
Journal of the Vol. 37, Issue 1, pp. 01-22, 2018

Nigerian Mathematical Society c©Nigerian Mathematical Society

A FAMILY OF HYBRID LINEAR MULTI-STEP

METHODS TYPE FOR SPECIAL THIRD ORDER

ORDINARY DIFFERENTIAL EQUATIONS

U. MOHAMMED1, R. B. ADENIYI, M. E. SEMENOV, M. JIYA & A. I. MA’ALI

ABSTRACT. In this paper, we derive a family of three step
hybrid linear multi-step method type with one to three off-step
points. Orders and error constants and convergence analysis of
the proposed method are established. Numerical experiments on
special third order initial and boundary value problems (IVPs,
BVPs) are performed to show the efficiency and accuracy of the
proposed methods over existing method found in the literature.
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1. INTRODUCTION

The mathematical formulation of some physical phenomena in sci-
ence and engineering [1, 2, 3] leads to special third-order initial and
boundary value problems of the type:

y′′′ = f(x, y), y(a) = y0, y
′(a) = η0, y

′′(a) = η1, (1)

y′′′ = f(x, y), y(a) = y0, y
′(a) = δ0, y(b) = yM , (2)

y′′′ = f(x, y), y(a) = y0, y
′(a) = δ0, y

′(b) = yM . (3)

Various approaches can be used to find the analytical solutions
of third-order ordinary differential equations (ODEs). However,
only a limited number of numerical methods are available for solv-
ing Equations (1)-(3) directly without reducing to an equivalent
first-order system of differential equations. Some authors have pro-
posed a solution to third-order of ODE using different analytical
techniques, for instance, the linearizing tangent transformation [4]
leads Equation (1) into the second-order ODE, the extension of
Stäckel transform [5].
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For the numerical integration of general third-order of ODEs,
Awoyemi et al. [6, 7, 8] derived a p-stable linear multistep method
(LMM) which is in form of predictor-corrector and like most LMMs,
which requires one-step method to get starting values. The predic-
tors are also developed in the same way as correctors. Moreover,
the block methods in Fatunla [9] are discrete and are proposed for
non-stiff special second-order ODEs in form of a predictor-corrector
integration process. Zainuddin et al. [10] solved third-order ODEs
directly by using the block backward differentiation formula. Also
like other LMMs, they are usually applied to the IVPs as a single
formula but they are not self-starting; and they advance the nu-
merical integration of the ODEs in one-step at a time, which leads
to overlapping of the piecewise polynomials solution model.
Approaches for finding approximation solutions of IVP and BVP

are actively developing, for example, the geometric representation
concept was proposed by Hairer et al. [11] have been developed in
more details as systematic tri-colored tree theory [12].
There is the need to develop a method which is self-starting,

eliminating the use of predictors with better accuracy and effi-
ciency. Recently, several researchers [13, 14, 15, 16, 17] proposed
LMMs for the direct solution of the general second-order IVPs,
which were shown to be zero-stable and implemented without the
need for either predictors or starting values from other methods.
Jator used the LMMs developed for IVPs and additional methods
obtained from the same continuous k-step LMM to solve third or-
der boundary value problems with Dirichlet and Neumann bound-
ary conditions and also Awoyemi et al. [8], Olabode and Yusuph
[18] developed a LMM for the direct solution of IVP for a special
third order of ODEs. Also many authors have solved third order
BVP by transforming them to IVPs and then solving using Runge-
Kutta method (see, [12, 19]). Many methods like single finite dif-
ference method, spline method proposed by Khan and Aziz [20],
non-polynomial spline proposed by Islam and Tirmizi [21], quartic
splines studied by Pandey [22] and high order difference method
by Salama and Monsor [23] are used in solving third order BVP.
These methods were applied by reducing the BVP to an equivalent
system of first order ODEs which consume a lot of time and hu-
man effort. Biala et al. [24] studied the efficiency of Boundary Value
Methods (BVMs) in combination with methods of lines on second
order BVPs. Jator [25] derived a LMM for direct solution of third
order BVP without reducing it to initial value problem or system
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of first order equivalent. Sahi et al. [26] derived a continuous forth
derivatives method for third order BVP. Fazal-i-Hag et al. [27] pro-
posed a collocation method with the Haar basis functions for the
numerical solution both BVPs and IVP without transformation of
BVPs into IVPs. Aboiyar et al. [28] proposed the continuous LMM
based on Hermite Polynomials as basis functions.
In this research, we extended the works of Jator [25] and Ola-

bode and Yusuph [18] into a hybrid linear multi-step method using
collocation and interpolation procedures by considering one-three
off-step points in order to solve special third order IVPs and BVPs.
This study, therefore proposes a block hybrid multistep method

for the direct solution of third order initial value problems of ordi-
nary differential equations.
The paper is organized as follows. In Section 2, we derive a con-

tinuous approximation Y (x) for the exact solution y(x). Section 3
is devoted to the specification of the order and error constant of
proposed hybrid linear multi-step methods. In Section 4, stability
of proposed hybrid linear multi-step methods is shown. A brief
discussion of numerical results is presented in Section 5.

