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HIGHER ORDER COMPACT FINITE DIFFERENCE

METHOD FOR SINGULARLY PERTURBED ONE

DIMENSIONAL REACTION DIFFUSION PROBLEMS

FEYISA EDOSA AND GEMECHIS FILE1

ABSTRACT. In this paper, a higher order numerical method
based on finite difference scheme with uniform mesh is presented
for solving singularly perturbed two-point boundary value prob-
lems of reaction diffusion type. An eighth order compact fi-
nite difference has been developed for solving the problem. To
demonstrate the efficiency of the method, three test examples
have been considered. The numerical results obtained by the
present method are tabulated and compared with some results of
the previous findings of others existing in the literature. Graphs
are also depicted in support of the numerical results. The con-
vergence of the method has been examined and the theoretical
error bound has been established. The present method is simple
and it approximates the exact solution very well.

Keywords and phrases: Singular perturbation; Compact finite
difference; Reaction diffusion equations
2010 Mathematical Subject Classification: 65L03, 65L11, 65L12

1. INTRODUCTION

The differential equations in which the highest order derivative term
is multiplied by a small positive parameter ε where 0 < ε << 1are
known to be singularly perturbed differential equations and the pa-
rameter is known as the perturbation parameter. In the intensive
development of science and technology, many practical problems,
such as the mathematical boundary layer theory or approximation
of solutions of various problems described by differential equations
involving large or small parameters become more complex. In some
problems, the perturbations are active over a very narrow region
across which the dependent variable undergoes very rapid changes.
The solutions of these problems depend on a small positive param-
eter, where in such a way that the solution varies rapidly in some
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parts of the domain and varies slowly in some other parts of the do-
main. Typically, there are thin transition layers where the solution
varies rapidly or jumps abruptly, while away from the layers the so-
lution behaves regularly and varies slowly [1]. As a result, if we ap-
ply the existing classical numerical methods for solving such types
of problems large oscillations may arise and pollute the solution in
the entire interval because of the boundary layer behavior. So, most
of the classical numerical methods are not effective for solving such
problems because, as the singular perturbation parameter tends to
zero, the errors in the numerical solutions increase and often be-
comes comparable in magnitude to the exact solution [2]. Such
types of problems most frequently arises in many physical phenom-
ena such as fluid dynamics, chemical reactor theory, nuclear reactor
theory, plasma physics, aerodynamics, meteorology, oceanography,
diffraction theory, reaction-diffusion process, non-equilibrium and
other domains of the great world of fluid motion.
Owing to this, many researchers tried to develop both asymp-

totic and numerical methods to solve such problems. For detail
discussions on the asymptotic methods one can refer [3-7] and for
numerical methods such as finite difference and finite element meth-
ods, one can refer to [8-17]. The main objective of this study is to
present the eighth order compact finite difference method for solv-
ing singularly perturbed one dimensional reaction diffusion prob-
lems. The paper is presented as follows. In section 2, we formulate
and describe the proposed method. In section 3, we proved the
convergence of the method and establish theoretical error bound.
In section 4, some results are obtained using the present numerical
method and these experiments illustrate the validity of the method.
Finally, discussion and conclusion drawn is presented.

2. DESCRIPTION OF THE METHOD

Consider singularly perturbed one dimensional reaction diffusion
problems of the type:

−εy′′ + g(x)y = f(x), 0 ≤ x ≤ 1 (1)

subject to the boundary conditions

y(0) = α, y(1) = β (2)

where α, β are constants, ε is small positive parameter,f(x) and
g(x) are sufficiently smooth functions. In order to develop the
numerical method for finding the solution of differential equation
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(1-2), the interval [0, 1] is divided into equal n subintervals using
the grid points xi = x0 + ih, i = 0, 1, 2, ..., n, x0 = 0, xn = 1, and
h = 1/n.
Let yi = y(xi) denote the solution of problem in Eqs. (1-2),

y
(n)
i = y(n)(xi) and f

(n)
i = f (n)(xi) denote its nth derivative at

x = xi. Applying Taylor series expansion on yi−1 and yi+1 respec-
tively and adding the two, we obtain second order central difference,
δ2c of the second derivative of yi as:

δ2cyi =
yi+1 − 2yi + yi−1

h2
+ τ1 (3)

where τ1 = −h2

12
y
(4)
i +O(h4).

