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ABSTRACT. In this paper, we provide reliable approximations
to the generalized Emden - Fowler equation using two semi -
analytic methods; Adomian decomposition method and vari-
ational iteration method, and the recursive Tau method that
employed Newton-Kantorovich approach. The three methods
give very close results, with the semi - analytic methods giving
results that agree completely with some existing results in the
literature when certain parameters are fixed. The results are
presented in both tabular and graphical forms.
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1. INTRODUCTION

The family of equation studied in this paper has received com-
mendable attentions of many researchers in the field of applied
Mathematics due to its wide applications in fluid mechanics and
relativistic mechanics. The generalized form of the equation is in
the form

y′′(x) +
α

x
y′(x) + βf(x)g(y) = 0,

y(0) = a, y′(0) = 0, α ≥ 0
(1)

where α is the shape factor and β is a real constant, f(x) is a
polynomial function of x and g(y) is the nonlinear component of
(1) which is a function of the dependent variable y.
The equation described in (1) has been used by many scientists to
model several phenomenona in physics and astrophysics, such as
the theory of Stellar structure, the thermal behavior of a spherical
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cloud, especially when (1) is reduced to the form

y′′(x) +
α

x
y′(x) + ey(x) = 0 (2)

known as Lane - Emden equation of the second kind, Wazwaz [14]
and Hermann and Saravi [12] (and the references therein). The
formations and solutions of higher order Lane-Emden-Fowler type
equations were carried out in [13, 14]. The effort in that work was
on the formation and solution of Emden-Fowler type equation of
third order by using variational iteration method [8, 14, 16], Biazar
and Hosseini [3, 17] solved equation (1) using modified Adomian de-
composition method, Homotopy method was adopted in [5, 7, 15],
Waheed, Youssri and Eid [24] adopted the construction of ultra-
spherical operational matrices of derivatives and [6, 22] adopted
Hermite functions collocation method to solve (1).
In the present work, we adopt the approach contained in Hermann
and Serran [12] to solve (1) using both Adomian decomposition
method (ADM) and variational iteration method (VIM). Mean-
while, we deviated completely from Hermann and Sarravi [12] by
using some of the techniques developed in [1, 2, 10, 21] which both-
ers on the solution of nonlinear variable coefficients ODEs by Tau
method to solve (1).

2. SOLUTION OF EMDEN-FOWLER EQUATION

In this section, we are generalizing an algorithms to the solution
Emden - Fowler equation using two semi - analytic methods; Ado-
mian decomposition method and variational iteration method, and
the recursive Tau method.

2.1 SOLUTION OF EMDEN-FOWLER EQUATION BY
ADOMIAN DECOMPOSITION METHOD

In this section, we present the solution of (1) by adopting the ap-
proach presented by Hermann and Seravi in [12].
The linear operator L in (1) consists of two derivatives in the first
two terms y′′ + α

x
y′. Then (1) can be written as

Ly(x) = −βf(x)g(y), (3)

with

L ≡ x−α
d

dx

(
xα

d

dx

)
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The corresponding inverse operator L−1 is given as

L−1(.) =

∫ x

0

τ−α
∫ τ

0

tα(.)dtdτ

Berkorich [9] did a group classification of (1) and introduced certain
Lemma, Preposition and Theorems to establish the said group clas-
sification. Also, [13] solved Two - Dimensional Lane-Emden type
equation using Adomian Decomposition Method. Major discussion
in that paper was centered on the partial differential form of the
equation.
Applying L−1 to the first and second derivative terms in (1), we
have

L−1(y′′(x) +
α

x
y′(x)) =

∫ x

0

τ−α
∫ τ

0

tα(y′′(t) +
α

t
y′(t))dtdτ

=

∫ x

o

τ−α
[∫ τ

0

tαy′′(t)dt+

∫ e

0

αtα−1y′(t)dt

]
dτ

=

∫ x

0

t−α
[
tαy′(t)

∣∣∣τ
0
−
∫ τ

0

αtα−1y′(t)dt

+

∫ τ

0

αtα−1y′(t)dt

]
dτ

=

∫ x

0

t−α(ταy′(τ))dτ

=

∫ x

0

y′(τ)dτ

= y(x)− y(0)

