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ON FINITE ELEMENT METHOD FOR LINEAR

HYPERBOLIC INTERFACE PROBLEMS

MATTHEW O. ADEWOLE

ABSTRACT. We investigate the error contributed by semi dis-
cretization to the finite element solution of linear hyperbolic
interface problems. With low regularity assumption on the so-
lution across the interface, almost optimal convergence rates in
L2(Ω) and H1(Ω) norms are obtained. We do not assume that
the interface could be fitted exactly. Numerical experiments are
presented to support the theoretical results.
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1. INTRODUCTION

Interface problems have varieties of applications in scientific com-
puting. The most well-known linear hyperbolic PDE is the wave
equation, which becomes an interface problem when materials with
different properties are involved [8, 12]. The solutions of interface
problems may have higher regularities in each individual material
region than in the entire physical domain because of the discon-
tinuities across the interface [4, 9]. Thus, achieving higher order
accuracy may be difficult using the classical method.
The study of interface problems by Finite Element Method (FEM)

was first carried out by Babuska [4] who studied finite element ap-
proximation to elliptic interface problems on smooth domains with
a smooth interface. Finite element solution of interface problem
has since gained attention of researchers. For recent works on el-
liptic and parabolic interface problems, see [2, 3, 18, 20, 21, 23, 24]
and the references therein, and [5, 6, 7, 13, 15, 17, 19] for works on
hyperbolic non-interface problems.
Let Ω be a convex polygonal domain in R

2 with boundary ∂Ω and
Ω1 ⊂ Ω be an open domain with smooth boundary Γ = ∂Ω1. Let
Ω2 = Ω\Ω1 be another open domain contained in Ω with boundary
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∂Ω1∪∂Ω, see Fig. 1. We consider the hyperbolic interface problem

utt −∇ · (a(x, t)∇u) + b(x, t)u = f(x, t) in Ω× (0, T ] (1)

with boundary condition{
u(x, t) = 0 on ∂Ω × [0, T ] , (2)

initial conditions

u(x, 0) = u0(x) in Ω
ut(x, 0) = u1(x) in Ω

(3)

and interface conditions⎧⎪⎨
⎪⎩

lim
x→m+

u1(x)− lim
x→m−

u2(x) = 0[
lim

x→m+
a1∇u1(x)− lim

x→m−
a2∇u2(x)

]
· n = g(x, t)

(4)

for m ∈ Γ and T ∈ (0,∞) and n is the unit outward normal to the
boundary ∂Ω1. The input functions a(x, t), b(x, t) and f(x, t) are
assumed continuous on each domain but discontinuous across the
interface for t ∈ [0, T ].

Fig. 1. A polygonal domain Ω = Ω1 ∪ Ω2 with interface Γ.

The convergence of finite element solution of problem (1) sat-
isfying conditions (2)−(4) has been considered in [12]. With the
assumption that the interface can be fitted exactly using interface
elements with curved edges, the authors established convergence
rates of optimal order in L2- and H1-norms for both semi and full
discretizations. For the fully discrete scheme, the time discretiza-
tion was based on symmetric difference approximation around the
nodal points. Discrete projection operators were used in their anal-
ysis. Deka and Ahmed [11] investigated the convergence of finite
element solution of an homogenous hyperbolic interface problem.
Convergence rates of optimal order were obtained for both semi
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and full discretizations. Their time discretization was based on
symmetric difference approximation around the nodal points and
approximation properties of interpolation as well as projection op-
erators were used in their analysis.
In practice, the use of curved interface elements may be com-

putationally difficult or impossible particularly when the interface
is irregular in shape and therefore has to be approximated. In
this work, we do not assume that the interface could be fitted ex-
actly. Under certain regularity assumptions on the data of the prob-
lem, we obtain almost optimal order of convergence in the L2(Ω)-
and H1(Ω)-norms for spatial discretization. In our analysis, the
linear theories of interface problems, Sobolev imbedding inequal-
ities and approximation properties of elliptic projection operator
are used with the assumption that g(x, t) ∈ H1/2(Γ) ∩ H2(Γ) and
fi(x, t) ∈ H2(Ωi) for i = 1, 2, t ∈ [0, T ].
For a given Banach space B, we define

