
Journal of the Vol. 36, Issue 2, pp. 355-367, 2017

Nigerian Mathematical Society c©Nigerian Mathematical Society

A FOURTH-ORDER NONLINEAR CONJUGATE

GRADIENT METHOD AND TRUST REGIONS

IN UNCONSTRAINED OPTIMIZATION

E. NWAEZE1 AND L. O. OMENYI

ABSTRACT. This paper presents a fourth-order nonlinear con-
jugate gradient method and trust regions in unconstrained op-
timization. The method has been designed to solve uncon-
strained optimization problems with high accuracy. It is based
on a nonlinear polynomial approximation of the objective func-
tion. The idea is to approximate the minimizing function byTay-
lor series expansion using fourth-order terms. The algorithms
are presented by steps and some properties of the gradients are
proved, using classical results. Also, the convergence analysis
has been proved under classical and known assumptions. The
main algorithm generates adequate trust region radius itera-
tively and has a global convergence property. Numerical results
are presented and compared to some existing results by Dolan
Moore’s performance profile. The analysis of results confirms
that this method is accurate, since the computed results are
very close to the exact solutions.
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1. INTRODUCTION

The unconstrained minimization of a smooth function (f) in many
variables remains an important problem in optimization theory.
Various fields of science and engineering seek to solve this class
of problems, in real life applications. The general approach is to
find the zeros of the function gradient since the local minima occur
at stationary points. In order to achieve fast global convergence,
we develop and present a fourth-order nonlinear conjugate gradi-
ent method with trust region technique for solving unconstrained
minimization problems. Consider the unconstrained optimization
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problem

min
x∈�n

f(x) (1)

wheref is a differentiable function. The process of minimizing a
non-quadratic objective function through the conjugate gradients
is called a nonlinear conjugate gradient method [1, 2]. Various
types of conjugate gradient method have been used to solve un-
constrained minimization problems [3]. Usually, a function F is
constructed to approximate f. Many scholars have published their
findings on this method [4, 5, 6]. If the objective function is not
quadratic or the inexact line searches are used, some of the conju-
gate gradient methods fail to converge globally [7, 8]. In order to
solve problem (1) effectively, we designed an algorithm that reduces
the high storage and computation cost of some calculated matrices
[9]. Some conventional algorithms on nonlinear conjugate gradient
method are available [10, 11, 12, 13, 14]. Every conjugate gradient
method is an iterative scheme of the form

xk+1 = xk + αkdk, k = 0, 1, 2, ... (2)

wherex0 is an initial point, αkis a step size and the search direction
is

dk = −gk if k = 0; dk = −gk + βk−1dk−1 if k ≥ 1 (3)

gk = ∇f(xk)andβkspecifies the choice of conjugate gradient method
[15]. It can take any of the following forms.

βFR = ||gk||2
||gk−1||2 [4], βPRP =

gTk (gk−gk−1)

||gk−1||2 [16], βHS =
gTk (gk−gk−1)

dTk−1(gk−gk−1)
[17,

18], βCD = − ||gk||2
dTk−1gk−1

[14], βDY = ||gk||2
dTk−1(gk−gk−1)

[12] and βLS =

−gTk (gk−gk−1)

dTk−1gk−1
[19].

Many of these conjugate gradient methods use a line search tech-
nique or trust region method [20]. Others use line search and trust
region approach [21]. Trust region methods seek to solve prob-
lem (1) within a region or disc where it is hoped that the solu-
tion resides. Yuan and Stoer [22] studied the conjugate gradient
method on a subspace and obtained a new variant of the method.
Motivated by their study, we construct a fourth-order nonlinear
conjugate gradient method (FONCGM) and trust regions in un-
constrained optimization. Section two contains the fourth-order
nonlinear conjugate gradient method and trust region technique.
Sections three and four discuss the convergence analysis and some
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numerical experiments, respectively. Section five presents a discus-
sion on the numerical results while section six ends this work with
a conclusion.