⇒ L−1(y′′(x) +
α

x
y′(x)) = y(x)− a

Applying L−1 on (1) generally gives

y(x) = a− L−1(βf(x)g(y)) (4)

Now to apply the ADM, the given nonlinear function g(y) is rep-
resented by an infinite series of Adomian polynomials (details on
how to generate Adomian polynomials can be found in [3, 13, 17]).

g(y(x)) =
∞∑
n=0

An(x), (5)

where

An(x) = An(y0(x), y1(x)), · · · , yn−1)
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The Solution y(x) in Adomian decomposition method is represented
as

y(x) =
∞∑
n=0

yn(x) (6)

using (5) and (6) in (4) gives

∞∑
n=0

yn(x) = a− βL−1
(
f(x)

∞∑
n=0

An(x)

)
(7)

Now, the successive yn(x), n = 0, 1, 2, · · · are obtained recursively
as

y0(x) = a

yk(x) = −βL−1(f(x)Ak−1(x)), k = 1, 2, · · ·

or equivalently as

yk(x) = −β
(∫ x

0
τ−α)

∫ τ

0
tα(f(t)Ak−1(t)Ak−1(t)dt)dτ

)
, k = 1, 2, · · · (8)

2.2 SOLUTION OF EMDEN-FOWLER EQUATION BY
VARIATIONAL ITERATION METHOD

It is immediately observed that (1) has a singularity at x = 0. To
overcome the said singularity, we shall adopt a change of variable
as follows:
Let y =

z

x
, and this implies

z′ = xy′ + y,

and

z′′ = xy′′ + 2y

using these in (1), we have

z′′(x) + βxf(x) = 0, z(0) = 0, z′(0) = a (9)

where g(z) represents the non linearity expressed in terms of z.
From (9) we derive

Lz ≡ z′′, N(z) ≡ βxf(x)g(z) and f(x) ≡ 0

The corresponding non linearity is

zn+1(x) = zn(x) +

∫ x

0

λ(τ)(z′′n(τ) + βτf(τ)g(zn(τ)))dτ (10)
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The optimal value of the Lagrange multiplier can be obtained from
the recursive relation

λ(x) =
(−1)m

(m− 1)!
(τ − x)m−1, m = 1, , 2, · · · (11)

where m is the order of the differential equations. The starting
value of zn(x), that is z0(x) is also derived from

z0(x) = z(0) + xz′(0) +
x2

2!
z′′(0) + · · · (12)

For details on (11) and (12) see [13].
Using (11) and (12), the optimal value of λ(x) is obtained as λ(x) =
τ −x and z0(x) = ax respectively. Using the two and the restricted
variation δzn(0) = 0, we have the recurrence form of (10) as

zn+1(x) = zn(x) +

∫ x

0

λ(τ)(z′′n(τ) + βτf(τ)g(zn(τ)))dτ (13)

the final result is derived from

z(x) = lim
n→∞

zn(x)

and consequently y(x) =
z(x)

x
.

2.3 EXTENSION OF RECURSIVE FORMULATION OF TAU
METHOD TO EMDEN-FOWLER EQUATIONS

In this section, we extend Tau approximant reported in [1, 2] that
handle differential equations of the form:

Ly(x) ≡
m∑
r=0

(
Nr∑
k=0

Prkx
k

)
y(r)(x) =

σ∑
r=0

frx
r, a ≤ x ≤ b (14)

L∗y(xrk) ≡
m−1∑
r=0

arky
(r)(xrk) = αk, k = 1(1)m (15)

by seeking an approximant derived in [1]

yn(x) =
σ∑
r=s

frqr(x) +
m+s−1∑
i=0

τi+1

n−m+i+1∑
r=s

C(n−m+i+1)
r qr(x), (16)

yλn(x) =

σ∑
r=s

frQ
λ
r (x)+

m+s−1∑
i=0

τi+1

n−m+i+1∑
r=s

C
(n−m+i+1)
r Qλr (x) = αλ, λ = 0(1)(m−1) (17)

m+s−1∑
i=0

τi+1

n−m+i+1∑
r=0

C(n−m+i+1)
r Pr +

σ∑
r=0

frPr = 0 (18)
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equation (18) is the equation of undetermined canonical polynomial
as reported in [1, 2] and