2. DERIVATION METHOD

The main objective here is to derive a modified linear multi-step
algorithms. This algorithm shall be in the form shown below

r−1∑
j=0

αjyn+j = h3
k∑

j=0

βjyn+j + h3βηfn+η + h3βνfn+ν + h3βμfn+μ (4)

where αj, βj , βη, βν and βμ are unknown constant and η, ν and
μ must not be specified as an integer, h is the step size. It is
important to note here that αk = 1, βk �= 0, α0 and β0 are non-zero.
Equation (4) is obtained by assuming the approximate solution y(x)
as

y(x) =
r+s−1∑
j=0

ajx
j (5)

where aj are coefficients and r = k and s ≥ 5 are distinct inter-
polation and collocation points. The continuous approximation is
then constructed with the imposition of two conditions stated in
next equations:

y(xn+j) = yn+j, j = 0, 1, 2, . . . , r − 1, (6)

y′′′(xn+j) = fn+j. (7)
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Equations (6) and (7) result to a (r+s) system of equations which
can be evaluated for solution through matrix inversion algorithm.
This is with a view to obtaining values for aj . The construction
of final approximation is executed through the substitution of the
values of aj into Equation (5). The method of continuous approxi-
mation can be adequately expressed as

y(x) =
r−1∑
j=0

αj(x)yn+j + h3
k∑

j=0

βj(x)yn+j

+ h3βη(x)fn+η+h3βν(x)fn+ν+h3βμ(x)fn+μ (8)

where αj(x), βj(x), βη(x) and βμ(x) are continuous coefficients.
The first and second derivative formulae are as follows:

y′(x) =
1

h
(

r−1∑
j=0

α′
j(x)yn+j + h3

k∑
j=0

β ′
j(x)yn+j

+ h3β ′
η(x)fn+η + h3β ′

ν(x)fn+ν+h3β ′
μ(x)fn+μ), (9)

y′′(x) =
1

h2
(

r−1∑
j=0

α′′
j (x)yn+j + h3

k∑
j=0

β ′′
j (x)yn+j

+ h3β ′′
η (x)fn+η+h3β ′′

ν (x)fn+ν+h3β ′′
μ(x)fn+μ), (10)

to obtain additional equation and derivative by imposing that

y′(x) = δ(x), y′′(x) = γ(x), (11)

y′(a) = δ0, y
′′(a) = γ0. (12)

2.1. THREE-STEP HYBRID LINEAR METHOD
WITH ONE OFF-STEP COLLOCATION POINT (3SHLM1)

We use Equation (8) to obtain a 3-step HLM with the following spec-
ification: r = 3, s = 5, η = 8

3 , k = 3, and αj(x), βj(x), βη(x) can be

expressed as functions of t, given that t = x−xn
h to obtain the continuous

form as follows

y(x) = α0yn + α1yn+1 + α2yn+2

+ h3[β0fn + β1fn+1 + β2fn+2 + β 8
3
fn+ 8

3
+ β3fn+3]. (13)

Initial value problem. Evaluate Equation (13) at x = xn+3, x =
xn+ 8

3
to get the following

yn+3 = yn − 3yn+1 + 3yn+2

+
h3

800
[5fn + 376fn+1 + 460fn+2 − 81fn+ 8

3
+ 40fn+3], (14)
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yn+ 8
3

=
5

9
yn − 16

9
yn+1 +

20

9
yn+2

+
h3

8748
[31fn + 2268fn+1 + 2436fn+2 − 675fn+ 8

3
+ 260fn+3] (15)

to start the IVP for n = 0, the additional method can be obtained from
Equation (12) as follows

hδ0 = −3

2
y0 + 2y1 − 1

2
y2

+
h3

16800
[975f0 + 5596f1 − 2300f2 + 2349f 8

3
− 1020f3], (16)

h2γ0 = y0 − 2y1 + y2

+
h3

1440
[−451f0 − 1308f1 + 732f2 − 729f 8

3
+ 316f3]. (17)

Boundary value problem. We need two additional methods which
can be combined with Equations (14)-(15) to simultaneously solve third
order BVPs. Hence, we assume that δ(x) and γ(x) are continuous at
x = xn+3. Hence, the following two additional methods were obtained

yn+5 − 4yn+4 + 3yn+3 + 5yn+2 − 8yn+1 + 3yn

= h3[− 61

3360
fn − 599

420
fn+1 − 353

168
fn+2 +

27

1120
fn+ 8

3
− 7

240
fn+3

+
1399

2100
fn+4 − 23

84
fn+5 +

783

2800
fn+ 17

3
− 17

140
fn+6], (18)

yn+5 − 2yn+4 + yn+3 − yn+2 + 2yn+1 − yn

= h3[
1

180
fn +

73

150
fn+1 +

23

24
fn+2 +

81

200
fn+ 8

3
+

659

1440
fn+3

+
109

120
fn+4 − 61

120
fn+5 +

81

160
fn+ 17

3
− 79

360
fn+6] (19)

where

δ(x) =
1

h

[
3

2
yn − 4yn+1 +

5

2
yn+2

+ h3
(

61

6720
fn +

599

840
fn+1 +

353

336
fn+2

− 27

2240
fn+ 8

3
+

61

840
fn+3

)]
, xn ≤ x ≤ xn+3, (20a)

δ(x) =
1

h

[
−3

2
yn+3 + 2yn+4 − 1

2
yn+5

+ h3
(

13

224
fn+3 +

1399

4200
35fn+4 − 23

168
fn+5

+
783

5600
fn+ 17

3
− 17

280
fn+6

)]
, xn+3 < x ≤ xn+6. (20b)
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and

γ(x) =
1

h3

[
yn − 2yn+1 + yn+2

+

(
h3

1800

(
10fn + 876fn+1 + 1725fn+2

)]

+ 729fn+ 8
3
+ 260fn+3

)]
, xn ≤ x ≤ xn+3, (21a)

γ(x) =
1

h2

[
yn+3 − 2yn+4 + yn+5

+

(
h3

360

(
−451fn+3 − 1308fn+4 + 732fn+5

)]