2. 4thORDER NONLINEAR CONJUGATE GRADIENT METHOD

The fourth-order nonlinear conjugate gradient method is based on the
Taylor series representation off by another function F.This representa-
tion is expected to be a better approximation off than the conventional
approach. The following is the representation of Fat the point xk.

F (x) = f(xk) + df(xk) +
1

2 !
d2f(xk) +

1

3 !
d3f(xk) +

1

4 !
d4f(xk), (4)

whered nf(xk) =
∑N

i1

∑N
i2
...

∑N
in
hi1hi2 ...hin

∂nf(xk)
∂xi1

∂xi2
...∂xiN

,x, xk, hij ∈
�N ; hij = x− xk, 2 ≤ n ≤ 4.

Using a vector h = x− xkand Ai = ∇if(xk), in equation (1), we have

F (x) = f(xk)+ hTA1 +
1

2 !
hTA2h +

1

3 !
hT

(
hTA3h

)
+

1

4 !
hT

(
hTA4h

)
h

(5)

= f(xk) + hTA1 +
1

2 !
hT

[
A2 +

{
2

3 !
A3 +

2

4 !
A4h

}
h

]
h.

Using tensor notations presented in [23, 24], we have[
2

3 !
A3 +

2

4 !
A4h

]
h =

⎡
⎣ 4∑
j=3

2

j !
Aj

j−3∏
p=1

hZp

⎤
⎦h (6)

=

⎡
⎣ 4∑
j=3

2

j !

j−3∑
m=0

(−1)m
(

j − 3
m

)
g (xk + {(j − 3) −m}h)

⎤
⎦
T

h

=
1

12
[g(x) + 3g(xk)]

T h

whereg(x) denotes the gradient of f, at point x,
∏2

p=1 h
Zp = hTh,(

n
m

)
= n !

(n−m) ! m ! ,Zp = T
1
2
[1 + (−1)p ] and T denotes transpose. It

follows that

F (x) = f(xk) + hTA1 +
1

2
hTH(x)h (7)

whereH(x) = A2 + 1
12 [g(x) + 3g(xk)]

T h.
Similarly,

∇F (x) = A1 + A2h
T +

1

2
hTA3h +

1

3 !
hT (hTA4h) (8)

∇F (xk+1) = A1 +
1

6
[g(3xk+1 − 2xk) + 3g(xk+1) − 4g(xk)] (9)

∇F (xk) = A1 = g(xk). (10)
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∇F (xk+1) = ∇F (xk) +
1

6
[g(3xk+1 − 2xk) + 3g(xk+1) − 4g(xk)]

=
1

6
[g(3xk+1 − 2xk) + 3g(xk+1) + 2g(xk)] . (11)

Using Dai and Yuan [12] βkandGk+1 = ∇F (xk+1), we derive a new
algorithm in which the directions of search, D0, D1, ..., Dk are H
conjugate. With a given x0, αkis computed such that

F (xk + αkDk) < F (xk), (12)

Dk = −Gk if k = 0; Dk = −Gk + βk−1Kk−1 if k ≥ 1

andxk+1 = xk + αkDk, k = 0, 1, ...
The algorithm is summarized below.
2.1 Algorithm 1: Fourth-order nonlinear conjugate gradient
method (FONCGM)
Step 1: Select s0, x0 ∈ �N , N ≥ 2 and ε > 0(a small number:
0.000001). Set

D0 = −G0 = −∇F (x0),H(x0), s0 = 0(zero vector) and k = 0.
Step 2: If ||Gk|| ≤ ε, stop. Take skas an estimate of the
exact solution of problem (1). Otherwise go to step 3.
Step 3: Compute αk such that F (sk + αkDk) < F (sk)[25]
Step 4: Compute

sk+1 = sk + αkDk, Gk+1 =
1

6
[g(3sk+1 − 2sk) + 3g(sk+1) + 2g(sk)] .