Qn(x) =
1∑m

k=0 k!
(n−s
k

)
Pk,k+s

xn−s −
 m∑
k=1

 m∑
j=k

j!
(n− s

j

)
Pj,j−k

Qn−s−k(x)

+

s−1∑
k=0

 m∑
j=0

j!
(n− s

j

)
Pj,j+k

Qn−s+k(x)


(19)

is the generalized Canonical polynomial, reported in [11], to solve
Emden-Fowler equation (1), we shall adopt Newton-Kantorovich
linearization approach reported in [23], that is

Ω(x, y(x), y′(x), . . . , y(m)(x)) =
σ∑
r=0

frx
r. (20)

This process was derived from the Taylor series expansion in several
variables of Ω, which is given by:

Ω+4y∂Ω

∂y
+4y′ ∂Ω

∂y′
+4y′′ ∂Ω

∂y′′
+· · ·+4y(m) ∂Ω

∂y(m)
=

σ∑
r=0

frx
r, (21)

where 4yik = yik+1 − yik, i = 0, 1 . . . ,m
We seek k − th iterative approximate solution of the form:

yn,k(x) =
σ∑
r=s

frqr(x) +
m+s−1∑
i=0

τi+1

n−m+i+1∑
r=s

C(n−m+i+1)
r qr(x), (22)

3. NUMERICAL EXPERIMENTS

In this section, we present two problems that are solved using the
algorithms discussed in the earlier sections for Adomian decom-
position method, variational iteration method and recursive Tau
method

3.1 SOLUTIONS BASED ON ADM

Problem 1
Consider a class of the generalized Emden - Fowler equation that
takes the form

y′′(x) +
2

x
y′(x) + αxmey(x) = 0, y(0) = y′(0) = 0. (23)

It is easily noticed that when compared to the generalized Em-
den - Fowler equation studied in section 2, α = 2, β = α, f(x) =
xm, g(y) = ey(x) and a = 0
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Now using the Adomian decomposition algorithm discussed in the
earlier section, we proceed as shown below.

y(x) = a− β
∫ x

0

τ−α
∫ τ

0

(f(t)g(y(t))dtdτ (24)

Making the appropriate substitutions, (6) reduces to

y(x) = −α
∫ x

0

dτ−2
∫ τ

0

t2(tmg(y(t)))dtdz.

Also,

y(x) = −α
∫ x

0

τ−2
∫ τ

0

tm+2g(y(t))dtdτ

where g(y(t)) is the non linearity term.
The Adomian polynomials corresponding to the non linearity g(y) =
ey(x) are: A0 = ey0 , A1 = y1e

y0 , A2 = y2e
y0 + 1

2!
y21e

y0 , A3 = y3e
y0 +

y1y2e
y0 + 1

3!
y31e

y0 .
Hence (6) can be written as

y0(x) = 0, (25)

yk(x) = −α
∫ x

0

τ−2
∫ τ

0

tm+2Ak−1(t)dτ, k = 1, 2, 3. · · · (26)

using the appropriate Adomian polynomials in (8), we have

y1(x) = −α
∫ x

0

τ−2
∫ τ

0

tm+2ey0(t)dtdτ

y1(x) = −α
∫ x

0

τ−2
∫ τ

0

tm+2e0dtdτ

y1(x) = − xm+2α

(m+ 2)(m+ 3)
, m ≥ −2

y2(x) = −α
∫ x

0

τ−2
∫ τ

0

tm+2y1(t)e
y0(t)dtdτ

y2(x) =
x2m+4

(2m+ 4)(2m+ 5)(m+ 2)(m+ 3)
, m > −2

Following the same procedure, we have subsequent results as:

y3(x) =
(3m+ 8)x3m+6

6(m+ 2)3 + (m+ 3)2(2m+ 5)(3m+ 7)
, m > −2

y4(x) =
[3m(m+ 6) + 26]x4m+8α4

3(m+ 2)3(m+ 3)3(2m+ 5)(3m+ 7)(4m+ 8)(4m+ 9)
, m ≥ −2

and so on. The solution y(x) is given by

y(x) = y0(x) + y1(x) + y2(x) + y3(x) + y4(x) + · · ·
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y(x) = −
xm+2

(m+ 2)(m+ 3)
+

x2m+4α2

(2m+ 4)(2m+ 5)(m+ 2)(m+ 3)

−
(3m+ 8)x3m+6α3

6(m+ 2)3(m+ 3)2(2m+ 5)(3m+ 7)

+
[3m(m+ 6) + 26]x4m+8α4

3(m+ 2)3(m+ 3)3(2m+ 5)(3m+ 7)(4m+ 8)(4m+ 9)

Taking m = 0 and α = 1, we have

y(x) = −x
2

6
+

x4

120
− x6

1890
+ · · · ,

which generalizes the result in Hermann and Saravi (2016).

