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ABSTRACT. This study focuses on construction of a new ex-
plicit iterative scheme for approximation of zeros of nonlinear
mappings in reflexive real Banach space with uniformly Gâteaux
differentiable norm. In the study, strong convergence of the pro-
posed iterative scheme is proved under mild conditions on the
iterative parameters. The scheme does not involve resolvent of
the mappings under consideration. Furthermore, applications of
results obtained to Dirichlet and Neumann problems are given.
Our Theorems improve, extend and unify most of the results
that had been proved for this class of mappings.
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1. INTRODUCTION

This research falls within the general area of nonlinear functional
analysis and application, an area which has been of increasing re-
search interest to numerous mathematicians in recent years. Within
the last three decades or so, many results had been recorded on
construction of approximation methods for fixed points and zeros
of several classes of nonlinear mappings. In this direction, sev-
eral authors had introduced numerous iterative algorithms, and
many convergence results had been obtained. To appreciate the
quantum of work already done in this area of research, interested
reader(s) may see the references at the end of this paper and ref-
erences therein. As shall be seen towards the end of next section,
this paper is primarily motivated by the work of Zegeye [37].
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2. PRELIMINARIES

In order to ‘water the ground’ for appreciation and comprehension
of what follows in the sequel, we present some preliminary facts and
concepts which could be found in Chidume [9].

Definition 1. Let E be a real normed space and let S := {x ∈
E : ‖x‖ = 1}. The space E is said to have a Gâteaux differentiable
norm (and E is called smooth) if and only if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S; E is said to have a uniformly Gâteaux
differentiable norm if and only if for each y ∈ S the limit is attained
uniformly for x ∈ S. Further, E is said to be uniformly smooth if
and only if the limit exists uniformly for (x, y) ∈ S × S.

Definition 2. The modulus of smoothness of E is defined by

ρE(τ) := sup
{‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

The space E is equivalently said to be smooth if ρE(τ) > 0, ∀τ > 0.
Let q > 1, then the space E is said to be q-uniformly smooth (or
to have a modulus of smoothness of power type q ) if and only if
there exists a constant c > 0 such that ρE(τ) ≤ cτ q.

Hilbert spaces, Lp(andlp) spaces, 1 < p < ∞, and the Sobolev
spaces, W p

m, 1 < p < ∞, are p-uniformly smooth. Hilbert spaces
are 2-uniformly smooth while

Lpor �p or W
m,p is

{
p− uniformly smooth if 1 < p ≤ 2
2− uniformly smooth if p ≥ 2.

Definition 3. Let E be a real normed space and let Jq, (q > 1)
denote the generalized duality mapping from E into 2E

∗
given by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ||x||q and ‖f‖ = ‖x‖q−1},
where E∗ denotes the dual space of E and 〈., .〉 denotes the duality
pairing between elements of E and E∗. For q = 2, the mapping
J = J2 from E to 2E

∗
is called normalized duality mapping. It is

well known (see, for example, Xu [34]) that Jq(x) = ||x||q−2J(x),
and that if E is uniformly smooth, then J is single-valued (see, e.g.,
[34, 35]). In the sequel, we shall denote the single-valued normalized
duality mapping by j.
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Definition 4. A mapping A : E → E is called accretive if and only
if for all x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that〈

Ax− Ay, j(x− y)
〉 ≥ 0. (1)

As a result of Kato [19], it follows from (1) that the mapping A is
accretive if and only if the inequality

‖x− y‖ ≤ ‖x− y + s(Ax− Ay)‖ (2)

holds for each x, y ∈ D(A) and for all s > 0,

Definition 5. A mapping A : E → E∗ is said to be monotone if
and only if for each x, y ∈ D(A),

〈x− y, Ax− Ay〉 ≥ 0.

We note immediately that accretive and monotone operators coin-
cide in Hilbert spaces.

Definition 6. A mapping A : E → E∗ is called maximal monotone
if and only if its graph G(A) = {(x, y) : y ∈ Ax} is not properly
contained in the graph of any other monotone mapping defined
on E. That is, monotone mapping A is maximal if and only if
for (x, y∗) ∈ E × E∗ such that 〈x − y, u∗ − y∗〉 ≥ 0, for every
x ∈ D(A) and u∗ ∈ Ax implies that y ∈ D(A) and y∗ ∈ Ay. We
know that if A is a maximal monotone mapping, then the set of
zeros of A,A−1(0) := {x ∈ E : 0 ∈ Ax}, is closed and convex.
If E is reflexive, strictly convex and smooth Banach space, then
a monotone mapping A from E into E∗ is maximal if and only if
R(J + λA) = E∗ for each λ > 0, where R(J + λA) denotes the
range of the mapping J + λA (see [30] for more details).