− 729fn+ 17
3
+ 316fn+6

)]
, xn+3 < x ≤ xn+6. (21b)

2.2. THREE-STEP HYBRID LINEAR METHOD
WITH TWO OFF-STEP COLLOCATION POINTS (3SHLM2)

Using Equation (8) to obtain a 3-step HLM with the following spec-
ification as: r = 3, s = 6, ν = 5

2 , μ = 8
3 , k = 3, βη(x) = 0, and

αj(x), βj(x), βν(x), βμ(x) can be expressed as function of t, given that
t = x−xn

h to obtain the continuous form as follows

y(x) = α0yn + α1yn+1 + α2yn+2

+ h3[β0fn + β1fn+1 + β2fn+2 + β 5
2
fn+ 5

2
+ β 8

3
fn+ 8

3
+ β3fn+3], (22)

Initial value problem. Evaluating Equation (22) at x = xn+3, x =
xn+ 8

3
, x = xn+ 5

2
, we get the following

yn+3 = yn − 3yn+1 + 3yn+2

+
h3

1200
[11fn+536fn+1+900fn+2−896fn+ 5

2
+729fn+ 8

3
−80fn+3], (23)

yn+ 8
3

=
5

9
yn − 16

9
yn+1 +

20

9
yn+2

+
h3

52488
[271fn + 81304fn+1 + 19716fn+2 − 21760fn+ 5

2

+ 16605fn+ 8
3
− 1840fn+3], (24)

yn+ 5
2

=
3

8
yn − 5

4
yn+1 +

15

8
yn+2

+
h3

491520
[1729fn + 81304fn+1 + 115740fn+2 − 135424fn+ 5

2

+ 101331fn+ 8
3
− 11080fn+3]. (25)
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In order to start IVP for n = 0, the additional method can be obtained
from Equation (12) as follows

hδ0 = −3

2
y0 + 2y1 − 1

2
y2

+ h3[
5039

100800
f0+

626

1575
f1− 347

560
f2+

3244

1575
f 5

2
− 20331

11200
f 8

3
+

47

180
f3], (26)

h2γ0 = y0 − 2y1 + y2

+ h3[− 5723

20160
f0− 8

7
f1+

3809

1680
f2− 788

105
f 5

2
+
14823

2240
f 8

3
− 1201

1260
f3]. (27)

Boundary value problem. We need two additional methods which
can be combined with Equations (23)-(25) to simultaneously solve third
order BVPs. Hence, we imposed that δ(x) and γ(x) are continuous at
x = xn+3. Hence, the following two additional methods were obtained

yn+5 − 4yn+4 + 3yn+3 + 5yn+2 − 8yn+1 + 3yn

= h3[− 271

10080
fn − 1709

1260
fn+1 − 21

8
fn+2 +

704

315
fn+ 5

2
− 2349

1120
fn+ 8

3

+
15319

50400
fn+3 +

1252

1575
fn+4 − 347

280
fn+5 − 6488

1575
fn+ 11

2
− 20331

5600
fn+ 17

3
− 47

90
fn+6], (28)

yn+5 − 2yn+4 + yn+3 − yn+2 + 2yn+1 − yn

= h3[
869

100800
fn +

647

1400
fn+1 +

1919

1680
fn+2 − 412

525
fn+ 5

2
+

12879

11200
fn+ 8

3

+
6163

20160
fn+3 +

8

7
fn+4 − 3809

1680
fn+5 +

788

105
fn+ 11

2
− 14823

2240
fn+ 17

3
+

1201

1260
fn+6]. (29)

2.3. THREE-STEP HYBRID LINEAR METHOD
WITH THREE OFF-STEP COLLOCATION POINTS (3SHLM3)

Using Equation (8) to obtain a 3-step HLM with the following spec-
ifications as: r = 3, s = 7, η = 7

3 , ν = 5
2 , μ = 8

3 , k = 3, and αj(x),
βj(x), βη(x), βν(x), βμ(x) can be expressed as functions of t, given that
t = x−xn

h to obtain the continuous form as follows

y(x) = α0yn + α1yn+1 + α2yn+2

+ h3[β0fn+β1fn+1+β2fn+2+β 7
3
fn+ 7

3
+β 5

2
fn+ 5

2
+β 8

3
fn+ 8

3
+β3fn+3].(30)

Initial value problem. Evaluating Equation (30) at x = xn+3, x =
xn+ 8

3
, x = xn+ 5

2
, x = xn+ 7

3
, we get the following

yn+3 = yn − 3yn+1 + 3yn+2

+ h3[
433

47040
fn +

1499

3360
fn+1 +

429

560
fn+2 − 729

7840
fn+ 7

3
− 64

105
fn+ 5

2

+
243

448
fn+ 8

3
− 103

1680
fn+3], (31)
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yn+ 8
3

=
5

9
yn − 16

9
yn+1 +

20

9
yn+2

+ h3[
1189943

231472080
fn +

4077487

16533720
fn+1 +

201851

551124
fn+2 +

5167

95256
fn+ 7

3

− 1022144

2066715
fn+ 5

2
+

48217

136080
fn+ 8

3
− 63127

1653372
fn+3], (32)

yn+ 5
2

=
3

8
yn − 5

4
yn+1 +

15

8
yn+2

+ h3[
167729

48168960
fn +

570841

3440640
fn+1 +

25293

114688
fn+2 +

138753

1605632
fn+ 7

3

− 677

1680
fn+ 5

2
+

611631

2293760
fn+ 8

3
− 9469

344064
fn+3], (33)

yn+ 7
3

=
2

9
yn − 7

9
yn+1 +

14

9
yn+2

+ h3[
979

472392
fn +

231251

2361960
fn+1 +

21853

196830
fn+2 +

877

9720
fn+ 7

3

− 85408

295245
fn+ 5

2
+

347

1944
fn+ 8

3
− 20797

1180980
fn+3]. (34)

