wavelet with unknown coefficients. By solving these co-
efficients, we get the required solution. Here we demonstrate the
method by considering the some of the test problems.
The paper is organized as follows; Section 2 is devoted to the Pre-
liminaries on wavelets. Method of solution is discussed in section
3. Numerical examples are presented in section 4. Section 5 deals
with the concluding remarks of the paper.

2. PRELIMINARIES

2.1. Wavelets
Recently, wavelets have been applied extensively for signal process-
ing in communications and physics research, and have proved to be
a wonderful mathematical tool. Wavelets can be used for algebraic
manipulations in the system of equations obtained which leads to
better resulting system. Wavelets constitute a family of functions
constructed from dilation and translation of a single function called
the mother wavelet. When the dilation parameter a and the trans-
lation parameter b vary continuously, we have the following family
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of continuous wavelets;

ψa,b(t) =
1√|a|ψ

(
t− b

a

)
, a, b ∈ R, a �= 0 (1)

The best way to understand wavelets is through a multi-resolution
analysis. Given a function f ∈ L2(R) a multi-resolution analy-
sis (MRA) of L2(R) produces a sequence of subspaces Vj, Vj+1, . . . ,
such that the projections of f onto these spaces give finer and finer
approximations of the function f as j → ∞ .
A multi-resolution analysis of L2(R) is defined as a sequence of
closed subspaces Vj ⊂ L2(R), j ∈ Z with the following properties
(i) . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .
(ii) The spaces Vj satisfy ∪j∈ZVj is dense in L2(R)

and ∩j∈ZVj = 0.
(iii) If f(t) ∈ V0 then f(2jt) ∈ Vj , i. e the spaces Vj are scaled

versions of the central space V0.
(iv) If f(t) ∈ V0 then f(2jt − m) ∈ Vj, i. e all the Vj are

invarient under translation.
(v) There exists φ ∈ V0 such that φ(t − m);m ∈ Z is a Riesz

basis in V0
The space Vj is used to approximate general functions by defining
appropriate projection of these functions onto these spaces. Since
the union of all the Vj is dense in L2(R), so it guarantees that any
function in L2(R) can be approximated arbitrarily close by such
projections. As an example the space {Vj, j ∈ Z} can be defined
like

Vj =Wj ⊕ Vj−1 = Wj−1 ⊕Wj−2 ⊕ Vj−2 = . . . = ⊕J+1
j=1Wj ⊕ V0

For each j the space Wj serves as the orthogonal complement of
Vj in Vj+1. The space Wj include all the functions in Vj+1 that
are orthogonal to all those in Vj under some chosen inner product.
The set of functions which form basis for the space Wj are called
wavelets.
2.2. Chebyshev wavelets and operational matrix of inte-
gration
Here, we presented a family of wavelets, called Chebyshev wavelets,
which are derived from Chebyshev polynomials. For any positive
integer k, the Chebyshev wavelets family is defined on the interval
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[0, 1)[11] as follows;

Cn,m(t) =

⎧⎨
⎩

αm2k/2√
π
Tm(2

k+1t− 2n+ 1), for n−1
2k

≤ t < n
2k

0, otherwise

(2)

where n = 1, 2, . . . , 2k and m = 0, 1, . . . ,M−1, M is the maximum

order of the Chebyshev polynomial and αm =

⎧⎨
⎩

√
2, m = 0

2, otherwise.
Here Tm(t) are the well known Chebyshev polynomials of order m.
Chebyshev polynomials can be calculated recursively with the help
of the following equations;

T0(t) = 1, T1(t) = t, Tm+1(t) = 2tTm(t)− Tm−1(t), m = 1, 2, 3, . . .