For a proper lower semicontinuous convex function
f : E → (−∞,∞], Rockafellar [30] proved that the subdifferential
mapping ∂f ∈ E ×E∗ of f defined by

∂f(x) := {x∗ ∈ E∗ : f(x) + 〈y − x, x∗〉 ≤ f(y), y ∈ E},
for all x ∈ E, is a maximal monotone mapping.

Let E be a reflexive real Banach space with uniformly Gâteaux dif-
ferentiable norm and let A : E → E∗ be a maximal monotone map-
ping. Our focus in this paper is to consider the problem of finding a
point v ∈ E satisfying A(v) = 0. Such a problem is connected with
the convex minimization problem. In fact, if f : E → (−∞,∞] is
a proper lower semi-continuous convex function, then we have that
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the equation 0 ∈ ∂f(v) is equivalent to f(v) = minx∈E f(x) (see,
e.g., [38] for more details).

A well-known method for solving the equation A(v) = 0 in a Hilbert
space H is the proximal point algorithm generated from arbitrary
x1 = x ∈ H by

xn+1 = Jrnxn, n ≥ 1, (3)

where {rn} ⊂ (0,∞) and Jrn = (I + rnA)
−1 for n ≥ 1. This algo-

rithm was first introduced by Martinet [24]. In 1976, Rockafellar
[31] proved that if lim inf

n→∞
rn > 0 and A−1(0) = ∅, then the sequence

{xn} defined by (3) converges weakly to an element of A−1(0).
Many researchers have studied the convergence of the sequence de-
fined by (3) in a Hilbert space (see, for instance, [5, 6, 20, 21] and
a host of other authors). In particular, Kamimura and Takahashi
[20] obtained the following strong convergence theorem.

Theorem 1. Let H be a real Hilbert space, let A ⊂ H × H be a
maximal monotone mapping and let Jr = (I+rA)−1 for r > 0. For
u ∈ H, let {xn} be a sequence defined by

xn+1 = αnu+ (1− αn)Jrnxn, n ≥ 1,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy lim
n→∞

αn = 0,∑∞
n=1 αn = ∞ and lim

n→∞
rn = ∞. If A−1(0) = ∅, then the sequence

{xn} converges strongly to Pu, where P is the metric projection of
H onto N(A).

In the case when the space is a Banach space, to find a zero point of
a maximal mapping using the proximal point algorithm, Kohsaka
and Takahashi [21] introduced the following iterative sequence for
a monotone mapping A ⊂ E × E∗: x1 = u ∈ E and

xn+1 = J−1(αnJu+ (1− αn)JJrnxn), n ≥ 1,

where Jr = (J + rA)−1 for r > 0, and J is the duality mapping

from E into E∗, {αn} ⊂ [0, 1] such that lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞
and {rn} ⊂ (0,+∞), such that lim

n→∞
rn = ∞. They proved that if

E is smooth and uniformly convex, A ⊂ E ×E∗ is maximal mono-
tone and A−1(0) = ∅, then the sequence {xn} converges strongly
to an element of N(A). This result extends Theorem 1 to Ba-
nach spaces. However, the sequence involves the resolvent map-
pings Jr = (J + rA)−1 for r > 0, which is not easily obtainable in
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applications since it requires computation of inverses of mappings.

In [37], Zegeye studied the sequence {xn}n≥1 of iterates which does
not involve resolvents of an operator A in real Banach spaces and
generated by u, x1 ∈ E,

xn+1 = βnu+ (1− βn)(xn − αnAJxn), n ≥ 1,

where J is the normalized duality mapping from E into E∗; A is
maximal monotone; and {αn}n≥1, {βn}n≥1 are sequences in (0, 1)
satisfying mild conditions. Zegeye [37], first of all, proved that the
sequence {xn}n≥1 is bounded; and in order to obtain strong con-
vergence of {xn}n≥1 to a point in (AJ)−1(0), he made the following
remark:

Remark 1. (See Remark 3.3 of [37]) “Since {xn}n≥1 is bounded,
there exists R > 0 sufficiently large such that u, xn ∈ B := B(x∗)
∀ n ∈ N (for some x∗ ∈ (AJ)−1(0)). Furthermore, the set B is a
bounded closed and convex nonempty subset of E. If we define a
map φ : E → R by

φ(y) = μn‖xn+1 − y‖2,
where μn is Banach limt, then φ is continuous, convex and φ(y) →
+∞ as ‖y‖ → ∞. Thus, if E is a reflexive Banach space, then there
exists x0 ∈ B such that

φ(x0) = min
y∈B

φ(y).