Problem 2

Consider another class of Emden - Fowler equation of the form

y′′(x) +
2

x
y′(x) + αxmy(x) = 0, y(0) = 1, y′(0) = 0. (27)

When the given DE is compared with the generalized Emden -
Fowler equation (1), it is obvious that α = 2, β = α, f(x) = xm

and a = 1.
The ADM algorithm for the generalized Emden - Fowler equation
is given as

y(x) = a− β
∫ x

0

τ−αtα(f(t)g(y(t))))dtdτ

is used here as

y(x) = 1− α
∫ x

0

τ−2
∫ τ

0

t2(tmg(y(t)))dtdτ

which can as well be written as

y(x) = 1− α
∫ x

0

τ−2
∫ τ

0

tm+2(g(y(t)))dtdτ (28)

y0(x) = 1, (29)

yk(x) = −α
∫ x

0

τm+2Ak−1(t)dtτ, k = 1, 2, 3 · · · (30)

The Adomian Polynomials for the class of non linearity

g(y) = yµ

are
A0 = yµ0 , A1 = µy1y

µ−1
0

A2(x) = µy2y
µ−1
0 +

µ(µ− 1)

2!
y21y

µ−2
0 ,
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A3 = µy3y
µ−1
0 + µ(µ− 1)y1y2 +

1

3!
µ(µ− 1)(µ− 2)y31y

µ−3
0

etc. These polynomials shall be used in (30) to get the following
results:

y1(x) = −α
∫ x

0

τ

∫
0

τtm+2(1µ)dtdτ

y1(x) = − xm+2α

(m+ 2)(m+ 3)
, m > −2.

y2(x) = −α
∫ x

0

τ−2
∫
tm+2µ

(
− tm+2α

(m+ 2)(m+ 3)

)
dtdτ, m > −2.

y2(x) =
x2m+4α2µ

(2m+ 4)(2m+ 5)(m+ 2)(m+ 3)
, m > −2.

Similar procedure is followed to obtain the subsequent results as:

y3(x) = −
x3m+6α3µ[m(3µ− 2) + 8µ− 5]

2(3m+ 6)(m+ 2)2(m+ 3)2(2m+ 5)(3m+ 7)
,

y4(x) =
x4m+8α4µ[2m[µ(47µ− 73) + 29] + µ2[µ(18µ− 29) + 12] + 61µ(2µ− 3) + 70]

6(m+ 2)3(m+ 3)3(2m+ 5)(3m+ 7)(4m+ 8)(4m+ 9)
,

and so on.
The solution is given as

y(x) = y0(x) + y2(x) + y3(x) + y4(x) + · · ·
This,

y(x) = 1− xm+2α

(m+ 2)(m+ 3)
+

x2m+4α2µ

(2m+ 4)(2m+ 5)(m+ 2)

− x3m+6α3µ[m(3µ− 2) + 8µ− 5]

2(3m+ 6)(m+ 2)2(m+ 3)2(2m+ 5)(3m+ 7)
+ ...

To show that the present result generalizes the earlier one in [12],
we take m = 0, α = 1 and µ = 5 so that the problem narrows down
to Emden - Lane - Fowler problem.
The result now becomes

y(x) = 1− x2

6
+
x4

24
− 5x6

432
+

35x8

10368
... .

3.2 SOLUTION BASED ON VIM

In this section, variational iteration method (VIM) is applied to the
same set of the problems that were solved in 3.1.
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Problem 1

Consider the following IVP for the Emden - Fowler ODE

y′′(x) +
2

x
y′(x) + αxmey(x) = 0, y(0) = y′(0) = 0.

Change of variable is inevitable here in order to overcome the
singularity in the given problem.

