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ON THE RESPONSE OF A SIMPLY SUPPORTED

NON-UNIFORM RAYLEIGH BEAM TO TRAVELLING

DISTRIBUTED LOADS

S. T. ONI AND E. AYANKOP-ANDI1

ABSTRACT. The problem of a simply supported non-uniform
Rayleigh beam under travelling distributed loads is investigated
in this paper. Both gravity and inertia effects of the distributed
loads are taken into consideration. For the solution of the
problem, the Galerkin’s Weighted Residual (GWR) method and
Struble’s asymptotic technique are employed. From the analy-
sis, it is seen that the displacement response of both moving dis-
tributed force and moving distributed mass problems decrease
with increase in the values of foundation moduli. Furthermore,
higher values of rotatory inertia correction factor reduce the
transverse deflection of the beam structure when both force and
inertia effects are taken into consideration. Analytical and Nu-
merical solutions show that for the same natural frequency, the
critical speed for the system consisting of a non-uniform sim-
ply supported Rayleigh beam traversed by a moving distributed
force at constant velocity is higher than that of the moving dis-
tributed mass problem. Thus, resonance is reached earlier in the
moving distributed mass system than in the moving distributed
force system.

Keywords and phrases: Travelling distributed loads, non-uniform
Rayleigh beam, moving distributed force, moving distributed mass
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1. INTRODUCTION

The transverse motion of beam structures with elastic foundation
supports which are under the influence of moving loads are widely
used in many areas, such as mechanical and aerospace Engineering.
Long historical research work in this area can be seen in literature of
Engineering mechanics [1,2]. When structural members are under
the passage of moving loads, the interaction between the passing
load and the structure makes the dynamic response analysis very
complex [3]. By virtue of the relevance in the analysis and design
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of railway trucks, bridges, elevated roadways, decking slabs etc,
this area of research has continued to motivate both experimen-
tal and numerical studies. However, in most of the studies [4-11]
the scope has been limited to structural members having uniform
cross-section whether the inertia of the moving load is considered
or not, in addition, the moving loads have been idealized as moving
concentrated loads which acts at a certain point on the structure
and along a single line in space as they move [12]. In reality, the
cross-sections of structural members such as bridges, girders, hull of
ships, concrete slabs etc are of variable cross-sections and in prac-
tice, it is known that loads are actually distributed over a small
segment or over the entire length of the structural member as they
traverse the structure.
Until recently, the literature on one-dimensional structures such
as non-uniform beams subjected to dynamic loads is very meagre.
The problem of flexural vibrations of non-uniform beams under
moving loads was first tackled by Kolousek[13]. The problem was
solved using normal-mode analysis. Zheng et al[14] studied the vi-
bration of multispan non-uniform beams under moving loads. The
authors solved the problem using modified beam vibration func-
tions. Oni[15] investigated the problem of a non-uniform beam car-
rying moving concentrated masses under tensile stress and resting
on elastic foundation. For the close form solution of the problem,
he used the versatile technique of Galerkin and modified asymp-
totic method of Struble. All the pertinent components of inertia
term were considered and results showed that resonance is reached
earlier in the moving mass problem than in the moving force prob-
lem. He concluded that as the ratio of the mass of the load to the
mass of the beam increases, the response amplitude of the beam in-
creases. Oni and Awodola[16] proposed an elegant method based on
the generalized Galerkin’s method and Struble’s asymptotic tech-
nique to assess the vibration under a moving concentrated load
of a non-uniform Rayleigh beam on variable elastic foundation for
some illustrative examples of classical boundary conditions. They
concluded that higher values of rotatory inertia correction factor
are required for a more noticeable effect in the case of clamped-
clamped end conditions than those of simply supported end condi-
tions for both moving concentrated force and moving concentrated
mass problems. Ajibola[17] investigated the transverse displace-
ment of clamped-clamped non-uniform Rayleigh beams under mov-
ing concentrated masses resting on a constant elastic foundation.
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It is pointed out, that, at this juncture, all the above authors have
modelled their moving loads as concentrated loads which do not
well represent the distribution of the load on the elastic structures
they traverse. Studies that considered moving loads as distributed
loads can be found in [18-23], though only structural members with
uniform cross-section were investigated. Authors who have car-
ried out studies on elastic systems with variable cross-section in-
clude Huang and Li [24] who presented a new approach for free
vibration of axially functionally graded beams with non-uniform
cross-section. Their governing equation with varying coefficients
was transformed using Fredholm integral equation and natural fre-
quencies were determined by requiring that the resulting Fredholm
integral equation has a non-trivial solution. Shahba et al [25] who
investigated the effects of taper ratio, elastic constraint, attached
mass and the material non-homogeneity on the natural frequencies
and critical buckling load using finite element approach. Shahba
and Rajasekaram [26] studied free vibration and stability of tapered
Euler-Bernoulli beams made of axially functionally graded materi-
als. Huang et al [27] introduced an auxiliary function to change
the coupled governing equations with variable coefficients for the
deflection and rotation to a single governing equation. Power series
for unknown functions were used to transform the single equation
to a system of linear algebraic equations to obtain a characteristic
equation in natural frequencies for different boundary conditions.
Banerjee and Jackson [28] studied the free vibration of a rotating
tapered Rayleigh beam employing a dynamic stiffness method of
solution. Tang et al [29] obtained exact frequency equations of free
vibration of exponentially non-uniform functionally graded Timo-
shenko beams. It was observed that the gradient index has a strong
influence on the natural frequencies. Shafiei et al [30] investigated
the impact of shear deformation on natural frequencies of a rotat-
ing non-uniform functionally graded (FG) Timoshenko and Euler-
Bernoulli microbeam considering different values of the material
length scale parameter, angular velocity and rate of cross-section
change. These works however, are on free vibration of graded
beams. This paper therefore presents the problem of the flexu-
ral motions of a non-uniform Rayleigh beam resting on an elastic
foundation and under the actions of travelling distributed loads.
Both gravity and inertia effects of the distributed loads are taken
into consideration. The influence of the pertinent structural pa-
rameters in the dynamical system shall be investigated. Conditions
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under which resonance is reached is obtained for both the moving
distributed force problem and moving distributed mass problem.