Further, using the Taylor series expansion of yi+1 and yi−1 up to
O(h10) and Eq.(3), we obtain:

δ2cyi = y′′i +
h2

12
y
(4)
i +

h4

360
y
(6)
i +

h6

20160
y
(8)
i + τ2 (4)

where τ2 = 2h8

10!
y
(10)
i + O(h10). To obtain the eighth order compact

finite difference scheme, we apply δ2c to y
(6)
i and we obtain:

y
(8)
i = δ2cy

(6)
i + τ3 (5)

where τ3 =
h2

90
y
(10)
i +O(h4).

Now, at any point xi, Eq. (1) can be written as:

−y′′i + uiyi = ri (6)

where ui =
gi
ε
, ri =

fi
ε
and assume that g(xi) = gi ≥ g where g is

positive constant [18]. Thus, differentiating Eq. (8) successively ,
we obtain:

y
(4)
i = uiy

′′
i − r′′i (7)

and

y
(6)
i = uiy

(4)
i − r

(4)
i (8)

Substituting Eqs. (7- 8) into Eq. (4), we obtain:

δ2cyi = (1 +
h2ui

12
+

h4u2
i

360
+

h6u2
i

20160
δ2c )y

′′
i −

(
h2

12
+

h4ui

360
+

h6ui

20160
δ2c )r

′′
i − (

h4

360
+

h6

20160
δ2c )r

(4)
i + τ4 (9)

where τ4 =
h6

20160
τ3 + τ2 =

h8

907200
y
(10)
i +O(h10)

Solving Eq. (9) for y′′i , we obtain:
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y′′i =
δ2cyi + ((h

2

12
+ h4ui

360
+ h6ui

20160
δ2c )r

′′
i + ( h4

360
+ h6

20160
δ2c )r

(4)
i + τ5)

1 + h2ui

12
+

h4u2
i

360
+

h6u2
i

20160
δ2c

(10)

Substituting Eq.(10) into Eq.(6), we obtain:

−δ2cyi − (
h2

12
+

h4ui
360

)r′′i − h6ui
20160

δ2c r
′′
i −

h4

360
r
(4)
i − h6

20160
δ2c r

(4)
i − τ5

+ui(1+
h2ui
12

+
h4u2i
360

)yi+
h6u3i
20160

δ2cyi = (1+
h2ui
12

+
h4u2i
360

)ri+
h6u2i
20160

δ2c ri

(11)

Applying the centeral difference approximations and Eq.(3) for

ri, r
′
i and r

(4)
i in Eq.(11), we obtain:

−(
1

h2
− h4u3

i

20160
)yi−1+(

2

h2
+ui(1+

h2ui

12
+
3h4u2

i

1120
))yi−(

1

h2
− h4u3

i

20160
)yi+1 =

h4u2
i

20160
ri−1 + (1 +

h2ui

12
+

3h4u2
i

1120
)ri +

h4u2
i

20160
ri+1 +

h4ui

20160
r′′i−1

+(
h2

12
+

3h4ui

1120
)r′′i +

h4ui

20160
r′′i+1 +

h4

20160
r
(4)
i−1 +

3h4

1120
r
(4)
i +

h4

20160
r
(4)
i+1

(12)
Eq.(12) can be written as a three term recurrence relation of the
form:

−Eiyi−1 + Fiyi −Giyi+1 = Hi (13)

where;

Ei =
1
h2 − h4u3

i

20160
= Gi, Fi =

2
h2 + ui(1 +

h2ui

12
+

3h4u2
i

1120
) and

Hi =
h4u2

i

20160
ri−1 + (1 + h2ui

12
+

3h4u2
i

1120
)ri +

h4u2
i

20160
ri+1 +

h4ui

20160
r′′i−1

+ (h
2

12
+ 3h4ui

1120
)r′′i +

h4ui

20160
r′′i+1 +

h4

20160
r
(4)
i−1 +

3h4

1120
r
(4)
i + h4

20160
r
(4)
i+1

This gives us the tridiagonal system which can easily be solved by
using the well known algorithm called Discrete Invariant Imbedding
Algorithm.