Equivalently, for any positive integer k, the Chebyshev wavelets
family is defined as follows;

C = Ci(t) =

⎧⎨
⎩

αm2k/2√
π
Tm(2

k+1t− 2n + 1), for n−1
2k

≤ t < n
2k

0, otherwise

(3)

where i = n + 2km. By varying the values of i with respect to the
collocation points tj =

j−0.5
N

, j = 1, 2, . . . , N , we get the Chebyshev

matrix of order N × N , where N = 2kM and Chebyshev polyno-
mials used in the approximation are of degree less than M .
The integration of Chebyshev wavelet is given as∫ t

0

C(t)dt = PC(t) = P1 (4)

∫ t

0

PC(t)dt = P 2C(t) = P2 (5)

and in general∫ t

0

P n−1C(t)dt = P nC(t) = Pn, n > 0 (6)

where P is the N × N operational matrix for integration and is
given as
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P =

⎛
⎜⎜⎜⎜⎜⎝

D U U . . . U
0 D U . . . U

0 0
. . .

. . . U
...

...
. . . D U

0 0 . . . 0 D

⎞
⎟⎟⎟⎟⎟⎠

where U and D are M ×M matrices given by

U =

√
2

2k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 . . . 0

0 0 0 . . . 0
−1

3
0 0 . . . 0

0 0 0 . . . 0
− 1

15
0 0 . . . 0

...
...

...
. . . 0

− 1
M(M−2)

0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

D =
1

2k

⎛
⎜⎜⎜⎜⎜⎝

1
2

1

2
√

2
0 0 . . . 0 0 0

− 1

4
√

2
0 1

8
0 . . . 0 0 0

− 1

3
√

2
− 1

4
0 1

12
. . . 0 0 0

...
...

...
...

. . .
...

...
...

− 1

2
√

2(M−1)(M−3)
0 0 0 . . . − 1

4(M−3)
0 1

4(M−1)

− 1

2
√

2(M)(M−2)
0 0 0 . . . 0 − 1

4(M−3)
0

⎞
⎟⎟⎟⎟⎟⎠

3. CHEBYSHEV WAVELET COLLOCATION METHOD OF SOLUTION

Consider the second order differential equation of the form

y′′ + ay′ + by = f(t) (7)

with the initial conditions y(0) = α, y′(0) = β
where a & b are dependent or independent variables or constants,
f(t) is a non homogeneous function and α & β are real constants.
Now the method is as follows,
Step 1: Let us assume that

y′′ =
N∑
i=1

aiCi(t) (8)

where ai, i = 1, 2, . . . , N are the Chebyshev wavelet coefficients to
be determined.
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Step 2: Integrating (8) twice with respect to the given condition
we get,

y′ = β +

N∑
i=1

aiP1i(t) (9)

and

y = α + βt+
N∑
i=1

aiP2i(t) (10)

Step 3: Substituting the values of (8)-(10) in (7) then we have,

N∑
i=1

aiCi(t) + a

(
β +

N∑
i=1

aiP1i(t)

)
+ b

(
α+ βt+

N∑
i=1

aiP2i(t)

)

= f(t) (11)

Step 4: Solving (11), we get Chebyshev wavelet coefficients ai, sub-
stituting these ai in (10), we obtain the solution of the problem (7).
The error will be calculated by using E = |ye − ya| and Emax =
max|ye − ya| , where ye & ya are exact and approximate solution
respectively.
The convergence analysis of the Chebyshev wavelet is given through
the following Lemma,
Lemma: Assume that the y(t) ∈ L2(R) with the bounded first
derivative on (0, 1), then the error norm at kth level satisfies the

following inequality ‖ek(t)‖ ≤ A2−(3/2)(N/2), where A =
√

K
7
C is

some real constant.

Proof:The error at kth level may be defined as,

|ek(t)| = |y(t)− yk(t)| = |
∞∑

i=N+1

aiCi(t)|

where

yk(t) =
N=2k+1∑

i=1

aiCi(t)

‖ek(t)‖2 =
∫ ∞

−∞

〈 ∞∑
i=N+1

aiCi(t),

∞∑
l=N+1

alCl(t)

〉
dt

=
∞∑

i=N+1

∞∑
l=N+1

aial

∫ ∞

−∞
Ci(t)Cl(t)dt
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‖ek(t)‖2 ≤
∞∑

i=N+1

|ai|2

But

|ai| ≤ C2−
3i
2 max|y′(t)|

where

C =

∫ 1

0

|tC2(t)|dt, t ∈
(
n− 1

2k
,
n

2k

)
. Then

‖ek(t)‖2 ≤
∞∑

i=N+1

KC22−3i

where |y′(t)| ≤ K, ∀ t ∈ (0, 1), where K is positive constant.