Wm,p(0, T ;B)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) ∈ B for a.e. t ∈ (0, T ) and

m∑
i=0

∫ T

0

∥∥∥∥∂iu

∂ti
(t)

∥∥∥∥
p

B

dt < 0

for 1 ≤ p < ∞

u(t) ∈ B for a.e. t ∈ (0, T ) and

m∑
i=0

ess sup
0≤t≤T

∥∥∥∥∂iu

∂ti
(t)

∥∥∥∥
B

< 0

for p = ∞

equipped with the norms

‖u‖Wm,p(0,T ;B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
m∑
i=0

∫ T

0

∥∥∥∥∂iu∂ti (t)
∥∥∥∥
p

B

dt

]1/p
1 ≤ p <∞

m∑
i=0

ess sup
0≤t≤T

∥∥∥∥∂iu∂ti (t)
∥∥∥∥
B

p = ∞

We write L2(0, T ;B) = W 0,2(0, T ;B) and Hm(0, T ;B) =Wm,2

(0, T ;B). H1/2(∂Ω) is the space{
v ∈ Lp(∂Ω) | |v(x)− v(y)|2

‖x− y‖1+n
<∞

}

with the norm

‖u‖H1/2(∂Ω) =

[
‖v‖2Lp(∂Ω) +

∫
∂Ω×∂Ω

|v(x)− v(y)|2
‖x− y‖1+n

dxdy

]1/2
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We also use the following spaces

X = H1(Ω) ∩H2(Ω1) ∩H2(Ω2) , Y = L2(Ω) ∩H1(Ω1) ∩H1(Ω2)

equipped with the norms

‖v‖X = ‖v‖H1(Ω) + ‖v‖H2(Ω1) + ‖v‖H2(Ω2) ∀ v ∈ X

‖v‖Y = ‖v‖L2(Ω) + ‖v‖H1(Ω1) + ‖v‖H1(Ω2) ∀ v ∈ Y.

For fi(x, t) ∈ H2(Ωi), i = 1, 2, we define

‖f‖H2(Ω) = ‖f1‖H2(Ω1) + ‖f2‖H2(Ω2) , t ∈ [0, T ].

We recall that for u ∈ H1(Ω), the boundary value of u (ie u|∂Ω) is

defined on H1/2(∂Ω) the trace space of H1(Ω). Similarly, the trace
space on the interface Γ is H1/2(Γ). The trace operator from H1(Ω)
to H1/2(∂Ω) is continuous and satisfies the embedding

‖z‖H1/2(∂Ω) ≤ c0‖z‖H1(Ω) ∀ z ∈ H1(Ω) .

See [1, 14] for more information on trace operator.
The weak form of (1)−(4) is to find u ∈ H1

0 (Ω) such that

(utt, v) + A(u, v) = (f, v) + 〈g, v〉Γ ∀ v(t) ∈ H1
0 (Ω), a.e. t ∈ [0, T ]

(5)
with u(0) = u0 and ut(0) = u1. Here

(φ, ψ) =

∫
Ω

φψ dx A(φ, ψ) =

∫
Ω

[a(x, t)∇φ · ∇ψ + b(x, t)φψ] dx

〈φ, ψ〉Γ =

∫
Γ

φψ dΓ .

Regarding the regularity of the solutions of the interface problem
(1)−(4), we have the following result:
Theorem 1: Let f ∈ H1(0, T ;L2(Ω)), g ∈ H1(0, T ;H1/2(Γ)) and
u0, u1 ∈ H1

0 (Ω). Then problem (1) together with conditions (2)−(4)
has a unique solution

u ∈ L2(0, T ;X ∩H1
0 (Ω))∩H1(0, T ;H2(Ω1)∩H2(Ω2))∩H2(0, T ; Y )

Proof: See [12].
The remaining part of the paper is organized as follows. In Sec-

tion 2, we describe a finite element discretization of the problem,
establish an error estimate for the interpolation operator and state
approximations across the interface. In Section 3, we prove conver-
gence rates of almost optimal order for the semi discrete scheme.
Numerical examples are presented in Section 4 and conclusion is
made in section 5. Throughout this paper, C is a generic positive
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constant which is independent of the mesh parameter h and may
take on different values at different occurrences.