βk =
||Gk+1||2

DT
k (Gk+1−Gk)

, DT
k (Gk+1 −Gk) �= 0. If DT

k (Gk+1 −Gk) = 0, βk =

0.Dk+1 = −Gk + βkDk.
Step 5: Set k = k + 1. Go to step 2.
Employing Tang and Yuan [20] results αkmay be computed to satisfy
Wolfe’s conditions. Next, we construct a sub problem for a known trust
region.

2.2 Construction of a sub problem for anew trust region
The basic trust region method is characterized by a constrained mini-
mization problem and
inexact line search procedure[18]. An approximate model function (Q)
is usually defined within a trust region where it is hoped that the solu-
tion of the unconstrained minimization problem resides. At the current
iteration xk, the basic trust region problem is

min
s∈�N

Qk(s) = f(xk) + gTk s+
1

2
sTBks (13)

s. t ||s|| ≤ Δk,

where gk = g(xk),Bk = ∇2f(xk) and Δkis the prescribed trust region ra-
dius. The constraint condition restricts us to points on or inside the disc
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whose radius is Δk.Inside the disc, we solve the unconstrained problem

min
s∈�N

Qk(s) = f(xk) + gTk s+
1

2
sTBks. (14)

On the boundary of the disc we solve the inequality problem

min
s∈�N

Qk(s) = f(xk) + gTk s+
1

2
sTBks (15)

s. t ||s|| ≤ Δk,

Using H(s):
H(s) = A2 + 1

12 [g(s) + 3g(xk)] (s− xk)
T in place of Bk,A2 = ∇2f(xk)

and A1 = ∇f(xk) equation (13) becomes:

min
s∈�N

Qk(s) = f(xk) +GT
k s+

1

2
sTH(s)s (16)

s. t ||s|| ≤ Δk,

Various methods have been used to solve the trust region subproblem
(13) approximately for an iterateskthrough inexact line search proce-
dures. Some of these methods fail to find the correct value ofsk. Thus,
we restate the basic trust region algorithm as follows.
2.3 Algorithm 2: The trust region method
Initialization: Set k = 0, Δ0 > 0. Choose x0, nv ∈ (0, 1) , ns ∈
(0, nv) , y2 ≥ 1 and y1 ∈ (0, 1) .
nv = 0.0001, ns = 0.25, y1 = 0.5, and y2 = 2are typical values.
Until convergence, repeat the following.

(1) Construct a trust region subproblem: equation (16).
(2) Use algorithm (1) to solve the trust region subproblem approx-

imately for sk. Define

ρk =
f(xk)− f(xk + sk)

Qk(0) −Qk(sk)
.

(3) If ρk > nv (“a successful step”), set xk+1 = xk + sk,
(4) Else, (“ an unsuccessful step”), set xk+1 = xk.
(5) If ρk < ns, set Δk+1 = y1Δk,
(6) Else, set Δk+1 = y2Δk.
(7) Increase k by 1.

3. CONVERGENCE ANALYSIS

We assume that the objective function satisfies the following conditions
and theorem [3].

Assumptions [3]:
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i. f is bounded below in �Nand is four times continuously differentiable
in a neighborhood Z of the level set

L =
{
x ∈ �N : f(x) ≤ f(x0)

}
.

ii. The gradient, g(x), is Lipschitz continuous in Z,namely, there exists
a constant Lc > 0such that

||∇f(x)−∇f(y)|| ≤ Lc||x− y||, x, y ∈ Z.

iii. The extended hessian matrix H(x) is positive definite.

