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CRITICALITY AND THERMAL EXPLOSION IN THE

FLOW OF REACTIVE VISCOUS THIRD GRADE

FLUID FLOW IN A CYLINDRICAL PIPE

WITH SURFACE COOLING

HAMMED OGUNSEYE AND S. S. OKOYA1

ABSTRACT. This work investigates the steady state momen-
tum and heat transfer in a fully developed flow of viscous third-
grade fluid through a cylindrical pipe, such that the general spa-
tial dependence of viscosity is accounted for. Expression for the
velocity profile is constructed analytically and displayed graphi-
cally. Comparison with previous documented result through re-
duction in emergent parameter demonstrates the accuracy of the
solution approach. The energy equation with generalized Arrhe-
nius kinetics is solved for thermal explosion using the Modified
Adomian Decomposition semi analytical method. Comparisons
are given for sets of results obtained via the Modified Adomian
Decomposition Methods against those from other well known
methods in the literature. The present study explores the effects
of the Biot number Bi ∈ {0,∞} on critical values of emerging
parameters (Frank-Kamenetskii parameter, δcr and the dimen-
sionless maximum temperature, θmax cr). The present paramet-
ric examination of the effects of Biot number, inhomogeneity of
the fluid, heat generating parameter, activation energy param-
eter (β) and the exponent of the generalized Arrhenius kinetic
on the δcr and θmax cr provides quantitative properties for the
sensitized reaction kinetics.
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1. INTRODUCTION

It is imperative to note that the study of the motion of reactive non-
Newtonian fluids with space dependent viscosity has applications
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in physics and engineering. A few examples of thermal explosion in
liquid or gas flows with symmetric boundary conditions are in the
impact testing of liquid explosives as recorded in [25], [27], [20] and
the references contained there-in. Analytical and numerical studies
have been undertaken which contribute to better understanding of
the qualitative properties of steady reactive fluid flows. These prop-
erties include thermal explosion, extinction and transition amongst
others.
The studies in the preceding paragraph have considered symmet-

ric thermal boundary conditions. For asymmetric thermal bound-
ary conditions obeying the cooling law, the following studies are
relevant: Classical models for stationary thermal explosion with
surface cooling have been investigated by Thomas [21], Bodding-
ton et al [8] and [9], Britz et al. [10], Okeremeta [19] among oth-
ers. In a recent study, Makinde [16] investigated an incompressible
viscous reactive third-grade fluid flow through a cylindrical pipe
under Arrhenius kinetics with constant viscosity using a special
type of the Hermite-Padé approximation technique. Furthermore,
Chinyoka and Makinde [11] computationally investigated a reactive
third grade fluid flow in a cylindrical pipe with convective cooling
on its surface while Reynolds’ model viscosity and generalized Ar-
rhenius kinetics are considered. More recently, Lebelo and Makinde
[13] numerically addressed the effects of various thermo-physical pa-
rameters on the temperature for a combustible reactive material in
a cylindrical pipe with convective and radiative heat loses at the
surface. They have considered the constant viscosity model in their
analysis.
Various forms of the fluid viscosity model varying as a function of

the spatial coordinates have been investigated in literature. Anand
and Rajagopal [6] studied non-Newtonian fluids with shear depen-
dent viscosity assuming a quadratic dependence on the spatial co-
ordinate based on some experimental observation to understand the
flow properties. Massoudi and Vaidya [17] found solutions for sug-
gested linear space dependence and exponentially decaying space
function in unsteady flows of inhomogeneous incompressible lami-
nar fluids. Further studies by Massoudi and Vaidya [18] examined
Stokes-type flow of an inhomogeneous incompressible laminar vis-
cous fluid, where the viscosity depends spatially according to three
models and obtained exact solutions in terms of special functions,
the results were compared with the cases of constant viscosity as
well as the slow flow regimes. Recently, analytical and numerical
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results were presented by Fiordilino et al. [12] for non-homogenous
viscous fluid whose viscosity depends on spatial coordinate and tem-
perature in a poiseuille device. Quite recently, Zhou et al. [28]
investigated the influence of a shear-rate-dependent viscosity based
on Krieger’s viscosity - concentration correlation for unsteady one-
dimensional flow of non-Newtonian fluid in an annulus.
The spatial variation of the effective viscosity of non-Newtonian