3. CONVERGENCE ANALYSIS

Writing the tri-diagonal system in Eq. (13) in matrix vector form,
we obtain:

AY = C (14)

where A = (mij), 1 ≤ i, j ≤ N − 1 is a tri-diagonal matrix of

order N-1, with mi,i+1 = − 1
h2 +

h4u3
i

20160
, mi,i =

2
h2 + ui +

h2u2
i

12
+

3h4u3
i

1120
,



HIGHER ORDER COMPACT FINITE DIFFERENCE METHOD . . . 495

mi,i−1 = − 1
h2 +

h4u3
i

20160
and C = (di) be a column vector with

di =
h4u2

i

20160
ri−1 + (1 + h2ui

12
+

3h4u2
i

1120
)ri +

h4u2
i

20160
ri+1 +

h4ui

20160
r′′i−1 +

(h
2

12
+ 3h4ui

1120
)r′′i +

h4ui

20160
r′′i+1 +

h4

20160
r
(4)
i−1 +

3h4

1120
r
(4)
i + h4

20160
r
(4)
i+1

for i = 1, 2, ..., N with local truncation error which is given by:

τi(hi) =
h8

907200
y
(10)
i +O(h10) (15)

we also have
AY − τ(h) = C (16)

where Y = (y0, y1, ..., yN)
t and τ(h) = (τ1(h0), τ2(h1), ..., τN (hN))

t

stands for the exact solution and local truncation error respectively.
From Eqs.(14) and (16), we obtain:

A(Y − Y ) = τ(h) (17)

Thus, we get an error equation

AE = τ(h) (18)

where E = Y − Y = (e0, e1..., eN )
Let Si be the sum of elements of the ith row of the matrix A, i.e
Si =

∑N−1
j=1 mij , then we have:

For i = 1, S1 = B1 + A1h
4 + O(h4), where B1 = ui +

1
h2 +

h2u2
i

12
,

A1 =
11u3

i

4032
and |B1| = minS1

For i = 2, 3, ..., N − 2, Si = Bi + A0h
4 = Bi + O(h4) where Bi =

ui +
h2u2

i

12
, A0 =

u3
i

360
and |Bi| = min2≤i≤N−2 Si

For i = N − 1, SN−1 = B1 + A1h
4 = B1 + O(h4), where B1 =

ui +
1
h2 +

h2u2
i

12
, A1 =

11u3
i

4032
and |B1| = minSN−1

From the above we have Bi ≤ B1 which implies Bi is minimum
value. Since 0 < ε � 1, we can choose h sufficiently small so that
the matrix A is irreduceble and monotonic [19]. Then, it follows
that A−1 exists and its elements are non-negative. Hence, from
Eq.(18), we get:

E = A−1τ(h) (19)

and
‖E‖ = ‖A−1‖‖τ(h)‖ (20)

Let mk,i be the (k, i) elements of A−1. Since mk,i ≥ 0, by the
definition of multiplication of matrices with its inverses (from the
theory of matrices) we have

N−1∑
i=1

m̄k,iSi = 1, k = 1, 2, ..., N − 1 (21)
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Therefore, it follows that
N−1∑
i=1

mk,iSi ≤ 1

min1≤i≤N−1 Si

=
1

|Bi| (22)