2. FINITE ELEMENT DISCRETIZATION

We adopt the discretization used in [2, 9]. Th denotes a partition
of Ω into disjoint triangles K (called elements) such that no ver-
tex of any triangle lies on the interior or side of another triangle.
The domain Ω1 is approximated by a domain Ωh

1 with a polygonal
boundary Γh whose vertices all lie on the interface Γ. Ωh

2 represents
the domain with ∂Ω and Γh as its exterior and interior boundaries
respectively.
Let hK be the diameter of an elementK ∈ Th and h = maxK∈Th hK .

Let T �
h denote the set of all elements that are intersected by the

interface Γ;

T �
h = {K ∈ Th : K ∩ Γ �= ∅}

K ∈ T �
h is called an interface element and we write Ω�

h =
⋃

K∈T �
h
K.

The triangulation Th of the domain Ω satisfies the following condi-
tions

• Ω̄ =
⋃

K∈Th

K̄

• If K̄1, K̄2 ∈ Th and K̄1 �= K̄2, then either K̄1 ∩ K̄2 = ∅ or
K̄1 ∩ K̄2 is a common vertex or a common edge.

• Each K ∈ Th is either in Ωh
1 or Ωh

2 , and has at most two
vertices lying on Γh.

• For each element K ∈ Th, let rK and r̄K be the diameters
of its inscribed and circumscribed circles respectively. It is
assumed that, for some fixed h0 > 0, there exist two positive
constants C0 and C1, independent of h, such that

C0rK ≤ h ≤ C1r̄K ∀ h ∈ (0, h0)

Let Sh ⊂ H1
0 (Ω) denote the space of continuous piecewise linear

functions on Th vanishing on ∂Ω.
The finite element solution uh(x, t) ∈ Sh is represented as

uh(x, t) =

Nh∑
j=1

αj(t)φj(x) ,

where each basis function φj , (j = 1, 2, . . . , Nh) is a pyramid func-
tion with unit height. For the approximation gh(x, t), let {zj}nh

j=1 be
the set of all nodes of the triangulation Th that lie on the interface
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Γ and {ψj}nh
j=1 be the hat functions corresponding to {zj}nh

j=1 in the
space Sh.
Lemma 1: For the linear interpolation operator πh : C(Ω̄) → Sh,
we have, for m = 0, 1, and 0 < h < 1

‖u− πhu‖Hm(Ω) ≤ Ch2−m

(
1 +

1

| ln h|

)1/2

‖u‖X ∀ u ∈ X (6)

Proof: See [2].
The results in Lemma 2 take the effect of the interface approxima-
tion into account
Lemma 2: Assume that g ∈ H2(Γ), f ∈ H2(Ω) and νh, ωh ∈ Sh.
Then we have

|〈g, vh〉Γ − 〈gh, vh〉Γh
| ≤ Ch3/2‖g‖H2(Γ)‖vh‖H1(Ω�

h)
(7)

‖v‖H1(Ω�
h)

≤ Ch1/2‖v‖X ∀ v ∈ X (8)

|(f, v)− (f, v)h| ≤ Ch2‖f‖H2(Ω)‖v‖H1(Ω) (9)

Proof: See [9] for (7), [22] for (8) and [10] for (9).

3. CONTINUOUS TIME ERROR ESTIMATES

In this section, we establish the error estimates of the finite el-
ement solution of problem (1) with conditions (2)−(4). The semi-
discrete version of (5) is stated as:
find uh : [0, T ] → Sh such that uh(0) = uh0 , u

h
t (0) = uh1 and satisfies

(uhtt, vh)h + Ah(u
h, vh) = (f, vh)h + 〈gh, vh〉Γh

∀ vh ∈ Sh, a.e t ∈ [0, T ] (10)

where, Ah(φ, ψ) and (ξ, vh)h are defined as

Ah(φ, ψ) =
∑
K∈Th

∫
K

[a∇φ · ∇ψ + bφψ] dx

(ξ, φ)h =
∑
K∈Th

∫
K

ξφ dx ∀ φ, ψ ∈ H1(Ω), t ∈ [0, T ]

Let Ph : X ∩H1
0 (Ω) → Sh be the elliptic projection of the exact

solution u in Sh defined by

Ah(Phν, φ) = A(ν, φ) ∀ φ ∈ Sh, t ∈ [0, T ] (11)

