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SIMPSON’S 3
8
-TYPE BLOCK METHOD FOR STIFF SYSTEMS

OF ORDINARY DIFFERENTIAL EQUATIONS
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ABSTRACT. In this paper, a self-starting second derivative
multistep block method which uses the logic behind the Simp-
son’s 3/8 rule for quadrature is derived using collocation and
interpolation techniques to obtain the approximate solutions of
stiff differential equations. The main method and two additional
methods are assembled into a block matrix equation which is ap-
plied to provide the solutions of stiff IVPs on non-overlapping
intervals.. The method is shown to be A-Stable, effective and
reliable for stiff systems of ordinary differential equations. The
order of the method is discussed and its accuracy is tested and
established numerically.
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1. INTRODUCTION

Numerical solutions for ordinary differential equations (ODEs) are
very important in scientific computation, as they are widely used
for solutions of real world problems. In many applications modeled
by systems of ordinary differential equations, these systems exhibit
a behaviour known as stiffness. Stiff systems are considered difficult
because explicit numerical methods designed for non-stiff problems
are used with very small step sizes or do not converge at all. The
knowledge of stiffness, occurring in differential equations came as a
result of some pioneering works done by the two chemists, Curtiss
and Hirschfelder [8]. In 1979, Shampine and Gear [23] in their text,
they expounded the characteristics of numerical methods used for
solving problems with stiffness and discussed the different realis-
tic goals when solving stiff problems which involves methods with
strong stability properties for solving stiff systems.

Received by the editors February 20, 2017; Revised: December 01, 2017; Accepted:
December 03, 2017

www.nigerianmathematicalsociety.org; Journal available online at www.ojs.ictp.it
1Corresponding author

503



504 O. A. AKINFENWA et al.

Consider the differential equations of the form

y′ = f(t, y), y(t0) = y0 , x ε [t0, Tn]

where f satisfies the Lipschitz condition as given in Henrici [15]).
The k-step LMM is conventionally written as

k∑
j=0

αjyn+j = h
k∑
j=0

βjfn+j (1)

Which has 2k + 1 unknown α’s and β’s and therefore can be of
order 2k, where k is is the step number, however, according to
Dahlquist[9], the order of (2) cannot exceed k + 1 (k is odd) or
k + 2 (k is even) for the method to be stable. Several authors
such as Lambert [18], Gear[12], Gragg and Stetter[13], Butcher[5],
Akinfenwa et-al[1] proposed modified forms of (2) known as hy-
brid methods which were shown to overcome the Dahlquist barrier
theorem. Several other methods have been proposed for efficiently
solving (1) (see Keiper and Gear [17], Enright([11], [10]), Hairer
and Wanner[14], Cash[6] and Brugnano and Trigiante[4]).Recently
Sahi et.al.[21] presented the Simpson’s type second derivative A-
stable block method of order six which uses the logic of Simpson’
1
3

rule, and adapted to cope with the integration of stiff systems in
ordinary differential equations.

In the spirit of Sahi et.al.[21], the logic behind the Simpson’s
3
8
-rule for quadrature is used to construct a second derivative mul-

tistep block method, using the techniques of interpolation and col-
location. A main discrete method and two additional methods are
obtained from the same continuous scheme and assembled into a
block matrix equation which is applied to provide the solutions for
(1). The advantage of a block method is that in each application,
the solution is approximated at more than one point. The number
of points depends on the structure of the block method. Therefore,
applying these methods can give faster solutions to the problem
which can be managed to produce a desired accuracy.

This paper is organized as follows: In section 2, the derivation of
the block method is considered. The convergence analysis and the
plot of region of absolute stability of the block method are discussed
in section 3. Numerical examples are given in section 4 to show the
efficiency of the derived method. Section 5 of the paper gives the
conclusion of the work.
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2. Derivation of the method

The Simpson’s 3
8
-type block second derivative method is of the form

y(n+ k)− yn = h
3∑
j=0

βjfn+j + h2
3∑
j=0

γjgn+j (2)

where k=1,2,3 and βj, γj, for each case are coefficients to be de-
termined. We proceed by assuming that the exact solution y(t)
is locally represented in the range [t0, t0 + 3h] by the continuous
solution Y (t) of the form

Y (t) =
8∑
j=0

ζjφj(t) (3)

where ζj are unknown coefficients to be determined and φj(t) are
polynomial basis functions. The method is then constructed with
φj(t) = tj, j = 0, . . . , 8 by imposing the following conditions
(i) The interpolating function (4) coincides with the analytical so-
lution y(t) at the mesh point tn
(ii) Equation (4) satisfies (1) at mesh points tn+j,j = 0, 1, 2, 3.
(iii) The second derivative of (4) coincides with the second deriva-
tive of the analytical solution at mesh points tn+j, j = 0, 1, 2, 3.
The imposed conditions lead to a system of nine equations of the
form