We define ‖A−1‖ = max1≤i≤N−1

∑N−1
j=1 |mk,i| and ‖τ(h)‖ =

max1≤i≤N−1 |τ(h)|.
Therefore, from Eqs.(15), (18) and (22), we obtain:

ej =
N−1∑
j=1

mk,iτi(h), j = 1, 2, 3, ..., N − 1

ej =
1

|Bi| · τi(h) =
1

|Bi|
h8

907200
y
(10)
i

Therefore, ej ≤ kh8

|Bi| , j = 1, 2, 3, ..., N−1, where k =

(
1

907200

)
|y(10)i |,

which is a constant and independent of h. Therefore, ‖E‖ ≤ O(h8).
Remark: The computational rate of convergence is obtained by
using the double mesh principle described below.
Let

zh = max
j

|yhj − y
h
2
j |, j = 1, 2, 3, ..., N − 1,

where yhi is the computed solution on the mesh point {xj}N0 at

the nodal point of xj for xj = xj−1 + h, j = 1, 2, ...N and y
h
2
i is

the computed solution at the nodal point xj on the mesh {xj}2N0 ,
where xj = xj−1 + h/2, j = 1(1)2N .
In the same case we can define zh/2 by replacing h by h/2 and N
by N/2, we obtain

zh/2 = max
j

|yh/2j − y
h/4
j |, j = 1, 2, 3, ..., N − 1,

The computed order of convergence is evaluated as

Rate =
logZh − logZh/2

log 2
.

Also the maximum absolute error based on double mesh principle
is given by:

EN
i = max

j
|yNj − y2N2j |, j = 1, 2, 3, ..., N.

and y
h
2
j denotes that the value of yi for mesh length h

2
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4. TEST EXAMPLES AND NUMERICAL RESULTS

To test the applicability of the present method, we have considered
the following model problems with and without exact solution.
Example 1: Consider the singularly perturbed problem:

−εy′′ + y = x

with the boundary conditions y(0) = 1, y(1) = 1+ e
(−1√

ε
)
. The exact

solution is given by: y(x) = x+ e
(−x√

ε
)
.

The numerical solutions in terms of maximum absolute errors are
given in Table 1.
Example 2: Consider the singularly perturbed problem:

−εy′′ + y = − cos2(πx)− 2επ2 cos(2πx), 0 ≤ x ≤ 1

with the boundary conditions: y(0) = 0, y(1) = 0, the exact solu-
tion is given by:

y(x) =
e
(x−1√

ε
)
+ e

(−x√
ε
)

1 + e
(−1√

ε
)

− cos2(πx)

The maximum absolute errors are given in Table 2.
Example 3: Consider the singularly perturbed problem:

−εy′′ + y = 1− 3x cos(πx)

with boundary condition: y(0) = y(1) = 0.
The exact solution of the problem is not known. The maximum
absolute errors are tabulated in Table 3.

Table 1. The maximum absolute errors EN
i for Example 1

ε N = 16 N = 32 N = 64 N = 128 N = 256

Our Method
1/16 9.8908E-12 3.8192E-14 4.4298E-14 2.0206E-14 7.8404E-13
1/32 1.5796E-10 6.2705E-13 6.8834E-15 5.7732E-14 8.2823E-14

1/64 2.4930E-09 9.9758E-12 3.8691E-14 5.4956E-14 3.8081E-14
1/128 3.6637E-08 1.5803E-10 6.2672E-13 9.6589E-15 6.5503E-14
Rashidinia [13]
1/16 2.96E-006 1.85E-007 1.15E-008 7.24E-010 4.56E-011
1/32 1.18E-005 7.54E-007 4.67E-008 2.96E-009 1.82E-010
1/64 4.74E-005 2.96E-006 1.86E-007 1.16E-008 7.30E-010
1/128 1.78E-004 1.18E-005 7.46E-007 4.67E-008 2.92E-009
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Table 2. The maximum absolute errors EN
i for Example 2