For this projection, we have
Lemma 3: Let att(x, t), btt(x, t) be continuous on Ωi × (0, T ], i =
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1, 2. Assume that u ∈ X ∩ H1
0 and let Phu be defined as in (11),

then

‖ ∂
n

∂tn
(Phu− u)‖H1(Ω) ≤ Ch

(
1 +

1

| lnh|

)1/2 n∑
i=1

‖∂
iu

∂ti
‖X

‖ ∂
n

∂tn
(Phu− u)‖L2(Ω) ≤ Ch2

(
1 +

1

| lnh|

) n∑
i=1

‖∂
iu

∂ti
‖X

for n = 0, 1, 2.
Proof: See [2].
Below are the main results concerning the convergence of the semi-
discrete solution to the exact solution in theH1(Ω)-norm and L2(Ω)-
norm respectively:
Theorem 2: Let u and uh be the solutions of (5) and (10) respec-
tively with u0 ∈ X ∩H1

0 (Ω) and u1 ∈ H1
0 (Ω). Suppose ai(x, t) and

bi(x, t) are continuous on Ωi×(0, T ], i = 1, 2, g(x, t) ∈ H1(0, T ;H2(Γ)),
and fi(x, t) ∈ H1(0, T ;H2(Ωi)). There exists a positive constant C
independent of h such that

max
0≤t≤T

‖u− uh‖H1(Ω) ≤ h

(
1 +

1

| lnh|

)1/2

C

Proof: Subtract (10) from (5)

(utt − uhtt, vh) + A(u, vh)

= Ah(u
h, vh) + (f(x, u), vh)− (f(x, uh), vh)h

+ 〈g, vh〉Γ − 〈gh, vh〉Γh
+ (uhtt, vh)h − (uhtt, vh) ∀ vh ∈ Sh

Let e(t) = u− uh, vh = (Phu− uh)t and use (11)

1

2

d

dt
‖e′(t)‖2L2(Ω) +

μ

2

d

dt
‖e(t)‖2H1(Ω)

≤ (uhtt − utt, (Phu− u)t) + Ah(e(t), (u− Phu)t)

+ Ah(u, (Phu− uh)t)− Ah(Phu, (Phu− uh)t)

+ (f(x, t), (Phu− uh)t)− (f(x, t), (Phu− uh)t)h

+ 〈g, (Phu− uh)t〉Γ − 〈gh, (Phu− uh)t〉Γh

≤ B1 +B2 +B3 +B4 (12)

where

B1 = |(utt − uhtt, (Phu− u)t)| B2 = |Ah(e(t), (u− Phu)t)|
B3 = |Ah(u− Phu, (Phu− uh)t)|
B4 = |(f(x, t), (Phu− uh)t)− (f(x, t), (Phu− uh)t)h|

+ |〈g, (Phu− uh)t〉Γ − 〈gh, (Phu− uh)t〉Γh
|
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For B1, we have

B1 = | d
dt
(e′(t), (Phu− u)t)− (e′(t), (Phu− u)tt)|

≤ 1

4

d

dt
‖e′(t)‖2L2(Ω) +

d

dt
‖(Phu− u)t‖2L2(Ω) +

1

4
‖e′(t)‖2L2(Ω)

+ ‖(Phu− u)tt‖2L2(Ω)

≤ 1

4

d

dt
‖e′(t)‖2L2(Ω) +

1

4
‖e′(t)‖2L2(Ω) + ‖(Phu− u)t‖2L2(Ω)

+ 2‖(Phu− u)tt‖2L2(Ω) (13)

B2 ≤ max{a, b}‖e(t)‖H1(Ω)‖(u− Phu)t‖H1(Ω)

≤ max{a, b}
[
1

4
‖e(t)‖2H1(Ω) + ‖(Phu− u)t‖2H1(Ω)

]
(14)

By Holder’s and Young’s inequalities , we obtain

B3 ≤ max{a, b}
[
1

2
‖Phu− u‖2H1(Ω) + ‖(Phu− u)t‖2H1(Ω)

+
1

2
‖e(t)‖2H1(Ω) +

d

dt

(
ε‖Phu− u‖2H1(Ω) +

1

4ε
‖e(t)‖2H1(Ω)

)]
(15)