fluids is not only important in the theoretical analysis of flow of such
fluids, its physical implication is also shown in the experimentally
motivated model for self expanding polyurethane foams [14].
Relatively few attempts have been made on the study of heat

and mass transfer in pipe flow of non-Newtonian fluid with space
dependent viscosity. In [14], Hayat et al. obtained analytical so-
lutions for the velocity and temperature profiles via the homotopy
analysis method (HAM) for the model governing the flow of the
viscous fluid in a pipe for constant viscosity and variable space de-
pendent viscosity with symmetric surface temperature. A further
study on the flow of reactive viscous fluids with spatially distributed
viscosity was presented by Ajadi [5] for the Arrhenius kinetics. He
employed the HAM to obtain the velocity profile for the flow of a
third-grade fluid in the pipe which was substituted into the viscous
dissipation term in the nonlinear heat equation to obtain the tem-
perature distribution in the domain. The resulting equation with
symmetric boundary conditions was then tackled with variational
technique to study the critical Frank-Kamenetskii parameter and
the critical maximum temperature.
HAM is one of the analytical techniques employed in the litera-

ture to tackle fluid flow and heat transfer problems. Another widely
used method is the Adomian Decomposition Method (ADM). Most
of the semi - analytical solutions to the Newtonian equations in-
volving Adomian Decomposition Method are given in a textbook
[23] and in the review articles [24], [4] and Biyadi [7]. For some
complex and non-linear fluids, the technique of Adomian Decom-
position Method has been used for reactive fluid flows successfully
by Adesanya et al. [2] and the references therein. The situation of
employing the Modified Adomian Decomposition Method (MADM)
are contained in [1], [3] and the references contained therein. So,
a new discussion is required for a similar problem in the preced-
ing paragraph with asymmetric thermal boundary condition using
MADM.
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Consequently, this study extends the work of Zaturska [27], Hayat
et al. [14] and Ajadi [5] to accommodate the generalized Arrhenius
kinetics as well as the convective cooling and seek the transitional
values for a third grade fluid flow with spatially varying viscosity
through a pipe of circular cross section. The governing equations for
the conservation of momentum and energy are non-dimensionalized.
Using the MADM as a solution technique, the flow velocity in the
pipe is obtained analytically and with graphical illustrations, we
present the results. Subsequently, the velocity gradient is substi-
tuted into the energy equation which is also resolved analytically
via the MADM. We therefore investigate the phenomenon of crit-
icality for convective cooling i.e. all Biot numbers, Bi, from the
Semenov limit (Bi → 0) to the Frank - Kamenetskii limit (Bi → ∞)
as well as the influence of the viscous heating parameter and ex-
ponent of the pre-exponential factor. Graphical representations of
computed values for both criticality and transition (disappearance
of criticality) of the Frank-Kamenetskii parameter and the maxi-
mum temperature are given. To validate the model, the computed
results are compared with earlier results in the literature and the
two sets show good agreement.

2. PROBLEM SET UP

We investigate the fully developed laminar flow of an incompress-
ible non-Newtonian fluid with spatially varying viscosity through a
circular cylinder of radius a and adopt the cylindrical coordinate
system (r̄, 0, z̄), where the z̄-axis lies along the centerline of the pipe
and r̄ is transverse to it. Furthermore, we assume one-dimensional
laminar flow with constant thermal conductivity, constant pressure
gradient along the pipe but space dependent viscosity. Figure 1
illustrates the geometry of the problem. In particular, we shall in-
vestigate the Poiseuile flow in a pipe of circular cross section and
following Hayat et al. [14], Ajadi [5], Okoya [20] the momentum
and heat balance equations can be written as:
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Fig. 1. Geometry of the physical model and coordinate system.
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subject to the following boundary conditions

dw̄

dr̄
=

dT̄

dr̄
= 0 at r̄ = 0; w̄ = K

dT̄

dr̄
+H(T̄ − T̄0) = 0 at r̄ = a. (5)

where Q is the heat of reaction, C0 is the initial concentration of
the reactant species, H is the surface heat transfer coefficient, K is
the thermal conductivity, A is the rate constant, � is the Planck’s
number, k is the Boltzmann’s constant, ν is the vibration frequency
and m is a numerical exponent, E is the activation energy, R is the
universal gas constant and T̄0 is a suitable reference temperature
and dp̄/dz̄ is the emerging pressure gradient in the axial directions.
In deriving equation (3) we have neglected the body force but the
viscosity μ is defined as