Y (t) = yn (4)

Y ′(t) = fn+i, i = 0, 1, 2, 3 (5)

Y ′′(t) = gn+i, i = 0, 1, 2, 3 (6)

It should be noted that equation (5),(6)and (7) lead to a system
of equations which must be solved to obtain the coefficients ζj, j =
0, . . . , 8 which are substituted into (4) and after some algebraic
computation, our continuous representation yields the form

Y (t) = αj(t)yn + h
3∑
j=0

βj(t)fn+j + h2
3∑
j=0

γj(t)gn+j (7)

where αj(t), βj(t) and γj(t) are continuous coefficients. The equa-
tion (8) is then used to obtain the main method by evaluating (8) at
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point t = tn+3, and the additional methods at points t = tn+2 and
t = tn+1. The combination these methods yields the block method:

yn+3 = yn +
3h
224 [31fn + 81fn+1 + 81fn+2 + 31fn+3]

+ 3h2

1120 [19gn − 27gn+1 + 27gn+2 − 19gn+3]
yn+2 = yn + h[223567fn +

20
21fn+1 +

13
21fn+2 +

20
567fn+3]

+h2[ 43945gn −
16
105gn+1 − 19

105gn+2 − 8
945gn+3]

.yn+1 = yn + h[ 689318144fn +
313
672fn+1 +

89
672fn+2 +

397
18144fn+3]

+h2[ 128330240gn −
851
3360gn+1 − 269

3360gn+2 − 163
30240gn+3]


(8)

From our analysis the integrators (9) are found to be of order p=
(8, 8, 8)T with error constants
Cp+1=C9 = ( 9

313600
, 13
793800

, 313
25401600

)T

3. Stability Analysis

In what follows, (9) can be rearranged and rewritten as a matrix
finite difference equation to assume the block form

A(1)Yω = A(0)Yω−1+h[B(1)Fω+B(0)Fω−1+h2[C(1)Gω+C(0)Gω−1] (9)

where Yω = (yn+1, yn+2, yn+3)
T ,

Yω−1 = (yn−2, yn−1, yn)T ,
Fω = (fn+1, fn+2, fn+3)

T ,
Fω−1 = (fn−2, fn−1, fn)T ,
Gω = (gn+1, gn+2, gn+3)

T ,
Gω−1 = (gn−2, gn−1, gn)T ,

for ω = 0, . . . and n = 0, 3, . . . , N − 3 and the matrices A(1), A(0),
B(1) ,B(0) C(1) and C(0)are three dimensional matrices whose entries
are given by the coefficients of (9) defined as follow:

A(1) =

 1 0 0
0 1 0
0 0 1


A(0) =

 0 0 1
0 0 1
0 0 1


B(1) =

 313
672

89
672

397
18144

20
21

13
21

20
567

243
224

243
224

93
224


B(0) =

 0 0 6893
18144

0 0 223
567

0 0 93
224


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C(1) =

 −851
3360

−269
3360

−163
30240−16

105
−19
105

−8
945−81

1120
81

1120
−57
1120


C(0) =

 0 0 1283
30240

0 0 43
945

0 0 57
1120


Zero Stability: It is worth noting that zero-stability is concerned
with the stability of the difference system in the limit as h tends
to zero. Thus, as h → 0, the method (10) tends to the difference
system

A(1)Yω − A(0)Yω−1 = 0

whose first characteristic polynomial ρ(R) is given by

ρ(R) = det(RA(1) − A(0)) = R2(R− 1) (10)

Following Fatunla[?], the block method (10) is zero-stable, since
from (11), ρ(R) = 0 satisfies |Rj| ≤ 1, j = 1, 2, 3, and for those
roots with |Rj| = 1, the multiplicity does not exceed 1.
Consistency: The block method (10) is consistent as it has order
p > 1. According to Henrici[15] the method is convergent, since
convergence = zerostability + consistency.
Linear stability: The linear stability property of (10) is deter-
mined by applying it to the test equation y′ = λy, λ < 0 to yield

Yω = σ(z)Yω−1 , z = λh, (11)

where the matrix σ(z) is given by

σ(z) = −(A(1) − zB(1) − z2C(1))−1(A(0) + zB(0) + z2C(0))

From (12) we obtain the stability function R(z) : C → C which is
a rational function with real coefficients given by

R(z) =
3z6 + 33z5 + 193z4 + 720z3 + 1740z2 + 2520z + 1680

3z6 − 33z5 + 193z4 − 720z3 + 1740z2 − 2520z + 1680
(12)

The stability domain of the method (or region of absolute stability)
S is defined as

S = [z ε C : R(z) ≤ 1] (13)

Specifically, when the left-half complex plane is contained in S, the
method is said to be A-stable. In Figure 1, The plot in shaded
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portion represents the stability region which corresponds to the
stability function R(z).