‖ek(t)‖2 ≤ KC2 1

7
2−3(N/2)

‖ek(t)‖ ≤
√
K

7
C2−(3/2)(N/2)

‖ek(t)‖ ≤ A2−(3/2)(N/2), where A =
√

K
7
C is some real constant.

From the above lemma, the error bound is inversely proportional to
the level of the resolution of the Chebyshev wavelets. This ensures
that the convergence of the Chebyshev wavelet approximation by
increasing the level of resolution.

Rate of convergence Rc(N):

The rate of convergence is defined asRc(N) = log(Emax(N/2)/(Emax(N))
log2

.

4. NUMERICAL EXPERIMENTS

In this section, we consider some of the examples to demonstrate
the applicability of the proposed method.

Test problem 1. First consider the equation [13],

ty′′ + y′ + ty = 0 (12)

with the initial conditions y(0) = 1, y′(0) = 0
Let us assume that

y′′ =
N∑
i=1

aiCi(t) (13)
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where ai, i = 1, 2, . . . , N are the Chebyshev wavelet coefficients to
be determined.
Integrating (13) twice with respect to the given condition we get,

y′ = y′(0) +
N∑
i=1

aiP1i(t) (14)

and

y = 1 +

N∑
i=1

aiP2i(t) (15)

Substituting the values of (13)-(15) in (12) then we have,

t

(
N∑
i=1

aiCi(t)

)
+

(
N∑
i=1

aiP1i(t)

)
+ t

(
1 +

N∑
i=1

aiP2i(t)

)
= 0 (16)

By solving (16), we get Chebyshev wavelet coefficients ai=[-4.2773e-
01, 1.4478e-02, 3.5516e-03, -2.3540e-05, -8.5639e-06, 3.3414e-06, -
1.2491e-06, 7.1445e-07, -3.4923e-01, 4.0442e-02, 2.8330e-03, -8.7498e-
05, -3.0734e-06, 6.7520e-08, -3.4026e-11, 2.4824e-10] for N=16. Sub-
stituting these ai in (15), we obtain the solution (CWCM) of the
problem (12) and is presented in comparison with exact solution
which is known as the Bessel function of the zero order [14], y(t) =

J0(t) =
∑N

q=0
(−1)q

(q!)2

(
t
2

)2q
and Haar wavelet collocation method (HWCM)

(as the method explained in [9, 10]) solution in Table 1 for N=8
(M=4 & k=1), Table 2 for N=16 (M=8 & k=1) & Fig. 1 for N=32
(M=8 & k=2). The error analysis for higher values of N is given in
Table 3.
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Table 1. Comparison of numerical solutions with exact solution for
N=8 of Test problem 1.

t RHFM [13] HWCM CWCM Exact
0.0 1.0 1.0 1.0 1.0
0.1 0.99747 0.99750 0.99749 0.99750
0.2 0.99000 0.99003 0.99001 0.99003
0.3 0.97762 0.97763 0.97761 0.97760
0.4 0.96038 0.96040 0.96039 0.96040
0.5 0.93845 0.93847 0.93847 0.93847
0.6 0.91200 0.91200 0.91200 0.91201
0.7 0.88118 0.88120 0.88119 0.88120
0.8 0.84627 0.84629 0.84628 0.84629
0.9 0.80750 0.80752 0.80752 0.80752
1.0 0.76518 0.76519 0.76518 0.76520

Table 2. Comparison of numerical solutions with exact solution for
N=16 of Test problem 1.