2. MATHEMATICAL FORMULATION

Consider the flexural motion of a non-prismatic Rayleigh beam rest-
ing on an elastic foundation and carrying a mass M . The mass M
is assumed to touch the beam at time t = 0 and travel across it
with constant velocity c. The governing equation of motion with
damping neglected is given by the fourth order partial differential
equation [1].

∂2

∂x2

[
EI(x)

∂2V

∂x2

]
+ μ (x)

∂2V (x, t)

∂t2

−μ(x)R0
∂4V (x, t)

∂x2∂t2
+KV (x, t) = P (x, t) (1)

where x is the spatial coordinate, t is the time, V (x, t) is the trans-
verse displacement, E is Young’s modulus, R0 is the measure of
rotatory inertia correction factor, K is the elastic foundation con-
stant and the beam properties such as the moment of inertia I(x)
and mass per unit length μ(x) of the beam are considered as varying
along the length L of the beam.For this problem, the distributed
load moving on the beam under consideration has mass commen-
surable with the mass of the beam. Consequently, the load inertia
is not negligible but significantly affects the behaviour of the dy-
namical system. Thus, the distributed load P (x, t) takes the form,

P (x, t) = Pf(x, t)

[
1− 1

g

d2V (x, t)

dt2

]
(2)

where Pf(x, t) is the continuous moving force acting on the beam
model given by

Pf (x, t) =MgH(x− ct) (3)

where c is the velocity of the distributed mass, the time t is assumed
to be limited to that interval of time within which the mass μ is on
the beam, that is

0 ≤ ct ≤ L (4)

g is the acceleration due to gravity, and H(x− ct) is the Heaviside
function defined as

H(x− ct) =

{
0, x < ct
1, x > ct

(5)
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d2

dt2
is the convective acceleration operator defined as

d2

dt2
=

∂2

∂t2
+ 2c

∂2

∂x∂t
+ c2

∂2

∂x2
(6)

The Rayleigh beam under consideration is simply supported. Thus
the deflection and the bending moments vanish identically, that is

V (0, t) = 0 = V (L, t) (7)

∂2

∂x2
V (0, t) = 0 =

∂2

∂x2
V (0, t) (8)

For simplicity the initial conditions are

V (x, 0) = Vt(x− 0) = 0 (9)

Adopting examples in [31], I(x) and μ(x) are taken to be of the
form

I(x) = I0

(
1 + Sin

πx

L

)3

(10)

μ(x) = μ0

(
1 + Sin

πx

L

)
(11)

3. OPERATIONAL SIMPLIFICATION

In order to solve equation (1), equations (2), (3), (6), (10) and
(11) are substituted into equation (1), after some simplifications
and rearrangements (1) becomes

EI0

[
∂4V (x, t)

∂x4

{
5

2
+

15

4
Sin

πx

L
− 1

4
Sin

3πx

L
− 3

2
Cos

2πx

L

}
+

∂2V (x, t)

∂x2

{
9π2

4L2
Sin

3πx

L
− 15π2

4L2
Sin

πx

L
+

6π2

L2
Cos

2πx

L

}
+

μ0

(
1 + Sin

πx

L

) ∂2V (x, t)

∂t2
− μ0R0

[(
1 + Sin

πx

L

) ∂4V (x, t)

∂x2∂t2
+

π

L
Cos

πx

L
.
∂3V (x, t)