In order to start IVP for n = 0, the additional method can be obtained
from Equation (12) as

hδ0 = −3

2
y0 + 2y1 − 1

2
y2

+ h3[
8611

201600
f0 +

50333

100800
f1 − 4117

1120
f2 +

39609

2240
f 7

3
− 37832

1575
f 5

2

+
236601

22400
f 8

3
− 1091

1440
f3], (35)

h2γ0 = y0 − 2y1 + y2

+ h3[− 72481

282240
f0 − 487

320
f1 +

45823

3360
f2 − 206307

3136
f 7

3
+

1880

21
f 5

2

− 176661

4480
f 8

3
+

28597

10080
f3]. (36)

Boundary value problem. We need two additional methods which
can be combined with Equations (31)-(34) to simultaneously solve third
order BVPs. Hence, we imposed that δ(x) and γ(x) are continuous at
x = xn+3. Hence, the following two additional methods were obtained

yn+5 − 4yn+4 + 3yn+3 + 5yn+2 − 8yn+1 + 3yn

= h3[− 1207

44100
fn − 34009

25200
fn+1 − 99

35
fn+2 +

4617

3920
fn+ 7

3
+

112

225
fn+ 5

2

−891

700
fn+ 8

3
+

22331

100800
fn+3 +

50333

50400
fn+4 − 4117

560
fn+5

+
39609

1120
fn+ 16

3
− 75664

1575
fn+ 11

2
+

236601

11200
fn+ 17

3
− 1091

720
fn+6], (37)
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yn+5 − 2yn+4 + yn+3 − yn+2 + 2yn+1 − yn

= h3[
505

56448
fn +

205

448
fn+1 +

4297

3360
fn+2 − 12393

15680
fn+ 7

3
+

8

21
fn+ 5

2

+
2673

4480
fn+ 8

3
+

91493

282240
fn+3 +

487

320
fn+4 − 45823

3360
fn+5

+
206307

3136
fn+ 16

3
− 1880

21
fn+ 11

2
+

176661

4480
fn+ 17

3
− 28597

10080
fn+6]. (38)

3. ORDER AND ERROR CONSTANT OF HYBRID LINEAR
MULTI-STEP METHOD

With specific reference to the works of Fatunla [9] and Lambert [29],
the local truncation error attributed to the conventional form of Equa-
tion (8) is defined by the linear difference operator

L[y(x);h] =
k∑

j=0

{
αjy(x+ jh)− h3βjy

′′′(x+ jh)
}

−h3βηy
′′′(x+ ηh)− h3βvy

′′′(x+ vh)− h3βμy
′′′(x+ μh). (39)

Suppose it is assumed that y(x) can be adequately differentiated. It is
possible to expand Equation (39) in the form of Taylor series about the
point x to arrive at the expression

L[y(x);h] = C0y(x) + C1y
′(x) + . . .+ Cqh

qyq(x) + . . . (40)

where the constant coefficients Cq are given as shown below:

C0 =
k∑

j=0

αj , C1 =
k∑

j=1

jαj , . . . ,

Cq =
1

q!

k∑
j=1

jqαj−q(q−1)(q−2)

(
k∑

j=1

jq−3βj + ηq−3βη + vq−3βv + μq−3βμ

)
,

q = 2, 3, . . . .

According to Henrici [30], the method (8) has the order p if

C0 = C1 = . . . = Cp = Cp+1 = 0, Cp+2 = 0, Cp+3 �= 0.

Therefore, Cp+3 is the error constant as shown in Table 1.In order to an-
alyze the methods for zero stability, we normalize the schemes and write
them as a block method from which we obtain the first characteristic
polynomial ρ(R) given by

ρ(R) = det(R · A(0) −A(1)) = Rk(R− 1)

where A(0) = 1(k+1)×(k+1) is the identity matrix of dimension (k + 1),

A(1) = 1(k+1)×1 · iT(k+1),(k+1) is the matrix of dimension (k+1), here in,k
is the k-th column of an n× n identity matrix.
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Case 1. 3SHLM1. It is easily shown that Equations (14)-(17) are
normalized to give the first characteristic polynomial ρ(R) given by

ρ(R) = det(R · A(0) −A(1)) = R3(R − 1)

where A(0) = 14×4, A
(1) = 14×1 · iT4,4.

Case 2. 3SHLM2. It is easily shown that Equations (23)-(27) are
normalized to give the first characteristic polynomial ρ(R) given by

ρ(R) = det(R · A(0) −A(1)) = R4(R − 1)

where A(0) = 15×5, A
(1) = 15×1 · iT5,5.

Case 3. 3SHLM3. It is easily shown that Equations (31)-(36) are
normalized to give the first characteristic polynomial ρ(R) given by

ρ(R) = det(R · A(0) −A(1)) = R5(R − 1)

where A(0) = 16×6, A
(1) = 16×1 · iT6,6.

Table 1. Order and Error Constants
for the Modified Linear Multi-step Methods.

Methods, Equation Order, p Error Constant, Cp+3

(14) 5 − 7
7200

(15) 5 − 85
157464

(23) 6 1
201600

(24) 6 − 5167
1785641768

(25) 6 − 571
123863040

(31) 7 − 61
1270080

(32) 7 − 1028869
37498476960

(33) 7 1696721
650280960

(34) 7 − 17489
1530550080

4. STABILITY OF HYBRID LINEAR MULTI-STEP METHOD

To evaluate and plot the region of absolute stability of HLM, the meth-
ods were reformulated as general linear method expressed as:[

Y
yi+1

]
=

[
A U
B V

] [
hf(Y )
yi+1

]
(41)

where

A =

⎡
⎢⎣

a11 a12 . . . a1s
...