t(= 1/32) HWCM CWCM Exact
1 0.99975591 0.99974113 0.99975587
3 0.99780398 0.99778925 0.99780394
5 0.99390583 0.99389116 0.99390579
7 0.98807288 0.98805831 0.98807283
9 0.98032219 0.98030775 0.98032216
11 0.97067646 0.97066217 0.97067643
13 0.95916389 0.95914978 0.95916388
15 0.94581813 0.94580424 0.94581814
17 0.93067816 0.93066773 0.93067820
19 0.91378816 0.91377839 0.91378825
21 0.89519738 0.89518825 0.89519754
23 0.87495996 0.87495148 0.87496020
25 0.85313477 0.85312694 0.85313512
27 0.82978521 0.82977805 0.82978569
29 0.80497901 0.80497254 0.80497966
31 0.77878800 0.77878225 0.77878885
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Fig. 1. Comparison of numerical solutions with exact solution for
N=32 of Test problem 1.

Table 3. Error analysis of Test problem 1.

M k N Emax(HWCM) Emax(CWCM) Rate of convergenceRc(N)
HWCM CWCM

8 1 16 8.5105e-07 1.4741e-05 - -
8 2 32 2.3152e-07 9.4554e-07 1.8781 3.9626
8 3 64 5.9981e-08 5.9477e-08 1.9486 3.9907
8 4 128 1.5243e-08 3.7233e-09 1.9764 3.9977
8 5 256 3.8408e-09 2.3280e-10 1.9887 3.9994
8 6 512 9.6392e-10 1.4551e-11 1.9944 3.9999

Test problem 2. Now consider another linear equation [13],

y′′ + 2ty′ = 0 (17)

with the initial conditions y(0) = 0, y′(0) = 2√
π

Using the method explained in section 3, we get the Chebyshev
wavelet coefficients ai=[-4.2891e-01, -2.7902e-01, 2.8381e-02, 3.7904e-
03, -3.5667e-04, -2.5188e-05, 2.5283e-06, 1.0918e-07, -8.0593e-01,
1.7658e-02, 3.4446e-02, -2.4630e-03, -2.4303e-04, 2.8453e-05, 6.3348e-
07, -1.6602e-07] for N=16. Using these coefficients, we obtained
the CWCM solution and is presented in comparison with HWCM
(as the method explained in [9, 10]) solution and exact solution

y(t) = 2√
π

∫ t

0
e−x2

dx in Table 4 for N=8 (M=4 & k=1), Table 5 for

N=16 (M=8 & k=1) & Fig. 2 for N=32 (M=8 & k=2). The error
analysis for higher values of N is given in Table 6.
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Table 4. Comparison of numerical solutions with exact solution for
N=8 of Test problem 2.

t RHFM [13] HWCM CWCM Exact
0.0 0 0 0 0
0.1 0.11244 0.11217 0.11238 0.11246
0.2 0.22268 0.22214 0.22248 0.22270
0.3 0.32861 0.32783 0.32836 0.32863
0.4 0.42837 0.42739 0.42817 0.42839
0.5 0.52047 0.51935 0.52031 0.52050
0.6 0.60384 0.60260 0.60363 0.60386
0.7 0.67779 0.67648 0.67752 0.67780
0.8 0.74208 0.74074 0.74186 0.74210
0.9 0.79689 0.79554 0.79679 0.79691
1.0 0.84269 0.84132 0.84245 0.84270

Table 5. Comparison of numerical solutions with exact solution for
N=16 of Test problem 2.

t(= 1/32) HWCM CWCM Exact
1 0.03522748 0.03511946 0.03525037
3 0.10540829 0.10532205 0.10547644
5 0.17477305 0.17470729 0.17488488
7 0.24279871 0.24275136 0.24295170
9 0.30899290 0.30896124 0.30918372
11 0.37290452 0.37288533 0.37312919
13 0.43413281 0.43412257 0.43438691
15 0.49233460 0.49232967 0.49261347
17 0.54722945 0.54722058 0.54752844
19 0.59860272 0.59862871 0.59891738
21 0.64630646 0.64636185 0.64663270
23 0.69025821 0.69033803 0.69059246
25 0.73043797 0.73053786 0.73077729
27 0.76688353 0.76699984 0.76722566
29 0.79968453 0.79981432 0.80002789
31 0.82897545 0.82911651 0.82931915
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Table 6. Error analysis of Test problem 2.