μ̄(r̄) = (r̄/a)qμ̄0 (6)

where μ̄0 is a reference viscosity. Typically, q ∈ {0, 1} (e.g. see, [6],
[14], [5], [18] and the references contained therein). Most impor-
tantly, we proposed for very general circumstance where q is any
natural number. The number q has a physical interpretation and
can be thought of as a measure of the inhomogeneity of the fluid.
Here equation (3) is to be integrated for a given ∂p̄

∂z̄
and once the

flow field is determined, the actual pressure field can be obtained
from equations (1) and (3).
Denoting
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a
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we have from equations (3) - (5) the dimensionless governing equa-
tions

dμ

dr

dw

dr
+

μ

r

(
dw

dr
+ r

d2w

dr2

)
+

Λ

r

(
dw

dr

)2(
dw

dr
+ 3r

d2w

dr2

)
= C, (7)

d2θ

dr2
+

1

r

dθ

dr
+ Γ

(
dw

dr

)2
(
μ+ Λ

(
dw

dr

)2
)

+ δ(1 + βθ)m exp

(
θ

1 + βθ

)
= 0, (8)

while
μ(r) = rq, (9)

and the boundary conditions

dw

dr
=

dθ

dr
= 0 at r = 0; w =

dθ

dr
+ Biθ = 0 at r = 1, (10)
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Here, β is the activation energy, Γ is the viscous heating parameter
which is related to Prandtl and Eckert numbers, Λ may also depend
on temperature, they are taken as constants for simplicity in this
study, Bi is the Biot number and δ is the usual Frank-Kamenetskii
parameter. Due to symmetry, θmax is the maximum value of θ at
the centre of the cylinder.
It is worthy of note that the viscosity in equation (9) is monotonic

and positive as depicted in Figure 2. Concerning the viscosity at the
origin, we observe that as one approaches the origin the effects of the
non-Newtonian part of the fluid’s constitutive relation dominates
over the Newtonian part. One may also attribute this behaviour to
the possibility of spatial variation of the specie concentration which
was not solved for in this case. However, the main idea of this study
is to investigate the capability of the proposed methodology.
It is worth noting that in the classical sense, Semenov assumed

a uniform temperature in the material (K → ∞) and arbitrary
surface cooling resulting in the limit case of Bi → 0 while Frank-
Kamenetskii assumed an infinite heat transfer coefficient at the
surface with the limit case of Bi → ∞

3. LIMITING CASES

1. When Bi → ∞ and q = 1 equations (7) - (10) corresponds to the
case of a viscosity function with linear dependence on r, which has
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Fig. 2. The plots show the three viscosity models studied in this
article as a function of r.

been considered in the flow of third grade fluid for the heat transfer
process in a non-reactive system [14] (δ = 0) and for reactive system
[5] (m = 0).
2. The case of Bi → ∞ and q = β = Λ = 0 corresponds to the
classical constant viscosity case has been studied in [27] (reactive
Newtonian fluid flows and heat transfer),
3. The scenarios for stationary thermal explosion contained in [8],
[9], [21] are similar to ours.

4. REMARKS ON SOLUTION OF THE VELOCITY

In view of the choice of equation (9), the nonlinear velocity and
temperature equations are decoupled and offers the possibility to
attempt to investigate whether or not there exists velocity profile
in closed - form. Two points about equation (7) are that it is non-
autonomous and independent of w and can hence be integrated
once to yield

Λ

(
dw

dr

)3

+ μ(r)
dw

dr
− Cr

2
= 0, w(1) = 0 (11)

In the special case of Λ = 0 (Newtonian fluid) the nonlinear equa-
tion (11) reduces to linear form and the can be integrated once for
any viscosity and the viscous dissipation term can be eliminated
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from equation (8) to obtain
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+
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dr
= 0 at r = 0;
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dr
+ Biθ = 0 at r = 1. (13)

The third term on the left hand side of equation (12) reveals that
the singularity at the origin is removable when q ≤ 2. If q > 2, the
system blows up.
When Λ �= 0, equation (11) entails a unique positive real root,

dw/dr, which is the Cardan cubic equation emanating from equa-
tion (11) with the constraint that the discriminant D(r; q, C, ) > 0.
It is evident that the end result of dw/dr is without confronting
cube roots of complex number but it displays the solution in a
somewhat doubtful matter. But it is much easier to develop an
iterative-based alternative to Cardan method. Hence, the need to
employ the Modified Adomian Decomposition method.