...
. . .

as1 as2 . . . ass

⎤
⎥⎦ , B =

⎡
⎢⎣

b11 b12 . . . b1s
...

...
. . .

bs1 bs2 . . . bss

⎤
⎥⎦ ,

Y =

⎡
⎣ yn

yn+1

yn+k

⎤
⎦ , yi+1 =

[
yn+k

yn+k−1

]
, yi−1 =

[
yn+k−1

yn+k−2

]
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Also the elements of the matrices A,B,U, and V were obtained from in-
terpolation and collocation points and then substituted into the stability
matrix as

M(z) = V + ZB(1− ZA)−1U (42)

and the stability matrix (42) was substituted into the stability function

ρ(η, z) = det(ηI −M(z)) (43)

and then computed with Maple software to yield the stability polyno-
mial.

Case 1. 3SHLM1. The coefficients of Equations (14)-(17) are shown
below:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
... 0 0 1

− 13
448 −1399

8400
23
336 − 783

11200
17
560

... 1
4 0 3

4

451
1440

109
120 − 61

120
81
800 − 79

360

... 0 2 −1

31
8748

7
27

203
729 − 25

324
65

2187

... 20
9 −16

9
5
9

1
160

47
100

23
40 − 81

800
1
20

... 3 −3 1
. . . . . . . . . . . . . . . . . . . . . . . . . . .

1
160

47
100

23
40 − 81

800
1
20

... 3 −3 1

451
1440

109
120 − 61

120
81
800 − 79

360

... 0 2 −1

− 13
448 −1399

8400
23
336 − 783

11200
17
560

... 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By substituting the entries of the above matrices into Equations (42)-
(43), the stability polynomial of 3SHLMS1 is

f(z) = (11520η3z4 − 4560η2z4 + 234919η3z3 + 434649ηz3 − 3472783η2

+ z3 + 5925795η3z2 + 23165565ηz2 − 1154220z2 − 100249140η2z2

+ 678927600ηz− 21388950z+ 143300700η3z −−528679350η2z

− 969570000+ 204120000η3 − 1173690000η2 + 1939140000η)

/ (11520z4 + 234919z3 + 5925795z2 + 143300700z+ 204120000).

The region of absolute stability for 3SHLM1, 3SHLM2, and 3SHLM3 are
shown in Figures 1-3 respectively. From the Figures 1-2 it was found that
the interval of absolute stability for 3SHLM1 is (−27, 0), for 3SHLM2 is
(−1, 0). Thus, the methods have a moderate wide interval of stability.
While from Figure 3 it was found that the 3SHLM3 is A(α)-stable.
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−30 −25 −20 −15 −10 −5 0 5
−6

−4

−2

0

2

4

6

Re(Z)

Im
(z

)

Fig. 1. Stability region of 3SHLM1.

Case 2. 3SHLM2. The coefficients of Equations (24)-(28) are shown
below:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
... 0 0 1

− 5039
201600

− 313
1575

347
1120

− 1622
1575

20331
22400

− 47
360

... 1
4

0 3
4

5723
20160

8
7

− 3809
1680

788
105

− 14823
2240

1201
1260

... 0 2 −1

1729
491520

10163
61440

1929
8192

− 529
1920

33777
163840

− 277
12288

... 15
8

− 5
4

3
8

271
52488

1616
6561

1613
4374

− 2720
6561

205
648

− 230
6561

... 20
9

− 16
9

5
9

11
1200

67
150

3
4

− 56
75

243
400

− 1
5

... 3 −3 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11
1200

167
150

3
4

− 56
75

243
400

− 1
5

... 3 −3 1

5723
20160

8
7

− 3809
1680

788
105

− 14823
2240

1201
1260

... 0 2 −1

− 5039
201600

− 313
1575

347
1120

− 1622
1575

20331
22400

− 47
360

... 1
4

0 3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By substituting the entries of the above matrices into Equations (42)-
(43), the stability polynomial of the 3SHLM2 is
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f(z) =
1

12
(1579355625η2z5 + 4731567000η3z5 − 236871890802η2z4

+ 37665885040ηz4 − 340956065868η3z4 − 10579345534728η2z3

+ 6242912605296η3z3 + 2888996401800ηz3

− 154780934400z3 − 183509896632480η2z2

+ 73185538176000ηz2 + 35312810034240η3z2

− 12679492217760z2 − 714971363500800η2z

+ 207411219993600η3z + 861035226508800ηz

− 250763205369600z − 454302535680000η2

+ 7505867980000η + 79009136640000η3 + 6584094720000)

/ (394297250z5 + 28413005489z4 + 520242717108z3

+ 2942734169520z2 + 17284268332800z + 6584094720000).

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Re(Z)

Im
(z

)

Fig. 2. Stability region of 3SHLM2.



14 U. MOHAMMED et al.

Case 3. 3SHLM3. The coefficients of Equations (32)-(37) are shown
below:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
... 0 0 1

− 8611
403200

− 50333
201600

4117
2240

− 39609
4480

18916
1575

− 236601
44800

1091
2880

..

. 1
4

0 3
4

72481
282240

478
320

− 45823
3360

206307
3136

− 1880
21

176661
4480

− 28597
10080

... 0 2 −1

979
472392

231251
2361960

21853
196830

877
9720

− 85408
295245

347
1944

− 20797
1180980

.