Lemma:

(i). Suppose that x0 is a starting point for which the above assumptions
are satisfied. Consider any method of the form (2), where Dk, a vector,
is the descent direction and αksatisfies the standard Wolfe conditions
[18], then ∑

k≥0

(
GT

kDk

)2
||Dk||2 < ∞

(ii). Suppose that x0 is a starting point for which the above assumptions
are satisfied. Let
{xk, k = 1, 2, ...} be generated by algorithm (1). Then, the algorithm
either terminates at a stationary point or converges in the sense that

lim
k→∞

inf ||G(xk)|| = 0

Theorem: Suppose that f in (1) is continuously differentiable and
bounded below and the norm of H(x) is bounded, the iteration {xk}
generated by the algorithm (2) satisfies xk → x∗ as k → ∞ and the
matrix H(x) of f is positive definite. Let εk be the relative error in
algorithm (1). If εk → 0, then {xk} converges linearly:

lim
k→∞

||xk+1 − x ∗ ||
||xk − x ∗ || = 0.

Proof (Lemma (i)):

Dai and Yuan proved this lemma:
∑

k≥0
(gTk dk)

2

||dk||2 < ∞. A Similar proof

is presented for algorithm (1), since the search directions dkand Dk have
similar definitions. This is obvious on using the assumptions of lemma
(i), and kin place of k + 1in equation (11):(

GT
k Dk

)2

||Dk||2 =

1
36

{
[g(3xk − 2xk−1) + 3g(xk) + 2g(xk−1)]

T Dk

}2

||Dk||2
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=

1
36

{
[g(3xk − 2xk−1) + 3g(xk) + 2g(xk−1)]

T dk

}2

||dk||2 , dk = Dk

=
1
36

{(
g(3xk − 2xk−1)

Tdk
)
+ 3

(
g(xk)

Tdk
)}2

||dk||2 , g(xk−1)
Tdk = 0

≤
1
36

{(
g(3xk − 2xk−1)

T dk
)2

+ 9
(
g(xk)

T dk
)2

+ 6
(
g(3xk − 2xk−1)

T dk
)2

+ 6
(
g(xk)

T dk
)2}

||dk||2

=
1

36

{(
g(3xk − 2xk−1)

T dk
)2

||dk||2
+ 9

(
g(xk)

T dk
)2

||dk||2
+ 6

(
g(3xk − 2xk−1)

T dk
)2

||dk||2
+ 6

(
g(xk)

T dk
)2

||dk||2

}

∑
k≥0

(
GT

kDk

)2
||Dk||2 ≤ 1

36

⎧⎨
⎩
∑
k≥0

(
g(3xk − 2xk−1)

Tdk
)2

||dk||2 + 9
∑
k≥0

(
g(xk)

Tdk
)2

||dk||2 +

6
∑
k≥0

(
g(3xk − 2xk−1)

T dk
)2

||dk||2 + 6
∑
k≥0

(
g(xk)

Tdk
)2

||dk||2

⎫⎬
⎭ < ∞

Thus,∑
k≥0

(GT
k Dk)

2

||Dk||2 < ∞as required.

Proof (Lemma (ii)):
Dai and Yuan also proved this lemma for his algorithm algorithm. He
proved that lim

k→∞
inf ||g(xk)|| = 0. It follows that lim

k→∞
inf ||g(3xk −

2xk−1)|| = 0and lim
k→∞

inf ||g(xk−1)|| = 0 at points of convergence of his

algorithm. Using the assumptions of lemma (ii), equation (10) (Gk =
G(xk) = ∇F (xk) = g(xk)) and Dai’s proof, it follows that lim

k→∞
inf ||Gk|| =

lim
k→∞

||gk|| = 0. Alternatively, using k in place of k + 1 in equation (11)

gives

lim
k→∞

inf ||Gk|| = lim
k→∞

inf
1

6
|| {g(3xk − 2xk−1) + 3g(xk) + 2g(xk−1)} ||

≤ lim
k→∞

inf
1

6
||g(3xk − 2xk−1)||+ lim

k→∞
inf

1

6
||3g(xk)||

+ lim
k→∞

inf
1

6
||2g(xk−1)|| = 0.

lim
k→∞

inf ||Gk|| ≤ 0 and ||Gk|| ≥ 0 implies that lim
k→∞

inf ||Gk|| = 0.