5. MAD SOLUTION FOR VELOCITY DISTRIBUTION

We are interested in the solutions of equations (7) - (10) for posi-
tive natural number q using MADM and in particular we first seek
solution analytically for the velocity. In this case, equation (7) can
now be rewritten in a non symmetric differential operator form as
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. To overcome the singularity at r =
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Applying L−1
1 to equation (14), it then follows;
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1

2(q + 2)
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1

1

r
N1(w)− 3ΛL−1

1 N2(w) (16)

where w(0) = a0. N1(w) = (w′)3 and N2(w) = (w′)2 (w′′) are the
nonlinear terms in equation (16).



CRITICALITY AND THERMAL EXPLOSION IN THE FLOW . . . 407

In Adomian decomposition method, w(r), N1(w) and N2(w) are
decomposed as series

w(r) =
∞∑
k=0

wk(r), N1(w) =
∞∑
k=0

Ak, N2(w) =
∞∑
k=0

Bk. (17)

The nonlinear terms N1(w) and N2(w) are decomposed into Ado-
mian polynomials, the few terms of the Adomian polynomials are
given by

A0 = (w′
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2
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1) (w
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Now substituting equation (17) into equation (16) yields
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wk(r) = a0 +
1

6
Cr2 − ΛL−1

1

1

r

∞∑
k=0

Ak − 3ΛL−1
1

∞∑
k=0

Bk. (19)

The recursive relation for the approximate analytical solution for
the velocity is given as

w0(r) = a0 +
1

6
Cr2

wk+1(r) = −ΛL−1
1 [Ak + 3Bk] , k ≥ 1 (20)

The recursive relations (20) with the prescribed values of the pa-
rameters involved are coded in Maple to generate the first 6 terms
of wk as the series solution. The undetermined values of a0 and
b0 are calculated from the boundary condition at r = 1, by tak-
ing the diagonal Padé approximants [N/N ] that approximate w(r)
using w(r) = 0 for selected N . The five term solution for the veloc-
ity at padé [15/15] is obtained via a symbolic computing platform
(MAPLE) as

w(r) =
C(r2 − 1)

2(2 + q)
− ΛC3(r4 − 1)

(2 + q)3(4 + q)
+

4Λ2C5(r6 − 1)

(2 + q)5(4 + q)(6 + q)

− 472Λ3C7(r8 − 1)

(2 + q)7(4 + q)3(6 + q)(8 + q)(10 + q)
+

27968Λ4C9(r10 − 1)

(2 + q)9(4 + q)2(6 + q)(8 + q)
. (21)

It is evident from equation (21) that when q = 0 and 1, we
recover the first four terms solution obtain in [5] with the non-zero
auxiliary parameter as unity. Hence solution (21) is an extension
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of an earlier work and since the effects of C and Λ on the velocity
profiles were reported earlier, we will study only the effect of q.
To accomplish this we plot in Figure 3 the expression for velocity
distribution w(r), given by equation (21) for various values of q.
The graphical presentation reveals that when the inhomogeneity

Fig. 3. Velocity profile for various values of q when Λ = 1, C = −1.

parameter increases then the maximum velocity magnitude profile
decreases.