.. 14
9

− 7
9

2
9

167729
48168960

570841
3440640

25293
114688

138753
1605632

− 677
1680

611631
2293760

− 9469
344064

... 15
8

− 5
4

3
8

1189943
23472080

4077487
16533720

201851
551124

5167
95256

− 1022144
2066715

48217
136080

− 63127
1653372

... 20
9

− 16
9

5
9

433
47040

1499
3360

429
560

− 729
7840

− 64
105

243
448

− 103
1680

.

.. 3 −3 1

. . . . . . . . . . . . . . . . . . . . .
... . . . . . . . . .

433
47040

1499
3360

429
560

− 729
7840

− 64
105

243
448

− 103
1680

... 3 −3 1

72481
282240

487
320

− 45823
3360

206307
3136

− 1880
21

176661
4480

− 28597
10080

..

. 0 2 −1

− 8611
403200

− 50333
201600

4117
2240

− 39609
4480

18916
1575

− 236601
44800

1091
2880

... 1
4

0 3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By substituting the entries of the above matrices into Equations (42)-
(43), the stability polynomial of the 3SHLM3 is

f(z) =
1

172519788
(−34225982757724058416281600z − 7592739196573921094190z4

− 310308801649867145942082z3 + 2243731545396242968489920z2

− 6118453306997029232640000 + 1288095433052006154240000η3

+ 30253836428031506675112η3z3 + 1363073230742807416966560η3z2

+ 17913796064214199501363200η3z + 85210973688960000η3z6

+ 13079596712913157980η3z5 + 451137491873027922396η3z4

+ 211294379598616125η2z6 − 125615347262244692990η2z5

− 21173744633227501132884η2z4 − 886243423227056863597566η2z3

− 14216346532520201226326400η2z2 − 63913156371539340735744000η2z

− 7406548740049035386880000η2 + 366816659022365322995ηz5

+ 11280330928349493317988ηz4 − 49333862358114245675064ηz3

+ 6178669396758571686412320ηz2 + 81942803642451874522982400ηz

+ 12236906613994058465280000η)

/ (493920000z6 + 75815052085z5 + 2614989834517z4

+ 175364442414174z3 + 7900967457384120z2

+ 103836181761446400z + 7466363412480000).

5. NUMERICAL EXPERIMENTS AND DISCUSSION
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Fig. 3. Stability region of 3SHLM3.

In this section, the results of the proposed method developed in Sec-
tion 3 are presented for some IVP and BVP of third order differential
equations.

Our method is implemented efficiently by combining the MFDMs as
simultaneous numerical integrator for IVPs and BVPs. For instance, the
method (14)-(17) are combined as instantaneous numerical integrators
for IVPs without looking for any other methods to provide the start-
ing values by explicitly obtaining the initial conditions at xn+3, n =
0, 3, . . . , N − 3 using computed values y(xn+3) = yn+3, δ(xn+3) = δn+3

and γ(xn+3) = γn+3 over sub-intervals [x0, x3], . . ., [xn−3, xn]. On the
other hand, the methods (14)-(19) are combined to give the single ma-
trix of finite difference equation which simultaneously solves BVPs for
both linear and non-linear differential equation.

Problem 1. Linear non-homogeneous problem [18]

y′′′ = 3 sinx, y(0) = 1, y′(0) = 0, y′′(0) = −2.

Exact solution is y(x) = 3 cos x+
x2

2
− 2.

Problem 2. Non-linear homogeneous problem [12]

y′′′ + exp(−y)− 3 exp(−2y) + 2 exp(−3y) = 0,

y(0) = ln 2, y′(0) = 1/2, y′′(0) = 1/4.

Exact solution is y(x) = ln(exp(x) + 1).
Problem 3. System of third order non-homogeneous equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y′′′ =
1

68
(817y + 1393z + 448w), y(0) = −2, y′(0) = −12, y′′(0) = 20,

z′′′ = − 1

68
(1141y + 2837z + 896w), z(0) = −2, z′(0) = 28, z′′(0) = −52,

w′′′ =
1

136
(3059y + 4319z + 1592w), w(0) = −12, w′(0) = −33, w′′(0) = 5.
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The analytical solution of the problem 3 is given by⎧⎨
⎩

y = exp(x)− 2 exp(2x) + 3 exp(−3x),
z = 3exp(x) + 2 exp(2x)− 7 exp(−3x),
w = −11 exp(x)− 5 exp(2x) + 4 exp(−3x).

Problem 4. Application problem [27]

yny′′′ = 1, y(0) = 1, y′(0) = 0, y′′(0) = λ.

The above third order initial value problem was derived by Fazal-i-
Hag et al. [27] to investigate wave solution of the form: h(x, t) = y(x),
x = x̄ − V t, where V is the wave velocity and y is the height of a thin
film on a solid surface.

Numerical results of problems 1-4 are represented in Figures 1–4.
Problem 5. Linear non-homogeneous problem [26]

y′′′ = xy+(x3−2x2−5x−3)ex, y(0) = 0, y(1) = 0, y′(0) = 1, 0 ≤ x ≤ 1.

Exact solution is y(x) = x(1− x)ex.
Problem 6. Non-linear third order BVP

y′′′ = −2 exp(−3y)+
4

(1 + x)3
, y(0) = 0, y(1) = ln 2, y′(0) = 1, 0 ≤ x ≤ 1.

Exact solution is y(x) = ln(1 + x).