Fig. 1. Stability Region

Clearly, from Figure 1, it is obvious that our method is A- stable
since stability function is contained in the left half complex plane.

4. IMPLEMENTATION

The implementation of the above block methods is summarized as
follows: On the partition
IN : {a = t0 < t1 < . . . < tN−1 < tN = b}, n = 0, 1, 2, . . . , N − 1
Step 1. Choose N for k = 3, h = b−a

N
the number of blocks

π = N
3

using (10) n = 0, ω = 1 the values (y1, y2, y3)
T are generated

simultaneously over the subinterval [t0, t3] as y0 are known from the
IVP (1).
Step 2. for n = 3, ω = 2, (y3 . . . , y6)

T are obtained over the subin-
terval [t3, t6] since y3 is known from the first block
Step 3. The process is continued for n = 2k, . . . , N − k and
ω = 3, . . . , π to obtain approximate solutions to (1) on sub-intervals
[t0, tk], . . . , [tN−k, tN ] N is a positive integer and n the grid index.

5. NUMERICAL EXAMPLES

In this section, we discuss the implementation of the Simpson’s-type
block method on some standard stiff systems of ordinary differen-
tial equations. In order to show the accuracy of the method, five
numerical examples, together with the results are presented in this
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section. All numerical computations were executed using our writ-
ten code on Maple 17. For linear problem we use the Gaussian
elimination to solve the resulting k x k matrix in each block. While
for non- linear problems the code uses the Newton iteration.

Example 5.1

Our first example is the strongly stiff system on the range 0 ≤
t ≤ 1

y′1 = −500000y1 + 499999.5y2, y1(0) = 0

y′2 = 499999.5y1 − 500000.5y2, y2(0) = 2

Its exact solution is given by the sum of two decaying exponen-
tials components

y1 = −e−λ1t + e−λ2t

y2 = e−λ1t + e−λ2t

λ1 = 10−6, λ2 = −1
This problem with stiffness ratio 1 : 106 has been solved by Tah-
masbi [24] using the modification of the power series method. The
results in [24] are represented in Table 1 and compared with the
results obtained from the newly derived method. From Table 1,
it is obvious that the derived method performs better even for a
bigger step size. for the solution .

Table 1. The absolute error for Example 5.1

t Error in modified [24] Error in New Method
power series method

h=0.00001 h=0.0001
y1 y1
y2 y2

0.2 6.20× 10−14 3.93× 10−25

6.20× 10−14 3.93× 10−25

0.4 1.02× 10−13 6.57× 10−25

1.02× 10−13 6.57× 10−25

0.6 6.05× 10−14 8.00× 10−25

6.05× 10−14 8.00× 10−25

0.8 4.48× 10−14 8.72× 10−25

4.48× 10−14 8.72× 10−25

1.0 4.41× 10−14 8.90× 10−25

4.41× 10−14 8.90× 10−25
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Example 5.2

Consider the Stiffly nonlinear problem which was proposed by
Kaps [16] in the range 0 ≤ t ≤ 10

y′1 = (ε−1 + 2)y1 + ε−1y2, y1(0) = 1

y′2 = y1 − y2 − y22, y2(0) = 1

the smaller ε is, the more serious the stiffness of the system. Its
exact solution is given by y1 = y22 , y2 = e−t We compare the
new method with that of M(8, r8) in Chartier [7] and BBDF8

in Akinfenwa et.al.[2] taking ε = 10−8 for the correct digit ∆ =

− log10 (
||yi(T )−yn,i||∞
||yn,i||∞ ) at the end of the interval for various values of

h as shown in
It can be seen that for this example the New method show superi-
ority over the methods compared.

Table 2. A comparison of methods for the number of correct
digits ∆ using ε = 10−8 for Example 5.2

method h = 1/4 h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

M(8, r8) 4.66 5.67 6.26 8.47 10.8 3 15.63
BBDF8 5.80 7.93 10.21 12.52 12.87 12.58

NewMethod 8.52 10.94 13.35 15.76 18.16 19.97

Example 5.3 Consider the nonlinear system of differential equa-
tion in the range 0 ≤ t ≤ 10

y′1 = µy1 + y22, y1(0) = − 1

(µ+ 2)