∂x∂t2

]
+KV (x, t) +MH(x− ct)

[
∂2V (x, t)

∂t2
+ 2c

∂2V (x, t)

∂x∂t
+ c2

∂2V (x, t)

∂x2

]
=MgH(x− ct) (12)

It is evident that exact closed form solution to this equation is
impossible. As a result of this, an approximate solution is sought.
One of the approximate methods for solving this class of dynamical
problems is the Galerkin’s Weighted Residual method as employed
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in Ref [32]. This method requires that the solution of equation (12)
takes the form

Vn(x, t) =

n∑
m=1

Wm (t)Um(x) (13)

where Wm(t) are coordinates in modal space and Um(x) are the
normal modes of free vibration of the beam which is often chosen
to satisfy the pertinent boundary conditions (7) and (8). Since our
elastic system has simple supports at the edges x = 0 and x = L,
evidently, Um(x) can be chosen as

Um(x) = Sin
mπx

L
(14)

Consequently,

Vn(x, t) =

n∑
m=1

Wm (t)Sin
mπx

L
(15)

Equation (15) when substituted into equation (12) yields
n∑

m=1

{
EI0
μ0

[(
5

2
+

15

4
Sin

πx

L
− 1

4
Sin

3πx

L
− 3

2
Cos

2πx

L

) ((mπ
L

)4

Sin
mπx

L

)
+

(
9π2

4L2
Sin

3πx

L
− 15π2

4L2
Sin

πx

L
+

6π2

L2
Cos

2πx

L

)
(
−

(mπ
L

)2

Sin
mπx

L

)]
W

m

(t) +
(
1 + Sin

πx

L

)
Sin

mπx

L
Ẅm(t)

−R0

[(
1 + Sin

πx

L

) (
−

(mπ
L

)2

Sin
mπx

L

)
+

(π
L
Cos

πx

L

)
((mπ

L

)
Cos

mπx

L

)]
Ẅm (t) +

K

μ0
Wm (t)Sin

mπx

L
+

MH (x− ct)

μ0

[
Sin

mπx

L
Ẅm(t) + 2c

((mπ
L

)
Cos

mπx

L

)
Ẇm (t)

+c2
(
−

(mπ
L

)2

Sin
mπx

L

)
Wm (t)

]}
− Mg

μ0

H (x− ct) = 0 (16)

In order to determine Wm(t), it is required that the expression on
the left hand side of equation (16) be orthogonal to the function
Uk(x).
Hence,∫ L

0

(
n∑

m=1

{
EI0
μ0

[(
5

2
+

15

4
Sin

πx

L
− 1

4
Sin

3πx

L
− 3

2
Cos

2πx

L

)
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L

)4

Sin
mπx

L

)
+

(
9π2

4L2
Sin

3πx

L
− 15π2

4L2
Sin

πx

L
+

6π2

L2
Cos

2πx

L

) (
−

(mπ
L

)2

Sin
mπx

L

)]
Wm(t) +

(
1 + Sin

πx

L

)

Sin
mπx

L
Ẅm(t)−R0

[(
1 + Sin

πx

L

) (
−

(mπ
L

)2

Sin
mπx

L

)

+
(π
L
Cos

πx

L

)((mπ
L

)
Cos

mπx

L

)]
Ẅm (t) +

K

μ0
Sin

mπx

L

Wm(t) +
MH (x− ct)

μ0

[
Sin

mπx

L
Ẅm(t) + 2c

((mπ
L

)
Cos

˙mπx

L

)
W

m
(t) + c2

(
−

(mπ
L

)2

Sin
mπx

L

)
Wm (t)

]}

− Mg

μ0
H (x− ct)

)
Sin

kπx

L
dx = 0 (17)

A rearrangement of the above equation yields
n∑

m=1

{[(Q1 (m, k) +Q3 (m, k))− R0 (Q4 (m, k) +Q2 (m, k)+

Q5 (m, k))] Ẅm(t) +

[
P1 (T0 + T1) +

K

μ0
Q1 (m, k)

]
Wm (t) +

M

μ0

[
Q1 (t) Ẅm (t)+ 2cQ2 (t) Ẇm(t)+

c2Q3 (t)Wm(t)
]} − Mg

μ0
Q4 (t) = 0 (18)

where

T0 = Q9(m, k) +Q10(m, k)− (Q11 (m, k) +Q12 (m, k)) (19)

T1 = Q6 (m, k) +Q7 (m, k)−Q8 (m, k) , P1 =
EI0
μ0

(20)

Q1 (t) =

∫ L

0

H (x− ct)Sin
mπx

L
Sin

kπx

L
dx (21)

Q2 (t) =
mπ

L

∫ L

0

H (x− ct)Cos
mπx

L
Sin

kπx

L
dx (22)