Table 2. Maximum Absolute Error,
EMAX = max

i=1,2,...,N
|y(xi)− yi| for Problem 5.

h 3SHLM1 3SHLM2 3SHLM3 Sahi [26]
1/6 1.079 × 10−06 9.13 × 10−08 8.33 × 10−08 1.52 × 10−5

1/9 1.210 × 10−7 6.80 × 10−09 3.30 × 10−09 2.93 × 10−6

1/12 2.770 × 10−8 1.10 × 10−09 9.53 × 10−10 9.26 × 10−7

1/15 8.900 × 10−9 2.00 × 10−10 1.13 × 10−10 3.85 × 10−7

Table 3. Maximum Absolute Error,
EMAX = max

i=1,2,...,N
|y(xi)− yi| for Problem 6.

h 3SHLM1 3SHLM2 3SHLM3
1/6 1.93 × 10−06 7.783 × 10−07 8.62 × 10−08

1/9 2.93 × 10−07 8.16 × 10−08 5.95 × 10−09

1/12 8.18 × 10−08 1.68 × 10−08 1.82 × 10−09

1/15 3.05 × 10−08 5.10 × 10−09 1.03 × 10−10

The proposed schemes were applied to both initial value problem and
boundary value problems arising from third order differential equations.
These problems were also characterized variously by linearity, homo-
geneity and coefficient-wise (variable and constant).

All the proposed three-step hybrid schemes with one, two and three
off-grid points (3SHLM1, 3SHLM2, 3SHLM3) at collocation were more



A FAMILY OF HYBRID LINEAR MULTI-STEP METHODS TYPE . . . 17

Fig. 4. Absolute Errors of Methods for Problem 1 [18].

accurate than the schemes of Olabode and Yusuph [18] for the linear
non-homogeneous problem (problem 1, Fig. 4) due to the number of
off-grid points that were considered.

Problem 2 considered a non-linear homogeneous problem solved by
You and Chen [12]. The results for this problem were shown in Fig. 5.
Comparison was made when the same problem was reduced to the sys-
tem of first order ODEs and the results of the proposed method per-
formed better than that of fourth-order Runge-Kutta method.

Problem 3 involved system of third order non-homogeneous equations
and the results were displayed in Fig. 6. Component-wise, the errors of
the proposed method with three step and one off-grid point are of low
order indicating good performance for problem 3 (Fig. 6, a). The three
component of solution are more accurate for the proposed method with
three step and two off-grid points than those of the three step with one
off-grid point for problem 3 (Fig. 6, b). Also, the proposed schemes of
three steps with three off-grid points at collocation, perform better than
the three step with two off-grid points for problem 3 (Fig. 6, c).

Problem 4 considered a third order initial value problem derived by
Fazal-i-Hag et al. [27] to investigate wave solution. It was noticed that
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Fig. 5. Absolute Errors of Methods for Problem 2 [12].

Fig. 6. Absolute Errors of Methods for Problem 3:
a) 3SHLM1, b) 3SHLM2, c) 3SHLM3.
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Fig. 7. Absolute Errors of Methods for Problem 4 [27].

the proposed schemes compared favorably with the existing method as
shown in in Fig. 7.

Problem 5 considered special third order BVP which was also solved
by Al-Said [31], Islam [21] and Jator [25] with a smaller step size h = 1

8 .

However, the proposed method used lager step size h = 1
6 and it was

found that error was better than the existing methods found in the liter-
ature. Furthermore, it has the advantage of estimating the solution and
it derivatives at every point within the range of integration as presented
in Table 2.

Problem 6 considered the non-linear third order BVP. It was observed
from Table 3 that the maximum errors of the proposed method reduces
as the hybrid point increases.
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We have derived a three-step continuous hybrid linear multi-step
(HLM) method from which multiple finite difference methods (MFDMs)
are obtained and applied to solve third-order ordinary differential equa-
tions (ODEs) without first adapting the ODE to an equivalent first-order
system. The proposed method is universal and it is possible to apply it
for solving directly third-order initial value problems as well as boundary
value problems.

The proposed MFDMs are applied as simultaneous numerical integra-
tors over sub-intervals which do not overlap and hence proposed methods
are more accurate than corresponding to single finite difference methods
(SFDMs) which are generally applied as single formulas over overlapping
intervals. We consider three numerical examples to test the efficiency
of the derived hybrid linear multi-step method. Numerical results are
presented which show that the new method is more efficient in terms of
approximation in solving the third-order ODEs compared to the existing
MFDMs.

We have shown that the proposed methods are stable convergent. Our
approach is quite general and has the potential to design methods for
solving high-orders ODEs.

The further research of our study can be continued in the following
directions. At first, it is an adapting the proposed MFDMs to solve
third-order partial differential equations. At second, it is a using our
approach to derive methods for the solution of high-orders initial value
problems as well as boundary value problems.

The implementation of the method was coded using Maple software
environment.

REFERENCES

[1] J. Canosa, J. Gazdag, The Korteweg-de Vries-Burgers equation, Journal of Com-
putational Physics 23 (4) 393–403, 1977.

[2] W. C. Troy, Solutions of third-order differential equations relevant to draining and
coating flows, SIAM Journal on Mathematical Analysis 24 (1) 155–171, 1993.

[3] E. Poisson, An introduction to the Lorentz-Dirac equation, ArXiv General Rela-
tivity and Quantum Cosmology e-prints http://arxiv.org/abs/gr-qc/9912045.

[4] W. Nakpim, Third-order ordinary differential equations equivalent to linear second-
order ordinary differential equations via tangent transformations, Journal of Sym-
bolic Computation 77 63–77, 2016.

[5] A. Sergyeyev, Coupling constant metamorphosis as an integrability-preserving trans-
formation for general finite-dimensional dynamical systems and ODEs, Physics
Letters A 376 2015–2022, 2012.