So, the set

Bmin :=
{
x ∈ B : φ(x) = min

y∈B
φ(y)

}
= ∅.”

Zegeye [37] then proved the following theorem:

Theorem 2. Let E be a uniformly convex and 2-uniformly smooth
real Banach space with dual E∗. Let A : E∗ → E be a Lipschitz
continuous monotone mapping with Lipschitz constant L > 0 and
A−1(0) = ∅. For given u, x1 ∈ E, let {xn} be generated by the
algorithm

xn+1 = βnu+ (1− βn)(xn − αnAJxn), n ≥ 1,

where J is the normalized duality mapping from E into E∗; and
{αn}n≥1, {βn}n≥1 are sequences in (0, 1) such that (i) lim

n→∞
βn = 0,

(ii)
∞∑
n=1

βn = ∞ and (iii) lim
n→∞

αn

βn

= 0. Suppose that Bmin ∩
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(AJ)−1(0) = ∅. Then {xn} converges strongly to Ru := x∗ ∈
(AJ)−1(0), with Jx∗ ∈ A−1(0), where R is a sunny generalized
nonexpansive retraction of E onto (AJ)−1(0).

3. THE HEART OF THE MATTER

A gap is observed in Theorem 2. To see this gap, the following
Lemma is needed:

Lemma 1. (see, e.g., [4, 33]) Let {an}∞n=1 be a sequence of non-
negative real numbers satisfying the following relation:

an+1 ≤ (1− γn)an + σn, n ≥ 1,

where {γn}∞n=1 and {σn}∞n=1 satisfy the conditions:
(i) {γn}∞n=1 ⊂ [0, 1],

∑∞
n=1 γn = ∞; (ii) σn = o(γn), that is

lim
n→∞

σn

γn
= 0. Then, an → 0 as n → ∞.

We now return to our discussion on Theorem 2.

Remark 2. A close look at the algorithm in Theorem 2 showed that
if AJ = I, the identity mapping of E, and we choose the iterative
parameters αn = 1

(n+1)2
and βn = 1

n+1
, then {αn}n≥1 and {βn}n≥1

both satisfy the conditions imposed on the parameters in Theorem
2; and for u ∈ E, u = 0 (of course with AJ = I), we obtain that

xn+1 =
1

n+ 1
u+

(
1− 1

n+ 1

)(
xn − 1

(n+ 1)2
xn

)

=
(
1− 1

n+ 1

)(
1− 1

(n+ 1)2

)
xn +

1

n + 1
u

=
(
1− 1

(n+ 1)2
− 1

n + 1
+

1

(n + 1)3

)
xn +

1

n+ 1
u

=
(
1− 1

(n+ 1)2
− 1

n + 1
+

1

(n + 1)3

)
(xn − u)

+
(
1− 1

(n+ 1)2
− 1

n + 1
+

1

(n + 1)3

)
u+

1

n+ 1
u.

Thus,

xn+1 − u =
(
1− 1

(n+ 1)2
− 1

n+ 1
+

1

(n+ 1)3

)
(xn − u)

−
( 1

(n+ 1)2
+

1

(n+ 1)3

)
u.
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Therefore,

||xn+1 − u|| ≤
(
1− 1

(n + 1)2
− 1

n + 1
+

1

(n+ 1)3

)
||xn − u||

+
( 1

(n+ 1)2
+

1

(n + 1)3

)
||u||. (4)

It is easy to check that if we set γn = 1
(n+1)2

+ 1
n+1

− 1
(n+1)3

and

σn =
(

1
(n+1)2

+ 1
(n+1)3

)
||u||, then (4) becomes

||xn+1 − u|| ≤ (1− γn)||xn − u||+ σn

and σn

γn
→ 0 so that by Lemma 1, xn → u as n → ∞. But u /∈

I−1(0) = {0}. Thus the scheme studied by Zegeye [37] is wanting.
Moreover, the assumption that A−1(0) ∩ Bmin = ∅ in the result
obtained in [37] is rather strong.