M k N Emax(HWCM) Emax(CWCM) Rate of convergenceRc(N)
HWCM CWCM

8 1 16 3.4369e-04 3.0786e-04 - -
8 2 32 8.5965e-05 2.0952e-05 1.9993 3.8771
8 3 64 2.1493e-05 1.3367e-06 1.9999 3.9703
8 4 128 5.3735e-06 8.3873e-08 1.9999 3.9943
8 5 256 1.3434e-06 5.2434e-09 2.0000 3.9996
8 6 512 3.3585e-07 3.2761e-10 2.0000 4.0005

Fig. 2. Comparison of numerical solutions with exact solution for
N=32 of Test problem 2.

Test problem 3. Next consider the non homogeneuos equation
[4],

y′′ + y′ = sint + tcost (18)

with the initial conditions y(0) = 1, y′(0) = 1
As in the previous examples, we get Chebyshev wavelet coefficients
ai=[-6.5204e-01, 1.6522e-01, -2.3848e-03, -1.9848e-03, 2.1932e-05,
3.3819e-06, -2.4529e-08, -2.1695e-09, -3.0793e-01, 6.1689e-02, -2.2022e-
02, -1.1444e-03, 7.9077e-05, 2.1288e-06, -7.6517e-08, -1.4250e-09]
for N=16. Using these coefficients, we obtained the CWCM so-
lution and is presented in comparison with exact solution y(t) =
cost + 5

4
sint + 1

4
(t2sint− tcost) and HWCM (as the method ex-

plained in [9, 10]) solution in Table 7 for N=16 (M=8 & k=1) &
Fig. 3 for N=32 (M=8 & k=2). Absolute error calculated and
compared with [3, 4] and HWCM is shown in Table 8. Excellent
agreement is found in the results so obtained. The error analysis
for higher values of N is given in Table 9.



CHEBYSHEV WAVELET COLLOCATION METHOD . . . 349

Table 7. Comparison of numerical solutions with exact solution for
N=16 of Test problem 3.

t(= 1/32) HWCM CWCM Exact
1 1.03077719 1.03078300 1.03076684
3 1.08952687 1.08952417 1.08949571
5 1.14475187 1.14474034 1.14469969
7 1.19671638 1.19669592 1.19664324
9 1.24568785 1.24565861 1.24559410
11 1.29193225 1.29189460 1.29181852
13 1.33570941 1.33566394 1.33557658
15 1.37726844 1.37721595 1.37711766
17 1.41684338 1.41686402 1.41667605
19 1.45464900 1.45465929 1.45446673
21 1.49087685 1.49087787 1.49068148
23 1.52569157 1.52568458 1.52548513
25 1.55922754 1.55921395 1.55901221
27 1.59158576 1.59156713 1.59136390
29 1.62283125 1.62280924 1.62260531
31 1.65299065 1.65296703 1.65276319

Fig. 3. Comparison of numerical solutions with exact solution for
N=32 of Test problem 3.
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Table 8. Calculated absolute error for Test problem 3.

t 1/32 7/32 13/32 19/32 25/32 31/32
Ref. [3] 0.000010 0.000201 0.001559 0.010914 0.001132 0.010545
Ref. [4] 0.000010 0.00020 0.001443 0.010902 0.001021 0.010442
HWCM 0.000010 0.000073 0.000132 0.000182 0.000215 0.000227
CWCM 0.000016 0.000052 0.000087 0.000192 0.000201 0.000203

Table 9. Error analysis of Test problem 3.