Q3 (t) = −
(mπ
L

)2
∫ L

0

H (x− ct)Sin
mπx

L
Sin

kπx

L
dx (23)

Q4 (t) =

∫ L

0

H (x− ct)Sin
kπx

L
dx (24)
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Q1 (m, k) =

∫ L

0

Sin
mπx

L
Sin

kπx

L
dx (25)

Q2 (m, k) = −
(mπ
L

)2
∫ L

0

Sin
mπx

L
Sin

kπx

L
dx (26)

Q3 (m, k) =

∫ L

0

Sin
πx

L
Sin

mπx

L
Sin

kπx

L
dx (27)

Q4 (m, k) =
mπ2

L2

∫ L

0

Cos
πx

L
Cos

mπx

L
Sin

kπx

L
dx (28)

Q5 (m, k) = −
(mπ
L

)2
∫ L

0

Sin
πx

L
Sin

mπx

L
Sin

kπx

L
dx (29)

Q6 (m, k) = −9m2π
4

4L4

∫ L

0

Sin
3πx

L
Sin

mπx

L
Sin

kπx

L
dx (30)

Q7 (m, k) = −6m2π
4

L4

∫ L

0

Cos
2πx

L
Sin

mπx

L
Sin

kπx

L
dx (31)

Q8 (m, k) = −15m2π
4

4L4

∫ L

0

Sin
πx

L
Sin

mπx

L
Sin

kπx

L
dx (32)

Q9 (m, k) =
5m4π

4

2L4

∫ L

0

Sin
mπx

L
Sin

kπx

L
dx (33)

Q10 (m, k) =
15m4π

4

4L4

∫ L

0

Sin
πx

L
Sin

mπx

L
Sin

kπx

L
dx (34)

Q11 (m, k) =
m4π

4

4L4

∫ L

0

Sin
3πx

L
Sin

mπx

L
Sin

kπx

L
dx (35)

Q12 (m, k) =
3m4π

4

2L4

∫ L

0

Cos
2πx

L
Sin

mπx

L
Sin

kπx

L
dx (36)

In order to evaluate the integrals in (21), (22) and (23), use is
made of the Fourier series representation of the Heaviside unit step
function, (see Ref [33]);

H(x− ct) =
1

4
+

1

π

∞∑
n=0

Sin((2n+ 1)π(x− ct))

2n+ 1
, 0 < x < L

(37)
Substituting (37) into (18) and simplifying yields

n∑
m=1

{
Δ1(m, k)Ẅm (t) +�2(m, k)Wm (t) + ∈0L [(Q1A (m, k) +
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1

π

∞∑
n=0

Cos(2n+ 1)πct

2n+ 1
Q1B (n,m, k)− 1

π

∞∑
n=0

Sin (2n+ 1)πct

2n+ 1

Q1C (n,m, k)) Ẅm (t) + 2c

(
Q2A (m, k) +

1

π

∞∑
n=0

Cos(2n+ 1)πct

2n+ 1

Q2B (n,m, k)− 1

π

∞∑
n=0

Sin (2n + 1)πct

2n+ 1
Q2C (n,m, k)

)
Ẇm (t) c2

(
Q3A (m, k) +

1

π

∞∑
n=0

Cos (2n + 1)πct

2n+ 1
Q3B (n,m, k)−

1

π

∞∑
n=0

Sin (2n+ 1) πct

2n+ 1
Q3C (n,m, k)

)
Wm(t)

]}

=
∈0gL

2

λk

[
−(−1)k + Cos

kπct

L

]
(38)

where

Δ1 (m, k) = Q1 (m, k)+Q3 (m, k)−R0 (Q4 (m, k)

+Q2 (m, k) + Q5(m, k)) (39)

Δ2 (m, k) = P1(T0 + T1) +
K

μ0

Q1(m, k) ∈0 =
M

μ0L
(40)

Q1A(m, k) =
1

4

∫ L

0

Sin
mπx

L
Sin

kπx

L
dx (41)

[Q1B(n,m, k) =

∫ L

0

Sin(2n+ 1)Sin
mπx

L
Sin

kπx

L
πxdx (42)

Q1C(n,m, k) =

∫ L

0

Cos(2n+ 1)Sin
mπx

L
Sin

kπx

L
πxdx (43)

Q2A(m, k) =
mπ

4L

∫ L

0

Cos
mπx

L
Sin

kπx

L
dx (44)

Q2B(n,m, k) =
mπ

L

∫ L

0

Sin(2n + 1)πxCos
mπx

L
Sin

kπx

L
dx (45)

Q2C(n,m, k) =
mπ

L

∫ L

0

Cos(2n+ 1)πxCos
mπx

L
Sin

kπx

L
dx (46)