Motivated by the result of Zegeye [37], it is our purpose in this pa-
per to study an explicit iterative algorithm which will enable us to
correct the anomalies pointed out in Remark 2. As an interesting
corollary from the main Theorem obtained in this paper, a replica
of the result obtained in [37] is presented. Furthermore, we give
some examples where our assumed conditions are fulfilled and give
applications of our results in solving Dirichlet and Neumann prob-
lems.

We shall make use of the following lemmas in the sequel.

Lemma 2. (Morales and Jung, [26]) Let K be a closed convex
subset of a reflexive Banach space E with a uniformly Gâteaux dif-
ferentiable norm. Let T : K → K be continuous pseudo-contractive
mapping with F (T ) = ∅. Suppose that every closed convex and
bounded subset of K has the fixed point property for nonexpansive
self-mappings. Then for u ∈ K, the path t → yt ∈ K, t ∈ [0, 1),
satisfying yt = tTyt+(1−t)u, converges strongly to a fixed point Qu
of T as t → 1, where Q is the unique sunny nonexpansive retraction
from K onto F (T ).

The following is an immediate consequence of Lemma 2.

Corollary 1. Let K be a closed convex subset of a reflexive Banach
space E with a uniformly Gâteaux differentiable norm such that 0 ∈
K. Let T : K → K be continuous pseudo-contractive mapping with
F (T ) = ∅. Suppose that every closed convex and bounded subset
of K has the fixed point property for nonexpansive self-mappings.
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Then the path t → yt ∈ K, t ∈ [0, 1), satisfying yt = tTyt, converges
strongly to a fixed point Q(0) of T as t → 1, where Q is the unique
sunny nonexpansive retraction from K onto F (T ).

Lemma 3. (Moore and Nnoli, [27]) Let {λn}∞n=1, {αn}∞n=1 and
{γn}∞n=1 be a sequences of non-negative real numbers satisfying the

following relation: lim
n→∞

an = 0,

∞∑
n=1

αn and γn
αn

→ 0, n → ∞. Sup-

pose that
λn+1 ≤ λn − αnϕ(λn+1) + γn, n ≥ 1

be given where ϕ : [0,∞) → [0,∞) is a strictly increasing function
such that is positive on (0,∞) with ϕ(0) = 0. Then λn → 0, as
n → ∞.

Lemma 4. Let E be a real normed space and J the normalized
duality mapping on E. Then, for any x, y ∈ E, the following in-
equality holds:

||x+ y||2 ≤ ||x||2 + 2〈y, j(x+ y)〉, ∀j(x+ y) ∈ J(x+ y).

Remark 3. For the rest of this paper, {αn} and {βn} are real se-
quences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

βn = 0; (ii) αn(1 + βn) ≤ 1,
∑

αnβn = ∞, lim
n→∞

αn

βn

= 0;

(iii) lim
n→∞

α−1
n β−2

n (βn−1−βn) = 0. Examples of real sequences which

satisfy these conditions are αn = 1
(n+1)a

and βn = 1
(n+1)b

, where

0 < b < a and a + b < 1. Also {yn} denotes the sequence defined
by yn := ytn = tn(I − AJ)ytn , tn = 1

1+βn
, ∀ n ≥ 1 guaranteed by

Corollary 1.

Remark 4. Some of the ideas displayed in the proof of our theorems
in this section are borrowed from the methods of proof used in the
results of Chidume and Zegeye [12].

Next, we prove our main theorems:

Theorem 3. Let E be a real Banach space with dual E∗ such that
the normalized duality mapping J from E to E∗ is single-valued.
Let A : E∗ → E be a mapping. For given x1 ∈ E, let {xn} be
generated by the algorithm

xn+1 = xn − αnAJxn − αnβnxn, n ≥ 1, (5)

where J is the normalized duality mapping from E to E∗. Sup-
pose that (AJ)−1(0) = ∅ and that AJ is an accretive Lipschitz with
Lipschitz constant L ≥ 0, then {xn} is bounded.
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Proof. Since αn