Using Lemma 2,

B4 ≤ Ch2‖f‖H2(Ω)‖(Phu− u)t‖H1(Ω) +
d

dt

[
Ch2‖f‖H2(Ω)‖e(t)‖H1(Ω)

]
+ Ch2‖f ′‖H2(Ω)‖e(t)‖H1(Ω) + Ch2‖g‖H2(Γ)‖(Phu− u)t‖H1(Ω)

+
d

dt

[
Ch2‖g‖H2(Γ)‖e(t)‖H1(Ω)

]
+ Ch2‖g′‖H2(Γ)‖e(t)‖H1(Ω)

≤ Ch4
[
‖f‖2H2(Ω) + ‖f ′‖2H2(Ω) + ‖g‖2H2(Γ) + ‖g′‖2H2(Γ)

]
+ ‖(Phu− u)t‖2H1(Ω) +

1

2
‖e(t)‖2H1(Ω)

+
d

dt

[
Ch4ε(‖f‖2H2(Ω) + ‖g‖2H2(Γ)) +

1

2ε
‖e(t)‖H1(Ω)

]
(16)

We substitute (13)−(16) into (12), use Lemma 3 and simplify the
resulting expression taking ε = 3/μ. We obtain, for h sufficiently
small,
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1

4

d

dt
‖e′(t)‖2L2(Ω) +

μ

4

d

dt
‖e(t)‖2H1(Ω)

≤ 1

4
‖e′(t)‖2L2(Ω) + γ‖e(t)‖2H1(Ω)

+ Ch2
(
1 +

1

| lnh|

)(
‖f‖2H2(Ω) + ‖f ′‖2H2(Ω) + ‖g‖2H2(Γ)

+ ‖g′‖2H2(Γ) + ‖u‖2X + ‖ut‖2X + ‖utt‖2X
)

+ Ch4
d

dt

[
‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
where γ = 1 + 1

4
max{a, b}. It follows that

μ

4

d

dt

[
exp

(
−4γ

μ
t

)
‖e(t)‖2H1(Ω)

]

≤ exp

(
−4γ

μ
t

)
Ch2

(
1 +

1

| lnh|

)(
‖f‖2H2(Ω) + ‖f ′‖2H2(Ω)

+ ‖g‖2H2(Γ) + ‖g′‖2H2(Γ) + ‖u‖2X + ‖ut‖2X + ‖utt‖2X
)

+ exp

(
−4γ

μ
t

)
Ch4

d

dt

[
‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
.

It follows by integration that

‖e(t)‖2H1(Ω) ≤ exp

(
4γ

μ
t

)
‖e(0)‖2H1(Ω)

+ Ch2

(
1 +

1

| ln h|
)∫ t

0

[
exp

(
4γ

μ
(t− s)

)(‖f‖2H2(Ω)

+ ‖f ′‖2H2(Ω) + ‖g‖2H2(Γ) + ‖g′‖2H2(Γ) + ‖u‖2X + ‖ut‖2X
+ ‖utt‖2X

)]
ds+Ch4 [‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
.

The result follows by taking uh0 = πhu0 and using Lemma 1.
Theorem 3: Let u and uh be the solutions of (5) and (10) re-
spectively with u0, u1 ∈ X ∩ H1

0 (Ω). Suppose ai(x, t) and bi(x, t)
are continuous on Ωi × (0, T ], i = 1, 2, g(x, t) ∈ H1(0, T ;H2(Γ)),
and fi(x, t) ∈ H1(0, T ;H2(Ωi)). There exists a positive constant C
independent of h such that

max
0≤t≤T

‖u− uh‖L2(Ω) ≤ h2
(
1 +

1

| lnh|

)
C
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Proof: Using (11), we have

((uh − Phu)tt, vh)h + Ah(u
h − Phu, vh)

= ((u− Phu)tt, vh) + (f(x, t), vh)h − (f(x, t), vh) + 〈gh, vh〉Γh

− 〈g, vh〉Γ + ((Phu)tt, vh)− ((Phu)tt, vh)h (17)

We take vh = (uh − Phu)t and make use of Lemma 2

1

2

d

dt
‖(uh − Phu)t‖2L2(Ω) +

μ

2

d

dt
‖uh − Phu‖2H1(Ω)

≤ ‖(uh − Phu)t‖L2(Ω)‖(u− Phu)tt‖L2(Ω)