Q3A(m, k) = −m
2π2

4L2

∫ L

0

Sin
mπx

L
Sin

kπx

L
dx (47)

Q3B(n,m, k) = −m
2π2

L2

∫ L

0

Sin(2n + 1)πxSin
mπx

L
Sin

kπx

L
dx

(48)
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Q3C(n,m, k) = −m
2π2

L2

∫ L

0

Cos(2n+ 1)πxSin
mπx

L
Sin

kπx

L
dx

(49)
Substituting results of the integrals in (25)-(36) and (41)-(49) into
(38), after some simplification and rearrangement, one obtains

n∑
m=1

{
�11Ẅm (t) +�22Wm (t) + ∈0L

([
L

8
+

L2

2π2

∞∑
n=0

(2n+ 1)

([
(−1)m+kCos (2n+ 1) πL− 1

((2n+ 1)L)2 − (m+ k)2
−

(−1)m−kCos (2n+ 1)πL− 1

((2n + 1)L)2 − (m− k)2

]
Cos (2n+ 1)πct

2n+ 1

)]
Ẅm (t) +

+
2cmπ

L

[
2Lkπ

k2π2 −m2π2
+

L

2π2

∞∑
n=0

(2n+ 1)

(
Sin (2n+ 1) πct

2n+ 1⎡
⎣(m− k)

{
(−1)m−kCos (2n+ 1) πL− 1

}
((2n+ 1)L)2 − (m− k)2

−

(m+ k)
{
(−1)m+kCos (2n+ 1)πL− 1

}
((2n+ 1)L)2 − (m+ k)2

⎤
⎦

⎞
⎠

⎤
⎦ Ẇm (t)− c2m2π2

L2

[
L

8
+

L

2π2

∞∑
n=0

(2n+ 1)

([
(−1)m+kCos (2n + 1)πL− 1

((2n+ 1)L)2 − (m+ k)2
−

(−1)m−kCos (2n+ 1)πL− 1

((2n + 1)L)2 − (m− k)2

]
¨Cos (2n+ 1)πct

2n+ 1

)]
W

m

(t)

)

=
MgL

μ0kπ

[
−(−1)k + Cos

kπct

L

]
(50)

where

Δ11 =

[
L

2
+
L

4π
AA1−R0

(
mπ

4L
AA2− m2π2

2L
− m2π

4L
AA1

)]
(51)

Δ22 =

[
EI0
μ0

(
5m4π4

4L3
+

15m2π3

16L3

(
1 +m2

)
AA1

− m2π4

4L4

(
9 +m2

)
AA3

)
+
KL

2μ0

]
(52)



RESPONSE OF A SIMPLY SUPPORTED NON-UNIFORM . . . 445

and

AA1 = 2

{
2, 1± 2m is even

−2
1−4m2 , 1± 2m is odd

(53)

AA2 =

{
0, 1± 2m is even
−8m

1−4m2 , 1± 2m is odd
(54)

AA3 =
L

3π
− 3L

π

{
0, 3± 2m is even

1
9−4m2 , 3± 2m is odd

(55)

Equation (50) is now the fundamental equation of our problem
when the non-uniform Rayleigh beam has simple supports at all
edges. In what follows, two special cases of equation (50) are dis-
cussed.

3.1. Non-uniform Rayleigh Beam traversed by moving distributed force

An approximate model of the system when the inertia effect of the
moving distributed mass M is neglected is obtained when ε0 is set
to zero in equation (50). We then have the moving distributed force
problem associated with the system given by,

Ẅm(t) + β2
fWm(t) =

MgL

μ0kπΔ11

[
−(−1)k + Cos

kπct

L

]
. (56)

where

β2
f =

Δ22

Δ11

(57)

Solving equation (56) using the method of Laplace transforms and
Convolution theory in conjunction with the initial conditions (9),
one obtains

Wm(t) =
PL

μ0kπΔ11

[
Cosαct− Cosβf t

β2
f − α2

c

+
(−1)kCosβf t

βf
− (−1)k

βf

]

(58)
where

αc =
kπc

L
P =Mg (59)

substituting (58) into (15), we have

Vn (x, t) =
2

L

∞∑
m=1

{
PL

μ0kπ�11

[
Cosαct− Cosβf t

β2
f − α2

c

+

(−1)kCosβf t

βf
− (−1)k

βf

]
Sin

mπx

L

}
(60)
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Equation (60) represents the transverse displacement response to a
distributed force moving at constant velocity of a simply supported
non-uniform Rayleigh beam resting on elastic foundation.