ε N = 16 N = 32 N = 64 N = 128 N = 256

Our Method
1/16 9.0031E-10 3.5116E-12 7.2164E-15 1.8596E-15 1.0325E-13
1/32 4.8094E-10 1.8783E-12 7.6467E-15 1.2657E-14 2.3148E-14
1/64 2.6577E-09 1.0625E-11 4.2411E-14 2.4425E-14 1.2323E-14
1/128 3.6756E-08 1.5861E-10 6.2550E-13 3.9413E-15 4.1855E-14
Rashidinia [13]
1/16 4.07E-005 2.53E-006 1.58E-007 9.87E-009 6.17E-010
1/32 2.00E-005 1.24E-006 7.74E-008 4.83E-009 3.02E-010
1/64 5.45E-005 3.42E-006 2.14E-007 1.34E-008 8.39E-010
1/128 1.83E-004 1.22E-005 7.68E-007 4.81E-008 3.01E-009
Surla et. al [14]
1/16 1.20E-004 7.47E-006 4.67E-007 2.90E-008 4.39E-009
1/32 1.28E-004 8.00E-006 5.00E-007 3.14E-008 1.99E-009
1/64 1.60E-004 1.00E-005 6.26E-007 3.92E-008 2.31E-009
1/128 2.344E-004 1.47E-005 9.23E-007 5.77E-008 3.72E-009

Table 3. Maximum Absolute Errors EN
i for Example 3

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

2−4 2.2121E-11 8.9040E-14 2.2204E-15 7.1054E-15 5.1936E-13 6.3960E-13
2−5 5.2890E-10 2.0908E-12 1.0436E-14 7.9936E-15 3.8858E-14 6.4393E-14
2−6 8.9703E-09 3.5893E-11 1.4033E-13 7.9936E-15 1.1768E-14 3.1686E-13

2−7 1.3813E-07 5.9595E-10 2.3554E-12 1.2434E-14 1.6431E-14 3.7970E-14
2−8 2.2537E-06 9.6555E-09 3.8634E-11 1.4255E-13 1 .5676E-13 4.7518E-14
2−9 3.0463E-05 1.4388E-07 6.200E-10 2.4603E-12 6.6169E-14 2.4025E-13

Table 4. Numerical rate of convergence for Examples 1, 2 and 3
when ε = 1/128

h h/2 Zh h/4 Zh/2 rate
Example 1: 2−4 2−5 3.6479E-008 2−6 1.5740E-010 7.8565

2−5 2−6 1.5740E-010 2−7 6.1706E-013 7.9948
Example 2: 2−4 2−5 3.6597E-008 2−6 1.5798E-010 7.8558

2−5 2−6 1.5798E-010 2−7 6.2156E-013 7.9897
Example 3: 2−4 2−5 1.3753E-007 2−6 5.9359E-010 7.8561

2−5 2−6 5.9359E-010 2−7 2.3430E-012 7.9850

The following figures (Figures 1-4) show that the numerical solu-
tions obtained by the present method for h ≥ ε as compared with
exact solution.

5. DISCUSSION AND CONCLUSION

A higher order finite difference method, eighth order compact dif-
ference method, has been presented for solving singularly perturbed
one dimensional reaction diffusion equations. Three examples are
given to demonstrate the efficiency of the proposed method. The
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Fig. 1. Numerical Solution of Example 1 for ε = 0.01 and h = 0.01

Fig. 2. Numerical Solution of Example 1 for ε = 0.001 and h = 0.01

maximum absolute errors are tabulated in the tables (Tables 1-3)
for different values of the perturbation parameterε and the number
of mesh points N . The numerical results presented in Tables 1 and
2 clearly indicate that the proposed scheme is more efficient than
the methods given in [13-14].
Tables 1- 3 also show that the maximum absolute error decreases
as the mesh size h decreases, which in turn shows the convergence
of the computed solution and it also substantiates the theoretical
convergence analysis given. To further substantiate the applica-
bility of the proposed method, graphs between exact solution and
approximate solutions have been plotted (Figures 1-4) for the two
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Fig. 3. Numerical Solution of Example 2 for ε = 0.01 and h = 0.01

Fig. 4. Numerical Solution of Example 2 for ε = 0.001 and h = 0.01

examples for different values of ε = 10−2, ε = 10−3 and fixed value
of N = 100 . It is observed that the numerical solutions are in a
very good agreement of the exact solution for small value of ε(i.e
h ≥ ε)for which most of classical numerical methods fail to give
good result. Further, the results obtained by the present method
confirmed that the computational rate of convergence is in a good
agreement with the theoretical estimates of order of convergence
(Table 4). In a concise manner, the present method is simple and
approximates the exact solution very well.
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