Let y =
z

x
, so that the problem now becomes

z′′(x) + αxm+1e
z
x = 0, z(0) = z′(0) = 0

Thus,

Lz ≡ z′′, N(z) = αxm+1e
z
x and f(x) = 0

The corresponding correction functional is obtained after the ex-
pansion of ey(x), stopping at the sixth term, and replacing y(x) by
z(x)

x
as

zn+1(x) = zn(x) +

∫ x

0

λ(τ)(z′′n(τ)) + ατm+1

(
1 +

zn(τ)

τ

+
1

2

zn(τ)2

τ 2
+

1

6

zn(τ)3

τ 3
+

1

24

zn(τ)4

τ 4
+

1

120

zn(τ)5

τ 5

)
dτ

Application of restricted variation, δzn(0) = 0 gives the recurrence
formula

zn+1(x) = zn(x) +

∫ x

0

λ(τ)

[
z′′n(τ) + ατm+1

(
1 +

zn(τ)

τ

+
1

2

zn(τ)2

τ 2
+

1

6

zn(τ)3

τ 3
+

1

24

zn(τ)4

τ 4
+

1

120

zn(τ)5

τ 5

)]
dτ

Since the problem is a second order problem, the optimal value
of the Lagrange multiplier is λ(x) = τ − x, also from the initial
condition z0(x) = 0. The recurrence now becomes

zn+1(x) = zn(x) +

∫ x

0

(τ − x)

[
z′′n(τ) + ατm+1

(
1 +

zn(τ)

τ

+
1

2

zn(τ)2

τ 2
+

1

6

zn(τ)3

τ 3
+

1

24

zn(τ)4

τ 4
+

1

120

zn(τ)5

τ 5

)]
dτ
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z0(x) = 0,

z1(x) = z0(x) +

∫ x

0

(τ − x)

[
z′′0 (τ) + ατm+1

(
1 +

z0(τ)

τ

+
1

2

z0(τ)2

τ 2
+

1

6

z0(τ)3

τ 3
+

1

24

z0(τ)4

τ 4
+

1

120

z0(τ)5

τ 5

)]
dτ

z1(x) = − xm+3α
(m+3)(m+2)

z2(x) = z1(x) +

∫ x

0

(τ − x)

[
z′′1 (τ) + ατm+1

(
1 +

z1(τ)

τ

+
1

2

z1(τ)2

τ 2
+

1

6

z1(τ)3

τ 3
+

1

24

z1(τ)4

τ 4
+

1

120

z1(τ)5

τ 5

)]
dτ

This gives

z2(x) = − xm+3α

(m+ 3)(m+ 2)
+

648x5+2mα2

(m+ 2)6(m+ 3)5(2m+ 5)

The next iteration gives

z3(x) = −
2(m− 1)xm+3α

(m+ 2)2(m+ 3)
+

1

2(m+ 2)7(m+ 3)5(2m+ 5)
[(2592 + 11232m

+16848m2 + 16584m3 + 1044m4 + 4361m5 + 1208m6 + 214m7

+22m8 +m9)x2m+5α
]
−

1

6(m+ 2)7(m+ 3)5(2m+ 5)(3m+ 7)
[(3456 + 7344m

+10872m2 + 9152m3 + 4791m4 + 1597m5 + 331m6 + 39m7 + 2m8)x3m+7α3
]

Fixing m = 0 and α = 1, we have

z0(x) = 0, z1(x) = −
x3

6
, z2(x) = −

x3

6
+

x5

120
, z3(x) = −

x3

6
+

x5

120
−

x7

1890
,

z4 = −
x3

6
+

x5

120
−

x7

1890
+

61x9

1632960
, and so on.

Changing back to the original variable y(x), we have the final
results as

y0(x) = 0

y1(x) = −x
2

6
,

y2(x) = −x
2

6
+
x4

12
,

y3(x) = −x
2

6
+
x4

12
− x6

1890
,

y4(x) = −x
2

6
+
x4

12
− x6

1890
+

61x8

1632960
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Problem 2

Consider the following IVP for the Emden-Fowler ODE

y′′(x) +
2

x
y′(x) + αxmy(x)µ = 0, y(0) = 1, y′(0) = 0.