3.2. Non-uniform Rayleigh Beam traversed by moving distributed mass

If the moving load has mass commensurable with that of the elastic
beam, the inertia effect of the moving mass is not negligible and
must be taken into consideration. Thus, ∈0 �= 0 and we are re-
quired to solve the entire equation (50). This is termed the moving
distributed mass problem. Evidently, an exact closed form solution
of this equation is not possible. Thus we resort to the approximate
analytical solution technique which is a modification of the asymp-
totic method of Struble discussed extensively in [32]. To this end,
equation (50) is simplified and rearranged to take the form,

Ẅm (t) +
2cmπ∈0RII (m, k, t)

Δ11

[
1 + ∈0L

Δ11
RI(m, k, t)

]Ẇm (t)−

−
(

c2m2π2∈0LRI (m,k,t)
L2Δ11

− β2
f

1 + ∈0L
Δ11

RI(m, k, t)

)
Wm(t)

=
PL

[
−(−1)k + Coskπct

L

]
μ0.kπ.Δ11

[
1 + ∈0L

Δ11
RI(m, k, t)

] (61)

where

RI (m, k, t) =
L

8
+

L2

2π2

∞∑
n=0

(2n+ 1)N(m, k)
Cos(2n+ 1)πct

2n+ 1
(62)

RII (m, k, t) =
2Lkπ

k2π2 −m2π2
+

L

2π2

∞∑
n=0

(2n+ 1)F (m, k)
Sin (2n+ 1) πct

2n+ 1
(63)

and

N (m, k) =

[
(−1)m+kCos (2n+ 1) πL− 1

((2n+ 1)L)2 − (m+ k)2
−

(−1)m−kCos (2n+ 1)πL− 1

((2n+ 1)L)2 − (m− k)2

]
(64)
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F (m, k) =

⎡
⎣(m− k)

{
(−1)m−kCos (2n+ 1)πL− 1

}
((2n+ 1)L)2 − (m− k)2

−

(m+ k)
{
(−1)m+kCos (2n+ 1)πL− 1

}
((2n + 1)L)2 − (m+ k)2

⎤
⎦ (65)

By means of this technique, one seeks the modified frequency cor-
responding to the frequency of the free system due to the presence
of the distributed moving mass. An equivalent free system opera-
tor defined by the modified frequency then replaces equation (61).
Thus, the right hand of equation (61) is set to zero and a parameter
∈1 < 1 is considered for any arbitrary mass ratio ∈0, defined as

∈1 =
∈0

1 + ∈0

(66)

which implies

∈0 = ∈1 + o
(∈2

1

)
(67)

and

1

1 + ∈0

(
L

Δ11
RI(m, k, t)

) = 1−∈0

(
L

Δ11
RI (m, k, t)

)
+o

(∈2
0

)
(68)

whenever ∣∣∣∣ L

Δ11
RI (m, k, t)

∣∣∣∣ < 1 (69)

When ∈1 = 0, a case corresponding to the case when the inertia
effect of the mass of the system is neglected is obtained, then the
solution of (61) can be written in the form,

Wm (t) = ψmCos(βf t− θm) (70)

where ψm and θm are constants.
Since ∈1 < 1, Struble’s technique requires that the asymptotic
solution of the homogeneous part of equation (61) be of the form
(see Ref [34]),

Wm(t) = ψ(m, t)Cos(βf t− θ(m, t)) + ∈1W1(m, t) + o(∈2
1) (71)

where ψ(m, t) and θ(m, t) are slowly varying functions of time.
Substituting equation (71) and its derivatives into the homogeneous
part of equation (61) while taking into account (67) and retaining
terms to o(∈1), one obtains

−2ψ̇ (m, t) βfSin (βf t− θ (m, t)) + 2ψ (m, t) θ̇(m, t)βf
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Cos (βf t− θ(m, t))− 2cmπ∈1

Δ11

[
2Lkπ

k2π2 −m2π2
+

L

2π2

∞∑
n=0

(2n+ 1)

⎛
⎝

⎡
⎣(m− k)

{
(−1)m−kCos (2n+ 1) πL− 1

}
((2n+ 1)L)2 − (m− k)2

−

(m+ k)
{
(−1)m+kCos (2n+ 1) πL− 1

}
((2n+ 1)L)2 − (m+ k)2

⎤
⎦ Sin (2n+ 1)πct

2n+ 1

)]

ψ (m, t)βfSin (βf t− θ (m, t))− c2m2π2∈1L

Δ11.L2

[
L

8
+

L2

2π2

∞∑
n=0

(2n+ 1)

([
(−1)m+kCos (2n + 1)πL− 1

((2n+ 1)L)2 − (m+ k)2
−

(−1)m−kCos (2n+ 1)πL− 1

((2n+ 1)L)2 − (m− k)2

]
Cos(2n+ 1)πct

2n+ 1

)]
ψ (m, t)

Cos (βf t− θ(m, t))− β2
f∈1Lψ (m, t)

Δ11

[
L

8
+

L2

2π2

∞∑
n=0

(2n+ 1)