6. THERMAL EXPLOSION CALCULATION AND VALIDATION

Now, we turn our attention to the heat equation (8). The veloc-
ity gradient is obtained from equation (21) and is substituted into
equation (8). We then generate the corresponding symmetric dif-
ferential operator form of the resulting equation. As is usual in
the theory of thermal explosion, the condition for criticality is that
dδ/dθmax = 0. By insertion of the criticality criterion into the re-
sulting equation a new set of equations are derived. For the sake
of brevity, no relevant equations will be presented here. But it suf-
fices to say that the numerical experiments were conducted using
MAPLE in accordance with the MADM discussed in the preceding
paragraph. In Figure 4, the diagrams of θmax against δ for reac-
tive Newtonian and third grade fluid flows are illustrated, where
β = 0.05, m = −2, Γ = q = 1 and Bi = 10,000. In practice, it is
necessary to know the relative error in the comparison of MADM
with numerical calculation. This is achieved for special cases in
Tables 2 - 4.
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Fig. 4. Visualization of the bifurcation diagram from MADM when
β = 0.05, m = −2, Γ = q = 1 and Bi = 10,000.

TABLE 2: Comparison of exact solutions of δcr and θmax cr ob-
tained in Thomas (1958) with results obtained by HAM when C =
−2, β = Λ = Γ = 0.

δcr θmax cr

Bi Exact [21] Present Error Exact [21] Present Error

0.01 0.007339 0.007329 0.14 % 1.002494 0.977403 2.50 %
0.1 0.071760 0.071640 0.17 % 1.024370 0.991425 3.22 %
1 0.575799 0.573715 0.36 % 1.187803 1.149668 3.21 %
1 x 101 1.653837 1.653536 0.02 % 1.377654 1.356159 1.56 %
1 x 102 1.960593 1.966384 -0.29 % 1.386196 1.375987 0.74 %
1 x 103 1.996006 2.001641 -0.28 % 1.386293 1.358498 2.00 %
1 x 104 1.999600 2.005244 -0.28 % 1.386294 1.358414 2.01 %
1 x 105 1.999960 2.005244 -0.26 % 1.386294 1.348879 2.70 %
1 x 106 1.999996 2.005244 -0.26 % 1.386294 1.348053 2.76 %
1 x 107 2.000000 2.005244 -0.26 % 1.386294 1.347971 2.76 %

TABLE 3: Series solutions of δcr and θmax cr obtained in Zaturska
(1981) compared with results obtained by MADM when C = −2,
β = Λ = q = 0 and Bi → ∞.

δcr θmax

Γ [27] Present Error [27] Present Error
0 1 1 0.0 % 1 1 0.0 %
0.05 0.997161 0.997140 2.11x10−3% 1.002183 1.006533 -1.29 %
0.1 0.994330 0.994279 5.13x10−3% 1.004366 1.015117 -1.07 %
0.15 0.991506 0.991196 3.13x10−2% 1.006549 1.003818 0.27 %
0.2 0.988689 0.988461 2.41x10−2% 1.008732 1.019899 -1.11 %
0.25 0.985880 0.985385 5.02x10−2% 1.010915 1.007326 0.35 %
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TABLE 4: Numerical solutions of δcr and θmax cr obtained in Bod-
dington et al. (1984) compared with results obtained by MADM
when C = −2, Γ = Λ = m = 0 and β = 0.05.

δcr θmax cr

Bi Num. [9] Present Error Num. [9] Present Error

1 0.6075005 0.6055478 0.32 % 1.3261112 1.2514834 5.63 %
1 x 101 1.7512941 1.7518748 -0.033 % 1.5502305 1.5179320 2.08 %
1 x 102 2.0768671 2.0823412 -0.27 % 1.5607587 1.5388387 1.40 %
1 x 103 2.1143881 2.1197928 -0.26 % 1.5608794 1.5287421 2.06 %
1 x 104 2.1219191 2.1236584 -0.082 % 1.5608511 1.5303134 1.96 %

TABLE 5: Confirmation of MADM with numerical computation
for δcr and θmax cr when β = 0.01, Γ = 10, Λ = 0, C = m = −2
and q = 1.