Here, we equally change variable here by using y = z
x

to have the
problem in the form

z′′(x) + αxm+1−µz(x)µ = 0, z(0) = 0, z′(0) = 2

From here, we have

Lz ≡ z′′, N(z) ≡ αxm+1−µzµ and f(x) = 0.

The corresponding correctional functional is

zn+1(x) = zn(x) +

∫ x

0

λ(τ)
(
z′′n(τ) + ατm+1−µzn(τ)µ

)
dτ

The optimal value of the Lagrange multiplier λ(x) = τ − x and the
restricted variation δzn(0) = 0, the recurrence relation is given as

zn+1(x) = zn(x) +

∫ x

0

(τ − x)
(
z′′n(τ) + ατm+1−µzn(τ)µ

)
dτ

For this problem to be effectively handled by using variational iter-
ation method, there is a need for the constant µ to be fixed. Here,
we chose µ = 5 and the recurrence formula now becomes

zn+1 = zn(x) +

∫ x

0

(τ − x)(z′′n(z) + ατm−4zn(τ)5)dτ

z0(x) = z(0) + xz′(0),

z0(x) = x,

z1(x) = z0(x) +

∫ x

0

(τ − x)(z′′0 (τ) + ατm−4z0(τ)5)dτ,

z1(x) = x+ α

∫ x

0

(τ − x)τm+1dτ

z1(x) = x− xm+3α

(m+ 2)(m+ 3)
.

subsequent iterations give

z2(x) = x−
xm+3α

(m+ 2)(m+ 3)
+

1620x2m+5α2

(m+ 2)5(m+ 3)5
−

6480x2m+5

(2m+ 5)(m+ 2)5(m+ 3)5
,

z3(x) = x−
xm+3α

(m+ 2)(m+ 3)
+

1620x2m+5α2

(m+ 2)5(m+ 3)5
−

6480x2m+5α2

(2m+ 5)(m+ 2)5(m+ 3)5

−
14396123857747968000000x3m+7

(m+ 2)26(m+ 3)25(2m+ 5)5(3m+ 7)
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and so on.
For the sake of comparison with the existing results, we fix m = 0
and α = 1 to get

z0(x) = x, z1(x) = x− x3

6
, z2(x) = x− x3

6
+
x5

24
,

z3(x) = x− x3

6
+
x5

24
− 5x7

432
, z4 = x− x3

6
+
x5

34
− 5x7

432
+

35x9

10368
,

which when changed back y gives

y0(x) = 1,

y1(x) = 1− x2

6
,

y2(x) = 1− x2

6
+
x4

24
,

y3(x) = 1− x2

6
+
x4

24
− 5x6

432
,

y4(x) = 1− x2

6
+
x4

24
− 5x6

432
+

35x8

10368
.

3.3 SOLUTIONS BASED ON RECURSIVE TAU METHOD

Solving equation (23) using the method discussed in section 2.3,
the linearized form is:

xy′′k+1 + 2y′k + αxm+1eykyk+1 = (yk − 1)αxm+1eyk , (31)

using the initial approximation y0 = 0. We fix α = 1, m = 0
and consider solutions of degrees 7 and 8, we obtain the following
approximate solutions for first and second iterations

y1 =−
289991506688352x2

1739948055832967
+

2310322560x3

1739948055832967
+

762547063040x4

91576213464893
+

25793890304x5

1739948055832967

−
376383508480x6

1739948055832967
+

19140100096x7

1739948055832967

y2 =− 0.1666671658476x2 + 7.52× 10−6x3 + 0.00829378537597x4 + 0.000101845270945x5

− 0.000671648362947x6 + 0.0001079891721199x7

y1 =−
8327897250105472x2

49967383021015793
+

1464047616x3

49967383021015793
+

416385618211328x4

49967383021015793

+
28219342848x5

49967383021015793
−

9960474886144x6

49967383021015793
+

40558133248x7

49967383021015793

+
121843253248x8

49967383021015793

y2 =− 0.1666667816545x2 + 2.13× 10−6x3 + 0.00831963578698x4 + 0.0000427389618116x5