Proof of theorem: The proof is available in many literatures. Not-
ing that Gk = G(xk) = ∇F (xk) = g(xk), the proof is same since the
assumptions on algorithm (1) meet the requirements of this theorem.
Using M ≥ m ≥ 0, εk = xk − x∗ and the results from NMC [26] we
have

||xk+1 − x ∗ ||2 = (xk+1 − x∗)T (xk+1 − x∗) = (xk+1 − x∗)T (xk + αkdk − x∗)
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≤ M

n

(
1−R

1 +R

)2(k+1)

||xk −x∗ ||2 ≤ M

n

(
1−R

1 +R

)2(k+1)

||x0−x∗ ||2; R =
m

M
.

||xk+1 − x ∗ || ≤
√

M
n

(
1−R
1+R

)(k+1)

||xk − x ∗ ||. lim
k→∞

||xk+1−x∗||
||xk−x∗|| = 0, since

lim
k→∞

√
M
n

(
1−R
1+R

)(k+1)

= 0.

Similar proof is available in Steihaug [27] or Yuan [13].

4. NUMERICAL EXPERIMENTS

FONCGM solves equation (1) where f(x) is given in the following test problems
from [15].
Problem 1. A simple function:

f(x) = x3
1 − 3x1 + x2

2 − 2x2; [x0] = [2 3].

Problem 2. Penalty function I (problem (1) in [15])f(x) =
∑N

i=1 10
−5 (xi − 1)

2
+[(∑N

i=1 x
2
i

)
− 1

4

]2
, [x0]i = i.

Problem 3. Variable dimensioned function (problem (2) in [15])

f(x) =
N∑
i=1

(xi − 1)2 +

[
N∑
i=1

i(xi − 1)

]2

+

[
N∑
i=1

i(xi − 1)

]4

, [x0]i = 1− i

N
.

Problem 4. Trigonometric function (problem (3) in [15])

f(x) =

N∑
i=1

⎡
⎣N −

N∑
j=1

cos(xj) + i(1− cos(xi))− sin(xi)

⎤
⎦
2

, [x0]i = 1/N.

Problem 5. A penalty function (problem (4) in [15])

f(x) = 1 +

N∑
i=1

xi + 103

(
1−

N∑
i=1

1/xi

)2

+ 103

(
1−

N∑
i=1

i/xi

)2

, [x0]i = 1.

Problem 6. Extended Rosenbrock function (problem (5) in [15])

f(x) =

N∑
i=1

[
100

(
x2i − x2

2i−1

)2

+ (1− x2i−1)
2

]
, [x0]2i−1 = −1.2, [x0]2i = 1.

Problem 7. Linear function-rank 1 (problem (8) in [15] with new initial values)

f(x) =

m∑
i=1

⎡
⎣i

⎛
⎝ N∑

j=1

jxj

⎞
⎠− 1

⎤
⎦
2

, m ≥ N, [x0]i =
1

i
.

We set Δ0 = ||xk|| + 0.0001, nv = 0.0001, ns = 0.25, y1 = 0.5, and y2 = 2.
A MATLAB program computed the following results, based on algorithm

(2). The stopping criterion is ||g(xk)|| < 0.000001.

Table 1. Solution of problem 1.
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Iteration f(xk) ||g(xk)|| Δk

1 5 9.848857856263518 3.605651275463989
2 -2.796762459631599 1.688000016092676 7.211302550927979
3 -2.949533386040339 0.799178789121903 14.422605101855957
4 -2.999032137269256 0.108400497711067 28.845210203711915
5 -2.999990393938984 0.010742123370355 57.690420407423829
6 -2.9999999973450 0.0001784861088 115.3808408148477
7 -3.0000000000000 0.0000003430505 230.7616816296953

Fig. 1(Problem (1)) : Circles with trust region radius, Δk.