+ Ch2‖uttt‖H1(Ω)‖uh − Phu‖H1(Ω)

+ Ch2
d

dt

[
‖utt‖H1(Ω)‖uh − Phu‖H1(Ω)

]
+ Ch2‖f ′‖H2(Ω)‖uh − Phu‖H1(Ω)

+ Ch2
d

dt

[
‖f‖H2(Ω)‖uh − Phu‖H1(Ω)

]
+ Ch2‖g′‖H2(Γ)‖Phu− uh‖H1(Ω)

+ Ch2
d

dt

[
‖g‖H2(Γ)‖Phu− uh‖H1(Ω)

]
Simplifying this using Young’s inequality and Lemma 3, we have

‖(uh − Phu)t‖2L2(Ω) ≤ Ch4
(
1 +

1

| lnh|

)2 ∫ t

0

(
‖u‖2X + ‖ut‖2X

+ ‖utt‖2X + ‖f ′‖2H2(Ω) + ‖g′‖2H2(Γ)

)
ds

+ Ch4
(
‖f‖2H2(Ω) + ‖g‖2H2(Γ)

)
+ C‖(uh1 − (Phu)t(x, 0)‖2L2(Ω)

Using Lemma 1 with uh1 = πhu1, we obtain

‖(uh − Phu)t‖2L2(Ω) ≤ Ch4
(
1 +

1

| lnh|

)2 ∫ t

0

(
‖u‖2X + ‖ut‖2X

+ ‖utt‖2X + ‖f ′‖2H2(Ω) + ‖g′‖2H2(Γ)

)
ds

+ Ch4
(
‖f‖2H2(Ω) + ‖g‖2H2(Γ)

)

+ Ch4
(
1 +

1

| lnh|

)2

‖u1‖2X (18)

Now, we take vh = uh − Phu in (17) and make use of Lemma 2
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1

2

d2

dt2
‖uh − Phu‖2L2(Ω) + μ‖uh − Phu‖2H1(Ω)

≤ ‖uh − Phu‖L2(Ω)‖(u− Phu)tt‖L2(Ω)

+ Ch2‖(Phu)tt‖H1(Ω)‖uh − Phu‖H1(Ω)

+Ch2‖f‖H2(Ω)‖uh − Phu‖H1(Ω)

+ Ch2‖g‖H2(Γ)‖Phu− uh‖H1(Ω) + ‖(uh − Phu)t‖2L2(Ω)

It follows after a simple calculation using Young’s inequality and
Lemma 3 that

1

2

d2

dt2
‖uh − Phu‖2L2(Ω) ≤ 1

2
‖uh − Phu‖2L2(Ω) + ‖(uh − Phu)t‖2L2(Ω)

+ Ch4
(
1 +

1

| lnh|

)2 [
‖u‖2X + ‖ut‖2X

+ ‖utt‖2X + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
.

There exists a positive constant γ such that
1

2

d

dt
‖uh − Phu‖2L2(Ω)

≤ 1

2
γT‖uh − Phu‖2L2(Ω) + γT‖(uh − Phu)t‖2L2(Ω)

+ γTCh4
(
1 +

1

| lnh|

)2 [
‖u‖2X + ‖ut‖2X

+ ‖utt‖2X + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

]
+ ‖uh0 − Phu0‖2L2(Ω) + ‖uh1 − Phu1‖2L2(Ω) .

We take uh0 = πhu0, u
h
1 = πhu1 and integrate using (18)

‖uh − Phu‖2L2(Ω) ≤ Ch4
(
1 +

1

| lnh|

)2 ∫ t

0

(
‖u‖2X + ‖ut‖2X

+ ‖utt‖2X + ‖f ′‖2H2(Ω) + ‖g′‖2H2(Γ)

+ ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

)
ds

+ Ch4
(
1 +

1

| lnh|

)2 (
‖u0‖2X + ‖u1‖2X

)
(19)

By triangle and Young’s inequalities,

‖u− uh‖2L2(Ω) ≤ 2‖u− Phu‖2L2(Ω) + 2‖Phu− uh‖2L2(Ω) (20)

The result follows from (19), (20) and Lemma 3.
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4. NUMERICAL EXPERIMENT