([
(−1)m+kCos (2n+ 1)πL− 1

((2n + 1)L)2 − (m+ k)2
−

(−1)m−kCos (2n + 1)πL− 1

((2n+ 1)L)2 − (m− k)2

]
Cos (2n+ 1)πct

2n+ 1

)]

Cos (βf t− θ(m, t)) = 0 (72)

To obtain variational equations, we equate the coefficients of
Sin (βf t− θ(m, t)) and Cos (βf t− θ(m, t)) on both sides of equa-
tion (72). To do this, we note the following trigonometric identities,

Cos(2n+ 1)πct

2n + 1
Sin (βf t− θ(m, t)) =

1

2
Sin

[
(2n+ 1)πct

2n+ 1
+ βf t− θ(m, t)

]

−1

2
Sin

[
(2n+ 1)πct

2n+ 1
− βf t + θ(m, t)

]
(73)

Sin(2n+ 1)πct

2n+ 1
Sin (βf t− θ(m, t)) =

1

2
Cos

[
(2n+ 1)πct

2n+ 1
− βf t+ θ(m, t)

]
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−1

2
Cos

[
(2n+ 1)πct

2n+ 1
+ βf t− θ(m, t)

]
(74)

Cos(2n+ 1)πct

2n + 1
Cos (βf t− θ(m, t)) =

1

2
Cos

[
(2n+ 1)πct

2n+ 1
+ βf t− θ(m, t)

]

+
1

2
Cos

[
(2n + 1)πct

2n + 1
− βf t+ θ(m, t)

]
(75)

Sin(2n+ 1)πct

2n + 1
Cos (βf t− θ(m, t)) =

1

2
Sin

[
(2n+ 1)πct

2n+ 1
+ βf t− θ(m, t)

]

+
1

2
Sin

[
(2n+ 1)πct

2n+ 1
− βf t + θ(m, t)

]
(76)

Neglecting terms that do not contribute to the variational equation,
equation (72) reduces to

−2ψ̇ (m, t) βfSin (βf t− θ (m, t)) + 2ψ (m, t) θ̇ (m, t) βf

Cos (βf t− θ (m, t))− 2cmπ∈1

Δ11

[
2Lkπ

k2π2 −m2π2

]
ψ (m, t)

βfSin (βf t− θ (m, t))− c2m2π2∈1L
2

8Δ11.L2
ψ (m, t)Cos

(βf t− θ(m, t))− β2
f∈1L

2

8Δ11
ψ (m, t) Cos (βf t− θ(m, t)) = 0 (77)

Then, the variational equations are respectively

−2ψ̇(m, t)− 4cmkL∈1

Δ11 (k2 −m2)
ψ(m, t) = 0 (78)

and

2θ̇(m, t)βf − c2m2π2∈1

8Δ11

− β2
f∈1L

2

8Δ11

= 0 (79)

solving equations (78) and (79) respectively, one obtains

ψ(m, t) = ψm (80)

and

θ(m, t) =
β2
fL

2 + c2m2π2

16Δ11βf
∈1t+ θm (81)

where

ψm = Ae−χt

, χ =
2cmkL∈1

Δ11 (k2 −m2)
(82)
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A and θm are constants.
Therefore, when the mass effect of the particle is considered, the
first approximation to the homogeneous system is given by

Wm(t) = ψmCos (Ωf t− θm) (83)

where,

Ωf =
16�11β

2
fL

2 − ∈1

{
β2
fL

2 + c2m2π2
}

16Δ11βfL2
(84)

is called the modified natural frequency of the free system due to the
presence of the moving distributed mass. Thus, to solve the non-
homogeneous equation (61), the differential operator which acts on
Wm (t) is replaced by the equivalent free system operator defined
by the modified frequency Ωf , i.e

Ẅm(t) + Ω2
fWm(t) =

∈1L
2g

kπ.Δ11

[
−(−1)k + Cos

kπct

L

]
(85)

Solving equation (85) in conjunction with the initial condition, one
obtains expression for Wm(t). Thus, in view of (15)

Vn (x, t) =
2

L

n∑
m=1

∈1L
2g

kπ.Δ11[
Cosαct− CosΩf t

Ω2
f − α2

c

+
(−1)kCosΩf t

Ωf
− (−1)k

Ωf

]
Sin

mπx

L
(86)

Equation (86) represents the transverse displacement response to
a distributed mass moving with constant velocity of a simply sup-
ported non-uniform Rayleigh beam resting on elastic foundation.