Table 2: Solution of problem 6
(: N = 10, 000; x = (0.999994, 0.999989, ..., 0.999995)).

Iteration 1 2 3 4 5
f 121000 973.451 972.995 609.422 401.676
‖g‖ 2 2.71137E8 741.191 958.236 337920 446339

Iteration 6 7 8 9 10
f 245.384 115.535 18.2926 4.00011 3.89042
‖g‖ 2 381378 220755 32324.7 246.181 4.43934

Iteration 11 12 13 14 15
f 3.88515 3.58551 0.00424653 0.00109777 0.00109581
‖g‖ 2 7.59182 631.711 6.53287 0.00286512 0.00119897

Iteration 16 17 18 19
f 0.000729101 1.12854E-6 3.7389E-7 3.73282E-7
‖g‖ 2 0.505587 0.00156775 8.23191E-7 4.4211E-7
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In Table (3), below, we compare the numerical results of problems (2 to 7),
Using FONCGM (algorithm (2)) with other results: Zhen-Jun and Guo (ZGM)
[27], FR, PRP, CD, DY, HS and LS. Table 3. Comparison of numerical results.

Problem N FONCGM ZGM PRP HS FR CD DY LS
2 10000 69 59 58 67 68 66 67 68

5000 28 29 37 40 37 37 37 37
3 10000 30 33 fail Fail 57 69 60 Fail

5000 24 28 fail Fail 37 37 37 Fail
4 1000 20 31 41 70 44 45 43 44

500 17 24 29 41 30 36 30 31
5 10000 30 32 51 Fail 67 48 59 Fail

5000 20 23 40 37 41 39 40 Fail
6 10000 68 50 fail 66 38 62 41 70

5000 18 21 fail 27 32 30 26 30
7 10000 30 28 69 Fail 38 37 36 Fail

5000 17 18 26 27 23 29 28 27

Performance profiles have been introduced by Dolan and More’ [28]. The main
idea is to show, graphically, the relative performance of various solvers on
a given set of problems. That is, the curves are used to compare the effi-
ciency of a set S of solvers on a set P of test problems. tp,s denotes the
performance of a solver s (based on the number of iterations, function eval-
uations, gradient evaluations or time of computation) on the problem p. rp,s
denotes the relative performance of a solver s on a problem p and rp,s =

tp,s
min{tp,s: s∈S} .Our assumption is that rp,s ≤ w, w ∈ �,for all solvers s on

the problems p. rp,s = w if solver s cannot solve problem p. The perfor-
mance profile of the solver s is the functionys : [1, w] → [0, 1] such that

ys(t) =
n({p∈P :rp,s≤t})

n(P ) where n(.) denotes the number of elements of a set. The

performance profiles of the methods discussed in this paper are shown below.



FOURTH-ORDER NONLINEAR CONJUGATE GRADIENT . . . 365

Fig. 2: Performance profiles on the number of iterations.

5. DISCUSSION ON NUMERICAL RESULTS

The solution of problem (1) explained the major steps of the new method. Ta-
ble (3) contains the numerical results obtained for the new method vis-à-vis
some existing methods. These results indicate that the new method compares
favorably well with the other methods. The execution time depends on various
methods used for evaluating the step lengths and the speed of computer’s pro-
cessing unit. We observed that the new method is relatively faster in some of
the iterations recorded for the tested problems. In confirmation, Tables (2, 3)
and Figure (1) show that the new method is fast and less costly as the number
of function evaluations per computed problem is relatively low. Finally, we saw
that the results are very close to the exact solutions.

6. CONCLUSION

In this paper, a new fourth-order nonlinear conjugate gradient method and
trust regions in unconstrained optimization are presented. Some of the basic
properties of the method have been explored and exploited. Numerical re-
sults show that the method is highly efficient and reliable. Further research
is underway to develop an algorithm for constrained optimization, using the
fourth-order model.
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