δcr θmax cr

Bi Num. Present Error Num. Present Error
1 0.401817 0.396128 1.42 % 1.693054 1.587689 6.22 %
1 x 101 1.515574 1.508845 0.44 % 1.577054 1.531033 2.92 %
1 x 102 1.842715 1.841194 0.08 % 1.555438 1.526034 1.89 %
1 x 103 1.880695 1.879318 0.07 % 1.552530 1.520972 2.03 %
1 x 104 1.884552 1.882993 0.08 % 1.552231 1.513727 2.48 %
1 x 105 1.884939 1.883605 0.07 % 1.552200 1.522114 1.94 %
1 x 106 1.884977 1.883605 0.07 % 1.552197 1.520462 2.04 %
1 x 107 1.884981 1.883605 0.07 % 1.552198 1.520303 2.05 %

In order to illustrate that the MADM for equations (8) - (10)
for the case of q = 1 is consistent with the non-special cases, we
adopted the modified shooting method in [20] to obtain numerical
solutions of equation (7) and (8) subject to the boundary conditions
(10). Table 5 accordingly depicted the error margin between the
numerical solution and the semi-analytical method of MADM. The
relative error for small Bi is larger than those for large values of Bi.
Simple computations show that Bi → ∞ can be truncated since

extensive computation see Table 2: So that Bi ∈ [0,∞) can be
carefully replaced by a finite domain Bi ∈ [0, 1 x 105). With this
choice, numerical calculation shows that the system converges to
a fixed value for Bi from 1 x 105 and above. In fact, the relative
error in the table reveals that the error values are bounded above
in the form δcr ≤ 0.36% and θmax cr ≤ 3.22%. Tables 3 and 4
give a comparison of MADM with series and numerical solutions,
respectively, for values of Γ ≤ 0.25 and Bi ≥ 1. In the tables, the
values for the MADM were calculated from equations (9) and (10).
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It is seen that the results from MADM give very good agreement
with the series and numerical solutions with both having a relative
error of less than 1.3 % and 5.7 %, respectively.
The apparent large relative error in the computed values for crit-

icality when Bi ≤ 1 is due to the difficulties with computing in the
neighbourhood of small values of Bi. Consequently, in that region,
our MADM solutions are better than the early computed ones.
Now, we turn our attention to discussing the critical results for

the possible range of values for Bi as depicted in the literature for
the sensitized reaction. We note that as Bi → ∞ and β → 0 we
have the classical values of δcr = 2, 2.01 and θmax cr = 1.3863, 1.47
for viscous heating parameter Γ = 0 [21] and 1 [5], respectively.
The response of δcr and θmax cr to variation of q and Γ from Figure
2 (a) are displayed in Table 6 for Γ ∈ {0, 1}. It is evident that that
the special case of q = 0, δcr and θmax cr are lower bounds of q �= 0.

TABLE 6: Thermal critical values as functions of q and Γ as Bi
→ ∞ and β → 0 when m = −2.

Γ = 0 Γ = 1
q δcr θmax cr δcr θmax cr

0 2 1.3863 2.01 1.47
1 2.3863 1.7687 2.2101 1.8601

7. RESULTS

The default parameter values in subsequent analysis are as follows:
m = −2, Γ = 1, q = 1 C = −2, Λ = 1 and β = 0.05. Therefore,
in any graph where any of these parameter values is not explicitly
mentioned, it will be understood that such parameter takes default
values.
With the reaction defined by the sensitized reaction kinetics with

m = -2, we investigate the dependence of critical parameters on the
viscous heating parameter, Γ, Biot number, Bi, numerical exponent
of the pre-exponential factor, m, pressure gradient, C and the ac-
tivation energy parameter, β.
The results displayed in Figures 5 - 12, show comparison of the

MADM approximate critical values (thermal explosion) for the re-
active Newtonian and third grade fluid flows for sensitized reaction
for various parameter values.
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Figure 5 shows the critical maximum temperature against the
activation energy parameter for different Biot number Bi. It should
be noted that Bi decreases the critical maximum temperature in the
case of reactive Newtonian model while for the reactive third grade
fluid flow, there is a reverse effect. We also observed from the plots
that the non-Newtonian parameter reduces the critical maximum
temperature. The complimentary Frank-Kamenetskii parameter in
Figure 6 increases with increasing parameter β for both reactive
Newtonian and non-Newtonian fluid flows. This is consistent with
the fact that the activation energy yields an augment in the critical
value of δ (see [22, Page 152]). An increase in the non-Newtonian
parameter increases the value of δcr. This implies that the critical
value of δ is enhanced with increasing the work due to deformation.
Figures 7 and 8 show the duo of critical maximum temperature