βn
→ 0 as n → ∞, there exists N0 ∈ N such that

∀n ≥ N0,
αn

βn
≤ d := 1

2(2+L)2
. Let x∗ ∈ (AJ)−1(0) and let r > 0 be

sufficiently large such that xN0 ∈ Br(x
∗) and x∗ ∈ B r

2(2+L)
(0). It

suffices to show that {xn}n≥N0 is in B := Br(x∗). Now, xN0 ∈ B
by construction. Hence we may assume xk ∈ B for any n = k ≥
N0 and prove that xk+1 ∈ B. Suppose xk+1 is not in B, then
||xk+1−x∗|| > r and thus from the recursion formula (5) and Lemma
4 we get that

||xk+1 − x∗||2 = ||xk − x∗ − αk(AJxk + βkxk)||2
≤ ||xk − x∗||2 − 2αk〈AJxk + βkxk, J(xk+1 − x∗)〉
= ||xk − x∗||2 − 2αkβk||xk+1 − x∗||2

+2αk〈βk(xk+1 − xk)−AJxk − βkx
∗

+AJxk+1 − AJxk+1, J(xk+1 − x∗)〉. (6)

Since AJ is accretive, we have 〈−AJxk+1, J(xk+1−x∗)〉 ≤ 0. Thus,
(6) gives

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − 2αkβk||xk+1 − x∗||2

+2αk

[
2||xk+1 − xk||

+‖AJxk+1 −AJxk‖
]
.||xk+1 − x∗||

−2αkβk〈x∗, J(xk+1 − x∗)〉
≤ ||xk − x∗||2 − 2αkβk||xk+1 − x∗||2

+2αk(1 + L)||xk+1 − xk||.||xk+1 − x∗||
+2αkβk||xk+1 − x∗||.||x∗||

= ||xk − x∗||2 − 2αkβk||xk+1 − x∗||2

+2αk(1 + L)
[
αk||βn(−x∗ + x∗ − xk)

+AJxk −AJx∗||
]
||xk+1 − x∗||

+2αkβk||xk+1 − x∗||.||x∗||
≤ ||xk − x∗||2 − 2αkβk||xk+1 − x∗||2

+2α2
k(1 + L)2||xk − x∗||.||xk+1 − x∗||

+2α2
kβk(2 + L)||x∗||.||xk+1 − x∗||. (7)

But ||xk+1 − x∗|| > ||xk − x∗||. Thus we obtain from (7) that

||xk+1 − x∗|| ≤ αk

βk
(1 + L)2||xk − x∗||+ (2 + L)||x∗||,
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and hence ||xk+1 − x∗|| ≤ r, since xk ∈ B and x∗ ∈ B r
2(2+L)

(0) and
αk

βk
≤ 1

2(1+L)2
. But this is a contradiction. Therefore, xn ∈ B for all

positive integers n ≥ N0 and hence the sequence {xn} is bounded.
�

Theorem 4. Let E be a reflexive real Banach space with uniformly
Gâteaux differentiable norm. Let A : E∗ → E be a mapping. For
any x1 ∈ E, let {xn}∞n=1 be the sequence iteratively generated by

xn+1 = xn − αnAJxn − αnβnxn, n ≥ 1, (8)

Suppose that (AJ)−1(0) = ∅; and suppose that AJ is an accretive
Lipschitz mapping with Lipschitz constant L ≥ 0, then the sequence
{xn}∞n=1 converges strongly to some u∗ ∈ (AJ)−1(0) with Ju∗ ∈
A−1(0).7

Proof. From the recursion formula (8) and Corollary 1 we have that

||xn+1 − yn||2 ≤ ||xn − yn||2 − 2αnβn〈(xn+1 − yn), J(xn+1 − yn)〉
+2αn〈βn(xn+1 − yn)

−AJxn − βnxn, J(xn+1 − yn)〉
= ||xn − yn||2 − 2αnβn||xn+1 − yn||2

+2αn〈βn(xn+1 − xn)

−[βn(yn) + AJyn]− [AJxn+1 − AJyn]

+[AJxn+1 − AJxn], J(xn+1 − yn)〉. (9)

Observe that AJ being accretive and by the property of yn, we have
that βnyn + AJyn = 0 and 〈AJxn+1 −AJyn, J(xn+1 − yn)〉 ≥ 0 for
all n ≥ 1. Thus, we have from (9) that

||xn+1 − yn||2 ≤ ||xn − yn||2 − 2αnβn||xn+1 − yn||2
+2αn〈βn(xn+1 − xn)