4. DISCUSSION OF THE SOLUTIONS

4.1. Analytical Solutions

For analytical results, we will establish conditions under which res-
onance occurs for an undamped system such as this. Resonance
takes place when the motion of the vibrating structure becomes
unbounded. In actual practice, when this happens, the structure
would collapse as the intensive vibrations cause cracks or perma-
nent deformation in the vibrating systems. Equation (3.49) clearly
shows that the non-uniform simply supported Rayleigh beam tra-
versed by a moving distributed force reaches a state of resonance
whenever

βf =
kπc

L
(87)
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while equation (86) indicates that the same non-uniform beam un-
der the action of a moving distributed mass experiences resonance
effect when

Ωf =
kπc

L
(88)

Evidently,

Ωf = βf

[
1− η1

16Δ11

{
1 +

c2m2π2

β2
fL

2

}]
=
kπc

L
(89)

Equations (87) and (89) show that for the same natural frequency,
the critical speed for the system consisting of a non-uniform simply
supported Rayleigh beam traversed by a moving distributed force
at constant velocity is greater than that of the moving distributed
mass problem. Thus, for the same natural frequency, resonance is
reached earlier in the moving distributed mass system than in the
moving distributed force system.

4.2. Numerical Solutions

Numerical results for the analysis presented above are presented in
plotted curves. An elastic non-uniform Rayleigh beam of length
L=12.192m is considered. Other values used are c=8.128ms−1,
∈0 = 0.2 and E=2109×109kg/m. The values of the rotatory inertia
correction factor R0 are varied between 0.5 and 9.5, while the values
of the foundation modulli K are varied between 0 and 4000000Nm2.
Figure 1 displays the deflection profile of a finite non-uniform sim-
ply supported Rayleigh beam under the action of distributed forces
for various values of foundation modulli K and fixed rotatory in-
ertia correction factor R0=5. The graph shows that the response
amplitude decreases as the value of K increases. In Figure 2, the
deflection profile of the same beam under the action of distributed
forces for various values of rotatory inertia correction factor R0

and fixed foundation modulli K=4000 is displayed. It is evident
that the response amplitude decreases as the value of R0 increases.
Figure 3 depicts the displacement response of the beam to mov-
ing distributed masses for various values of foundation modulli K
and fixed rotatory inertia correction factor R0 = 5. It is shown
that the response amplitude decreases as the value of K increases.
Furthermore, for various time t,the displacement of the Rayleigh
beam under the action of distributed masses for various values of
rotatory inertia correction factor R0 and for fixed foundation mod-
ulli K=4000 is shown in figure 4 Clearly, the response amplitude
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of the beam decreases as the value of R0 increases. Finally, figure
5, depicts the comparison of the displacement response to moving
distributed force and moving distributed mass for the simply sup-
ported finite non-uniform Rayleigh beam for K=4000 and R0 = 5.
It is seen that the response amplitudes of the moving distributed
mass is higher than that of the moving distributed force. Thus
resonance is reached earlier in the moving distributed mass system
than in the moving distributed force system; this agrees with the
results obtained in the analytical solutions.

Fig. 1. Displacement response to moving distributed forces of simply
supported non-uniform Rayleigh beam for various values of foundation

moduli K



RESPONSE OF A SIMPLY SUPPORTED NON-UNIFORM . . . 453

Fig. 2. Displacement response to distributed forces of simply
supported non-uniform Rayleigh beam for various values of rotatory

inertia factor R0

Fig. 3. Displacement response to distributed masses of simply
supported non-uniform Rayleigh beam for various values of foundation

moduli K
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Fig. 4. Displacement response to distributed masses of simply
supported non-uniform Rayleigh beam for various values of rotator

inertia factor R0

Fig. 5. Comparison of the displacement response of moving
distributed force and moving distributed mass cases for simply
supported non-uniform Rayleigh beam for R0=5 and K=4000

5. CONCLUSION

The problem of a non-uniform simply supported Rayleigh beam un-
der travelling distributed loads is investigated in this paper. Both
gravity and inertia effects of the distributed loads are taken into
consideration. The technique due to Galerkin is employed to re-
duce the governing fourth order partial differential equation with
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variable coefficients to a sequence of second order ordinary differ-
ential equations. These series of equations are simplified using a
modification of the asymptotic method of Struble. The resulting
equations are then solved using the method of integral transfor-
mations. Numerical analysis is carried out and results show that
the response amplitudes of both moving distributed force and mov-
ing distributed mass problems decrease with increase in the values
of foundation moduli. Similarly, higher values of rotatory inertia
correction factor reduce the response amplitudes of both moving
distributed force and moving distributed mass problems. Finally,
it is observed that for the non-uniform Rayleigh beam having simple
supports at both ends, for fixed values of foundation moduli and
rotatory inertia correction factor, the transverse deflection under
the actions of moving distributed masses is higher than that under
the actions of moving distributed force. Thus, moving distributed
force solution is not always an upper bound to moving distributed
mass problems. This is in agreement with existing results where
the moving load is modelled as moving concentrated load.
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