M k N Emax(HWCM) Emax(CWCM) Rate of convergenceRc(N)
HWCM CWCM

8 1 16 2.2746e-04 2.0393e-04 - -
8 2 32 5.6881e-05 1.3882e-05 1.9996 3.8768
8 3 64 1.4223e-05 8.8981e-07 1.9997 3.9636
8 4 128 3.5560e-06 5.5525e-08 1.9999 4.0023
8 5 256 8.8903e-07 3.4592e-09 2.0000 4.0046
8 6 512 2.2225e-07 2.1582e-10 2.0000 4.0025

Test problem 4. Finally, consider the nonlinear non homogeneuos
equation (Van Der Pol equation),

y′′ + (1 + y2)y′ + y = −sint− sintcos2t (19)

with the initial conditions y(0) = 1, y′(0) = 0
Let us assume that

y′′ =
N∑
i=1

aiCi(t) (20)

where ai, i = 1, 2, . . . , N are the Chebyshev wavelet coefficients to
be determined.
Integrating (20) twice with respect to the given condition we get,

y′ = y′(0) +
N∑
i=1

aiP1i(t) (21)

and

y = 1 +
N∑
i=1

aiP2i(t) (22)

Substituting the values of (20)-(22) in (19) then we have,(
N∑
i=1

aiCi(t)

)
+

⎛
⎝1 +

(
1 +

N∑
i=1

aiP2i(t)

)2
⎞
⎠( N∑

i=1

aiP1i(t)

)
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+

(
1 +

N∑
i=1

aiP2i(t)

)
= −sint− sintcos2t (23)

By solving (23), we get the Chebyshev wavelet coefficients ai=[-
8.2001e-01, 6.4380e-02, 1.8632e-02, 6.9939e-04, -2.4365e-04, -2.5380e-
06, 1.0502e-06, 1.0538e-08, -4.5197e-01, 1.8563e-01, 6.2173e-03, -
2.3145e-03, -6.8639e-05, 1.6865e-05, 2.6586e-07, -5.5992e-08] for N=16.
Substituting these ai in (22), we obtain the CWCM solution of the
problem (19) and is presented in comparison with HWCM (as the
method explained in [9, 10]) solution and exact solution y(t) = cost
in Table 10 for N=16 (M=8 & k=1) & Fig. 4 for N=32 (M=8 &
k=2). The error analysis for higher values of N is given in Table 11.

Table 10. Comparison of numerical solutions with exact solution for
N=16 of Test problem 4.

t(= 1/32) HWCM CWCM Exact
1 0.999497 0.999431 0.999511
3 0.995451 0.995525 0.995608
5 0.987193 0.987735 0.987817
7 0.974569 0.976103 0.976169
9 0.957474 0.960697 0.960709
11 0.935849 0.941614 0.941497
13 0.909679 0.918982 0.918609
15 0.878998 0.892961 0.892133
17 0.843882 0.863803 0.862174
19 0.804456 0.831622 0.828848
21 0.760886 0.796706 0.792285
23 0.713387 0.759325 0.752629
25 0.662212 0.719764 0.710033
27 0.607655 0.678324 0.664665
29 0.550044 0.635311 0.616702
31 0.489736 0.591034 0.566330

Table 11. Error analysis of Test problem 4.

M k N Emax(HWCM) Emax(CWCM) Rate of convergenceRc(N)
HWCM CWCM

8 1 16 7.6593e-02 2.4704e-02 - -
8 2 32 7.9091e-02 2.6372e-02 -0.0463 -0.0943
8 3 64 8.0345e-02 2.7253e-02 -0.0227 -0.0474
8 4 128 8.0973e-02 2.7704e-02 -0.0112 -0.0237
8 5 256 8.1287e-02 2.7931e-02 -0.0056 -0.0118
8 6 512 8.1444e-02 2.8045e-02 -0.0028 -0.0059
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Fig. 4. Comparison of numerical solutions with exact solution for
N=32 of Test problem 4.

5. CONCLUSIONS

In this paper, we proposed a simple and straightforward numerical
method based on Chebyshev wavelet for solving differential equa-
tions. By observing the error analysis, the performance of Cheby-
shev wavelet is superior to the other (Haar wavelet solution) which
is justified through the illustrative examples. The main advantage
of this method is its simplicity and small computation costs with
faster convergence. Hence, the present method is a very reliable,
simple, fast, flexible, and convenient method.
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NOMENCLATURE

E Absolute error
Emax Maximum of absolute error
Rc(N) Rate of convergence
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