y′2 = −y2 y2(0) = 1

Where µ = 10000. the exact solution is y1 = − e−2t

(µ+2)
, y2 = e−t We

compare the new method with that of Second derivative multistep
methods (SDMM) in Mehdizadeh et.al. [20] as shown in Table 3.
The new method is superior to that in Mehdizadeh et.al. [20].
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Table 3: A comparison of methods for Example 5.3

t Error in Mehdizadeh et.al. [20] Error in New Method
h=0.0001 h=0.1

y1 y1
y2 y2

3 2.478147× 10−11 2.029806× 10−19

2.471093× 10−6 1.437435× 10−14

5 3.450271× 10−14 1.204486× 10−20

2.304573× 10−8 3.214575× 10−15

10 3.456372× 10−18 1.114598× 10−20

3.150734× 10−11 4.375846× 10−17

Example 5.4

Consider the non-linear stiff problem:

y′1 = −0.04y1 + 104y2y3 y1(0) = 1

y′2 = 0.04y1 − 104y2y3 − 3× 107y22, y2(0) = 0

y′3 = 3× 107y22 y3(0) = 0

This is a chemical problem suggested by H.H. Robertson [22] in
(1966), which is used to test stiff integrators. The problem is solved
with the newly derived method in the range 0 ≤ t ≤ 40 and the
results for t = 0.4, 40 with step size h=0.001 are presented in Table
4 below.

Table 4: A comparison of methods for Example 5.4

t Y SDMM [20] HSDMM [19] New Method

0.4 y1 9.851721113863 × 10−1 9.851721113863 × 10−1 9.851721113792 × 10−1

y2 3.386395378909 × 10−5 3.386395378909 × 10−5 3.386395377787 × 10−5

y3 1.479402218548 × 10−2 1.479402218548 × 10−2 1.479402225356 × 10−2

40 y1 7.158270687189 × 10−1 7.158270687189 × 10−1 7.158270687143 × 10−1

y2 9.185534764567 × 10−6 9.185534764567 × 10−6 9.185534764362 × 10−6

y3 2.841637457463 × 10−1 2.841637457463 × 10−1 2.841637457508 × 10−1

Example 5.5

next we solve the standard stiff problem which arose from a
chemistry problem. The problem is solved with the newly derived
method in the range 0 ≤ t ≤ 2 and the results for t = 2 with
step size h=0.0001 are presented in Table 5 below. Consider the
non-linear stiff problem:

y′1 = −0.013y1 − 1000y1y2 − 2500y1y3 y1(0) = 0

y′2 = −0.013y1 − 1000y1y2 y2(0) = 1
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y′3 = −2500y1y3 y3(0) = 1

Table 5: A comparison of methods for Example 5.5

t Y Exact New Method
y1 −0.3616933169289× 10−5 −0.3616933169289× 10−5

2 y2 0.9815029948230 0.9815029948230
y3 1.018493388244 1.018493388244

Example 5.6

As our last example, we consider a well known classical system
{see [25]} in the range 0 ≤ t ≤ 100

y′1 = 998y1 + 1998y2, y1(0) = 1

y′2 = −999y1 − 1999y2, y2(0) = 1

Its exact solution is given by the sum of two decaying exponen-
tials components

y1 = 4e−t − 3e−1000t

y2 = −2e−t + 3e−1000t

The stiffness ratio is 1 : 1000. In Table 6, we present result for
methods in [25] and compare with the newly derived method at
the points T = 5, 40, 70and100 using the step length h = 0.1. The
Simpson 3/8 type of order eight performs better than methods 3.2
and 3.4 of order eight and eleven respectively. order eight

Table 6: Absolute errors = |yi(T )− yi| at various point of T for
Example 5.6

Method 3.2 in [25] p = 8 Method 3.4 in [25] p = 11 NewMethod p = 8

T Erry1 Erry2 Erry1 Erry2 Erry1 Erry2
5 1.96× 10−2 9.80× 10−1 1.58× 10−2 7.92× 10−3 8.56× 10−3 8.56× 10−3

40 3.81× 10−7 1.91× 10−7 1.02× 10−7 5.11× 10−8 6.06× 10−14 6.06× 10−14

70 8.91× 10−12 4.45× 10−12 9.16× 10−13 4.58× 10−13 1.70× 10−23 1.70× 10−23

100 2.08× 10−18 1.04× 10−18 6.67× 10−18 3.33× 10−18 4.76× 10−33 4.76× 10−33

5. CONCLUDING REMARKS

A self-starting Simpson’s 3/8 type second derivative block method
, for solving stiff ordinary differential equation has been proposed.
The good stability and consistency property show that the method
is effective and reliable for numerical solution of stiff problems. The
accuracy of the method has been tested on both linear and non-
linear stiff problems, signifying that the derived method is highly
efficient and competitive with other existing stiff solvers.
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