and critical Frank-Kamenetskii parameter against pressure gradient
for different values of Biot number. We observed that the reaction
parameter θmax cr (or δcr in Figure 8) is a convex (or concave) func-
tion of hydrodynamic parameter C and the minimum (maximum)
occur at the C = 0 for both scenarios. It is depicted in Figure 6
that δcr has an opposite behavior as compared to the θmax cr.
In Figures 9 and 10, θmax cr and δcr are plotted as functions of

the viscous dissipation parameter Γ for different values of Biot num-
ber Bi. As can be seen, θmax cr increases (decreases) as Γ (or Bi)
increases for the two cases. This is physically true since viscous dis-
sipation is an additional heat source within the pipe while the Biot
number is a cooling effect at the walls of the vessel. Furthermore,
θmax cr for the Newtonian case serves as upper bound for all Γ. It
is again observed that δcr rise with increasing values of Bi for all Γ.
As can be seen, Figures 11 and 12 illustrate the combustion pro-

cess at the transitional values of β, δ and θmax. The δcr value rises
with increasing values of Bi while the reverse is the case for θmax cr

in the flow of a reactive Newtonian as well as that of a third grade
fluid. Figure 9 (or Figure 10) shows that θmax cr (or δcr) increases
with increase in the activation energy parameter. The transition
values in the case of reactive Newtonian fluid flow are greater when
compared with the flow of reactive third grade fluid for the two reac-
tive parameters due to it’s non-Newtonian nature. It is remarkable
how well the trends fit even with the classical case where there is
no fluid flow (see Boddington et al. [9]).
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Fig. 5. Plot of θmax cr over β for different values of Bi.

Fig. 6. Graphs of δcr versus β for different values of Bi.

Fig. 7. Variations of θcr over C for different values of Bi.
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Fig. 8. δcr variations over C for different values of Bi.

Fig. 9. θmax cr distributions over Γ for different values of Bi.

Fig. 10. δcr distributions with Γ for different values of Bi.
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Fig. 11. Distributions of θmax cr against log10 Bi at five different β
demonstrating the procedure to determine transition.

Fig. 12. Distributions of δcr against log10 Bi at five different β
demonstrating the procedure to determine transition.

8. CONCLUSIONS

In this work, we utilized the Modified Adomian Decomposition
Method to develop analytical solutions to the equations govern-
ing the flow of a reactive viscous third grade fluid with spatially
varying viscosity through a cylindrical pipe with surface cooling.
The resulting solutions were derived via the diagonal Padé approx-
imation techniques. We further verified the validity and efficiency
of the method for various values of q, Γ and Bi. With graphical
illustrations the axial flow velocity, critical and transitional values



416 HAMMED OGUNSEYE AND S. S. OKOYA

of the maximum temperature as well as the Frank-kamenetskii pa-
rameters as functions of emerging variables and parameters were
presented. The main findings can be summarizes as follows:
1. The MADM supplies reliable result in the form of analytical

approximation converging with relative error less than 5%.
2. The present analysis reveals that the velocity profile diminishes,
due to the influence of the inhomogeneity parameter.
3. Also this paper investigated the problem of thermal explosion
of reactive viscous fluid with spatial dependent viscosity and irre-
versible exothermic reactions. The proposed MADM for thermal
explosion, is shown to be very accurate for all values of Bi except
when Bi = 1 and it is in excellent agreement with numerical results.
4. Furthermore, it has been shown that spatial dependence of the
fluid viscosity strongly influences the associated state parameters
in the flow of Newtonian and third grade explosive liquid. This
conclusion further justifies the necessity to account for the spatial
dependence of viscosity in some theoretical consideration of reactive
fluid flow.
5. The flow of a reactive non-Newtonian fluid flow with spatial vis-
cosity behaviour for all parameter variations followed the trends on
well established Newtonian reactive fluid flow, but the dependence
on non-Newtonian parameter was even more pronounced.
6. It was also shown in general that the spatial variation of the fluid
viscosity does not distort the nature of the transition diagram for
both the Newtonian and third-grade fluid flows. Thus, confirming
the usefulness of this model in describing the state behaviour.
7. The present study can also be reduced to Newtonian fluid by
taking non-Newtonian parameter Λ = 0, as limiting case.
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