+AJxn+1 − AJxn, J(xn+1 − yn)〉
≤ ||xn − yn||2 − 2αnβn||xn+1 − yn||2

+2αn(1 + L)||xn+1 − xn||.||xn+1 − yn||. (10)
But since (AJ)−1(0) = ∅, we obtain (by Corollary 1 applied to
T = I −AJ) that {yn} is bounded. Therefore,

||xn+1 − yn||.||AJxn + βnxn|| ≤ M

for some M ≥ 0. Thus, from (10) we get that

||xn+1 − yn||2 ≤ ||xn − yn||2
−2αnβn||xn+1 − yn||2 + 2α2

n(1 + L)M. (11)
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Moreover, since AJ is accretive, we have that

||yn−1 − yn|| ≤
∥∥∥yn−1 − yn + βn

−1
[
AJyn−1 −AJyn

]∥∥∥
= |β−1

n (βn−1 − βn)|‖yn−1‖. (12)

Thus, we obtain from (11) and (12) that

||xn+1 − yn||2 ≤ ||xn − yn−1||2 − 2αnβn||xn+1 − yn||2

+M1

[
|β−1

n (βn−1 − βn)|+ 2α2
n(2 + L)

]
, (13)

for some constant M1 > 0. By Lemma 3 and the conditions on
{αn} and {βn} we get from (13) that ||xn − yn−1|| → 0 as n → ∞.
Consequently, ||xn − yn|| → 0 as n → ∞. Therefore, since by
Corollary 1, {yn}n≥1 converges to some u∗ ∈ E, where (I−AJ)u∗ =
u∗ we get that {xn}n≥1 converges strongly to some u∗ ∈ (AJ)−1(0)
with Ju∗ ∈ A−1(0). This completes the proof. �
Corollary 2. Let E be a reflexive real Banach space with uniformly
Gâteaux differentiable norm. Let A : E∗ → E be a monotone
mapping. For any x1 ∈ E, let {xn}∞n=1 be the sequence iteratively
generated by

xn+1 = xn − αnAJxn − αnβnxn, n ≥ 1, (14)

Suppose that (AJ)−1(0) = ∅; and suppose that AJ is an accretive
Lipschitz mapping with Lipschitz constant L ≥ 0, then the sequence
{xn}∞n=1 converges strongly to some u∗ ∈ (AJ)−1(0) with Ju∗ ∈
A−1(0).

It was shown in Remark 5, p. 208 of [35] that if E is 2-uniformly
smooth, then for all x, y ∈ E there exists a constant L∗ > 0 such
that ∀x, y ∈ E, ||Jx − Jy|| ≤ L∗||x − y||. Thus, we obtain the
following corollary (in which we drop the assumption that AJ Lip-
schitz) as a replica of intention of Theorem 2 (Zegeye [37]).

Corollary 3. Let E be a uniformly convex and 2-uniformly smooth
real Banach space with dual E∗. Let A : E∗ → E be a Lipschitz
maximal monotone mapping with A−1(0) = ∅. For any x1 ∈ E, let
{xn}∞n=1 be the sequence iteratively generated by

xn+1 = xn − αnAJxn − αnβnxn, n ≥ 1.

Suppose that AJ is accretive, then the sequence {xn}∞n=1 converges
strongly to some u∗ ∈ (AJ)−1(0) with Jx∗ ∈ A−1(0).

If E is 2-uniformly smooth Banach space and A is a bounded lin-
ear maximal monotone operator on E∗, then the condition AJ is
Lipschitz can also be dispensed. Thus, we obtain the following:
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Corollary 4. Let E be a real 2-uniformly smooth Banach space.
Let A : E∗ → E be a bounded linear maximal monotone mapping
with A−1(0) = ∅. For any u, x1 ∈ E, let {xn}∞n=1 be the sequence
iteratively generated by (14). Suppose that AJ is accretive, then the
sequence {xn}∞n=1 converges strongly to some u∗ ∈ (AJ)−1(0) with
Ju∗ ∈ A−1(0).

Proof. Observe that ∀x, y ∈ E,

||AJx−AJy|| = ||A(Jx−Jy)|| ≤ ||A||||Jx−Jy|| ≤ ||A||L∗||x−y||.
Hence, AJ is Lipschitz. The remaining follows as in the proof of
Theorem 4 �
We know that if E is a real Hilbert space, then the duality mapping
J on E becomes an identity mapping on E and monotonicity of an
operator A coincides with its accretivity. Hence, we obtain the
following corollary from Theorem 4 and Corollary 4.