− 0.000601270324491x6 + 0.00006575792160916931‘x7 + 0.00001010715728238x8
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We compare these solutions with those obtained in VIM and ADM
and then present our observations in Table 1 and Figure 1.
For the solution of the problem in (27), using the method discussed
in section 2.3, we obtain the following results for first and second
iterations:

y1 =1−
7197665547392x2

10796040470513
+

4448371200x3

10796040470513
+

1776887538688x4

10796040470513
+

54787399680x5

10796040470513

−
285644472320x6

10796040470513
+

49179852800x7

10796040470513

y2 =1− 0.167837827193x2 + 0.0170322641749x3 − 0.0420651093691x4 + 0.187628728137x5

− 0.140646989088x6 + 0.0319176656167x7

y1 =1−
255385167751552x2

1532303262386687
+

23801088000x3

1532303262386687
+

63694581503488x4

1532303262386687

+
466450841600x5

1532303262386687
−

8374711992320x6

1532303262386687
+

687964160000x7

1532303262386687

+
253050060800x8

1532303262386687

y2 =1− 0.16667532340x2 + 0.000173828128766x3 + 0.040441033592x4

+ 0.00428706091386x5 − 0.0199149785x6 + 0.0090938285942x7

− 0.0013792753964x8

(32)

The results obtained from VIM (since VIM and ADM give the
same results) were compared with equation (32) and presented in
the Table 2 and Figure 2.

Figure 1. Solutions to Problem 1 and their differences
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Figure 2. Solutions to Problem 1 and their differences

Table 1: Problem 1: Differences in the results of Recursive
Tau method, ADM and VIM

x recursive-ADM recursive-VIM

0 0.0000 0.0000

0.1 2.3572×10−11 2.3786×10−11

0.2 4.4342×10−10 3.8854× 10−10

0.3 1.57134× 10−9 1.6509× 10−10

0.4 1.3508× 10−8 5.3874× 10−10

0.5 8.0905× 10−8 2.8187× 10−9

0.6 3.4378× 10−7 1.6222× 10−8

0.7 1.1596× 10−6 7.5983× 10−8

0.8 3.3094× 10−6 2.8658× 10−7

0.9 8.3075× 10−6 9.1894× 10−7

1.0 1.8834× 10−5 2.5994× 10−6
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Table 2: Problem 2: Differences in the results of Recur-
sive Tau method and VIM (or ADM)

x recursive-VIM(or ADM)

0 0.0000

0.1 8.9012×10−11

0.2 2.5612×10−8

0.3 5.0581× 10−10

0.4 1.1806× 10−7

0.5 9.2257× 10−7

0.6 5.5005× 10−6

0.7 2.4869× 10−5

0.8 9.0944× 10−5

0.9 2.8300× 10−4

1.0 7.7552× 10−4

4. DISCUSSION OF RESULTS AND CONCLUSION

4.1 DISCUSSION OF RESULTS

Table 1 and 2 are the tables of results and its corresponding differ-
ences in the results when the results are evaluated at selected values
of x, with maximum differences of 1.8834 × 10−5 for the recursive
- ADM and 2.5994 × 10−6 for recursive - VIM for the solution to
problem 1 (that is equation (23)). Also in Problem 2 (equation
(27)), it was observed that both ADM and VIM give the same
results, with maximum difference of 7.7552 × 10−4 when compare
with recursive tau method. It is visually obvious from the tables
that the results get closer as the degree of approximation increases
and in addition, the recursive tau method improve as the number
of iteration increases.
For m positive, it can be observed that ADM and VIM generates
polynomials of even powers for both problems, while recursive tau
method generates both even and odd powers of x in the approxi-
mating polynomials.
The closeness of the results become apparent in the graphical repre-
sentations. Figure 1 shows the plots of Problem 1 (that is equation
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(23)) at degree 8 of approximation and second iteration for the re-
cursive form. Figure 2 present the results of recursive-VIM and its
corresponding differences.
The essence of fixing values for some of the constants like the shape
factor α, the integer m and µ is for us to confirm whether our re-
sults generalize the results for similar problems in the literature or
not, but it is gratifying to note that all our results conform with
the results obtained in the literature.

4.2 CONCLUSION

The approximate solutions of generalize Emden - Fowler equation
have been presented. The problem was narrowed down in certain
instances, not for any other reason but for the sake of comparison
with existing results in the literature and it was observed that all
our results conform with the existing results in the literature. More
results can be obtained from the general results we obtained by mere
changing the values of certain parameters, like the shape factor, α.
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