Here, we present examples to verify our results. Globally contin-
uous piecewise linear finite element functions based on the triangu-
lation described in Section 2 are used. The mesh generation and
computation are done with FreeFEM++ [16]. For this experiment,
our time discretization is based on centered difference scheme with
sufficiently small time step.
Example 1: Consider the domain Ω = (−1, 1) × (−1, 1) where
the interface Γ is a circle centered at (0, 0) with radius 0.5. Ω1 =
{(x, y) : x2 + y2 < 0.25}, Ω2 = Ω \ Ω1.
On Ω× (0, T ], 0 < T <∞, we consider the problem (1)−(4) whose
exact solution, is

u =

{
(0.25− x2 − y2) sin(0.75t) in Ω1 × (0, T ]

(0.25− x2 − y2)(1− x2)(1− y2)t2 exp(−t) in Ω2 × (0, T ].

The source function f , interface function g and the initial data
u0, u1 are determined from the choice of u with

a =

{
3 in Ω1 × (0, T ]

2 in Ω2 × (0, T ]
b =

{
0.5 in Ω1 × (0, T ]

1 in Ω2 × (0, T ]

Errors in L2 and H1 norms at t = 1 for various step size h are
presented in Table 1. The error values indicate that

‖Error‖L2(Ω) = O

(
h2.026

(
1 +

1

| lnh|

))

‖Error‖H1(Ω) = O

(
h1.024

(
1 +

1

| lnh|

)1/2
)

This is in agreement with the theoretical results.

Table 1. Error estimates for Example 1.

h ‖Error‖L2(Ω) ‖Error‖H1(Ω)

2.43762× 10−1 8.79308× 10−3 1.59443× 10−1

8.79955× 10−2 1.02248× 10−3 5.24571× 10−2

6.80150× 10−2 6.17282× 10−4 3.94249× 10−2

4.40113× 10−2 3.20224× 10−4 2.61162× 10−2

3.35494× 10−2 2.22805× 10−4 1.95413× 10−2

Example 2: Consider the domain Ω = (−2, 2)× (−2, 2) where the
interface Γ is a semicircle centered at (2, 0) with radius 2. Ω1 =
{(x, y) : (x− 2)2 + y2 < 4}, Ω2 = Ω \ Ω1.
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Fig. 2. Solution of Example 1 with h = 3.35494 × 10−2 at t = 1.

On Ω× (0, T ], 0 < T <∞, we consider the problem (1)−(4) whose
exact solution, is

u =

{
(x3 + xy2 − 6x2 − 2y2 + 8x)t2 exp(−t) in Ω1 × (0, T ]

0.4(4x − x2 − y2) sin(0.5πx) sin(0.5πy)t2 exp(−t) in Ω2 × (0, T ].

The source function f , interface function g and the initial data
u0, u1 are determined from the choice of u with

a =

{
5 in Ω1 × (0, T ]

0.5 in Ω2 × (0, T ]
b =

{
x2 + y2 in Ω1 × (0, T ]

exp(−t) in Ω2 × (0, T ]

Errors in L2 and H1 norms at t = 2 for various step size h are
presented in Table 2. The error values indicate that

‖Error‖L2(Ω) = O

(
h2.091

(
1 +

1

| lnh|

))

‖Error‖H1(Ω) = O

(
h0.990

(
1 +

1

| lnh|

)1/2
)

This is in agreement with the theoretical results.

Table 2. Error estimates for Example 2.

h ‖Error‖L2(Ω) ‖Error‖H1(Ω)

2.97314× 10−1 5.87167× 10−2 8.25286× 10−1

1.55282× 10−1 1.41848× 10−2 4.04561× 10−1

1.05091× 10−1 6.46653× 10−3 2.65370× 10−1

7.93175× 10−2 4.26667× 10−3 1.98827× 10−1

6.17493× 10−2 3.50298× 10−3 1.58958× 10−1
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Fig. 3. Solution domain of Example 2 with h = 0.105091.

4. CONCLUDING REMARKS

Continuous time approximation of linear hyperbolic interface prob-
lems on finite element has been investigated. We assume that the
unknown function is of low regularity and obtain convergence rates
of almost optimal order in L2 and H1 norms. Approximation prop-
erties of interpolation and projection operators were used in our
analysis. The theoretical results were confirmed numerically.
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