[6] D. O. Awoyemi, A p-stable linear multi-step method for solving general third order
ordinary differential equations, International Journal of Computer Mathematics
80 (8) 987–993, 2003.

[7] D. O. Awoyemi, O. M. Idowu, A class of hybrid collocation method for third order
ordinary differential equations, International Journal of Computer Mathematics
82 (10) 1287–1293, 2005.

[8] D. O. Awoyemi, J. S. Kayode, L. O. Adoghe, A Four-Point Fully Implicit Method
for the Numerical Integration of Third-Order Ordinary Differential Equations. In-
ternational Journal of Physical Sciences 9 (1) 7–12, 2014.



A FAMILY OF HYBRID LINEAR MULTI-STEP METHODS TYPE . . . 21

[9] S. O. Fatunla, Block method for second order initial value problem (IVP), Inter-
national Journal of Computer Mathematics 41 55–63, 1991.

[10] N. Zainuddin, Z. Ibrahim, Block method for third order ordinary differential equa-
tions, AIP Conference Proceedings 1870, 050009, 2017.

[11] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag, Berlin,
2006.

[12] X. You, Z. Chen, Direct integrators of Runge-Kutta type for special third-order
ordinary differential equations, Applied Numerical Mathematics 74 128–150, 2013.

[13] S. N. Jator, A sixth order linear multistep method for the direct solution of y′′ =
f(x, y, y′), International Journal of Pure and Applied Mathematics 40 (1) 457–
472, 2007.

[14] S. N. Jator, J. Li, A self stationary linear multistep method for a direct solution of
the general second order initial value problem, International Journal of Computer
Mathematics 85 (5) 817–836, 2009.

[15] U. Mohammed, A class of implicit five step block method for general second order
ordinary differential equations, Journal of Nigerian Mathematical Society 30 25–
39, 2011.

[16] U. Mohammed, R. B. Adeniyi, A class of implicit six step hybrid backward differ-
entiation formulas for the solution of second order differential equations, British
Journal of Mathematics and Computer Science 6 (1) 41–52, 2015.

[17] S. N. Jator, Solving stiff second order initial value problem directly by backward
differentiation formulas, in: Proceeding of the 2007 Int. Conference on computa-
tional and Mathematical Methods in Science and Engineering, Illinois, Chicago,
USA, 2007, pp. 223–232.

[18] B. T. Olabode, Y. Yusuph, A new block method for special third order ordinary
differential equation, Journal of Mathematics and Statistics 5 (3) 167–170, 2009.

[19] L. Collatz, The Numerical Treatment of Differential Equations, Berlin, Springer-
Verlag, 1960.

[20] A. Khan, T. Aziz, The numerical solution of third order boundary value problem
using quintic splines, Appl. Math. Comput. 137 253–260, 2003.

[21] S.-U. Islam, I. A. Tirmiz, A smooth approximation for the solution of special
non-linear third order boundary value problem based on non-polynomial splines,
International Journal of Computer Mathematics 83 (4) 397–407, 2006.

[22] P.K. Pandey, Solving third-order Boundary Value Problems with Quartic Splines,
Springer Plus, 5 (1) 1–10, 2016.

[23] A. A. Salama, A. A. Mansour, Fourth-order finite-difference method for third order
BVP, Numerical heat transfer part B 47 383–401, 2005.

[24] T. Biala, S. Jator, R. Adeniyi, Numerical approximations of second order PDEs
by boundary value methods and the method of lines, Afrika Matematika 1–8, 2016.

[25] S. Jator, On the numerical integration of third order BVP by linear multi-step
methods. A sixth order linear multistep methods, International Journal of Pure
and Applied Mathematics 46 (3) 375–388, 2008.

[26] R. K. Sahi, S. N. Jator, N. A. Khan, Contnuous fourth derivative method for
third order boundary value problems, International Journal of Pure and Applied
Mathematics 85 (2) 907–923, 2013.

[27] Far-i-Hag, I. Hussain, A. Arshed, A Haar wavelets based numerical methods for
third order boundary and initial value problems, World Applied Sciences Journal
13 (10) 2244–2251, 2011.

[28] T. Aboiyar, T. Luga, B.V. Iyorter, Derivation of Continuous Linear Multistep
Methods Using Hermite Polynomials as Basis Functions, American Journal of
Applied Mathematics and Statistics 3 220–225, 2015.



22 U. MOHAMMED et al.

[29] J. D. Lambert, Computational method in ordinary differential equation, John Wi-
ley and Sons, London, U.K., 1973, 278 pp.

[30] P. Henrici, Discrete Variable Methods in ODEs, John Wiley and Sons, New York,
USA, 1962, 407 pp.

[31] E. Al-Said, M. Noor, Cubic spline method for a system of third order BVP, Applied
Mathematics and Computation 42 (2-3) 195–204, 2003.

DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY OF TECHNOLOGY,
MINNA, NIGERIA
E-mail address: umaru.mohd@futminna.edu.ng

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILORIN, ILORIN, NIGERIA
E-mail addres: raphade@unilorin.edu.ng

SCHOOL OF NUCLEAR SCIENCE & ENGINEERING, TOMSK POLYTECHNIC UNI-
VERSITY
E-mail address: sme@tpu.ru

DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY OF TECHNOLOGY,
MINNA, NIGERIA
E-mail address: jiyason@yahoo.com

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, IBRAHIHIM
BADAMASI BABANGIDA UNIVERSITY, LAPAI, NIGER STATE, NIGERIA

E-mail address: aai maali@yahoo.com