Corollary 5. Let H be a real Hilbert space. Let A : H → H be
a Lipschitz maximal monotone mapping with A−1(0) = ∅. For any
x1 ∈ E, let {xn}∞n=1 be the sequence iteratively generated by

xn+1 = xn − αnAxn − αnβnxn, n ≥ 1, (15)

then the sequence {xn}∞n=1 converges strongly to some u∗ ∈ A−1(0).

Remark 5. Since any positive linear operator A on a real Hilbert
space H (i.e., 〈Ax, x〉 ≥ 0, ∀x ∈ H) is maximal monotone, then our
Corollary 5 is applicable for any Lipschitz positive linear operator.
Thus, we have the following as an example of a mapping A : H → H
satisfying the condition of Corollary 5

Example 1. Let A : �2 → �2 be defined by Ax = A(x1, x2, . . .) =
(x1,

1
2
x2, . . .). Clearly, A−1(0) = ∅, A is linear, 〈Ax, x〉 ≥ 0 and

||Ax|| ≤ ||x||, ∀x ∈ �2. Thus, A is a Lipschitz maximal monotone
mapping.

3.1. Application. In this section, we shall examine the following
boundary value problem known as Dirichlet Problem:{ −Δu + u = f(x), in Ω

u = 0, on Γ
(16)

where Ω is a bounded conical domain of a Euclidean space RN with
its boundary Γ ∈ C1 (cf. [1]), 〈., .〉 the Euclidean inner-product. As
an application of our results in Section 3, we show that the iterative
scheme studied could be used to approximate the unique solution
of the partial differential equation.
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Lemma 5. (see [2]) Define the mapping B : H1(Ω) →
(
H1(Ω)

)∗

by
〈
v, Bu

〉
:=

∫
Ω

〈∇u,∇v〉dx+

∫
Ω

u(x)v(x)dx−
∫
Ω

f(x)v(x)dx

for any u, v ∈ H1(Ω). Then, B is everywhere defined, linear,
bounded, monotone, hemi-continuous and coercive. Hence, B is
Lipschitz maximal monotone operator.

Lemma 6. ([2]) For f ∈ L2(Ω), the partial differential equation
(16) has a unique solution u ∈ H1(Ω).

Lemma 7. u ∈ H1(Ω) is the solution of (16) if and only if u ∈
H1(Ω) is the zero point of B.

Proof. Let u be the solution of (16), then ∀ v ∈ H1(Ω) by using
Green’s formula, we have
〈
v, Bu

〉
=

∫
Ω

〈∇u,∇v〉dx+

∫
Ω

u(x)v(x)dx−
∫
Ω

f(x)v(x)dx

= −
∫
Ω

(Δu)vdx+

∫
Ω

u(x)v(x)dx−
∫
Ω

f(x)v(x)dx = 0.

Thus, u ∈ B−1(0).

Conversely, If u ∈ B−1(0), then ∀ϕ ∈ H1(Ω), we have

0 =
〈
v, Bu

〉
=

∫
Ω

〈∇u,∇v〉dx+

∫
Ω

u(x)v(x)dx−
∫
Ω

f(x)v(x)dx

which implies the result

−Δu + u = f(x), a.e. x ∈ Ω

is true. �
We now apply our Corollary 5 to approximate the solution of (16).

Corollary 6. For any u1 ∈ H1(Ω), let {un}∞n=1 be the sequence
iteratively generated by

un+1 = un − αnBun − αnβnun, n ≥ 1, (17)

then the sequence {un}∞n=1 converges strongly to some u∗ ∈ B−1(0),
where u∗ is the unique solution of (16).

Remark 6. We can apply the same method of solution used in solv-
ing (16) for solving the following Neumann problem{ −Δu + u = f(x), in Ω

∂u
∂ν

= 0, on Γ
(18)
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where ν is the outward unit normal at x ∈ Γ.

4. CONCLUDING REMARKS

It is worthy to note here that Corollary 5 is of interest on its own
because the iterative scheme (15) does not involve the resolvent of
the maximal monotone operator A. Hence, our iterative algorithm
(15) seems better and more realistic than those of some authors
involving the resolvent of the operator A.

We note here that if A := J−1, the duality mapping on E∗ and E
is uniformly smooth Banach space, then A is maximal monotone,
AJ = IE is Lipschitz and accretive. Thus, the assumption that AJ
is Lipschitz and accretive in our Theorem is not a vacuous assump-
tion.

In approximating the unique solution of (16), our iterative scheme
(17) does not involve the use of resolvent of maximal monotone
operator B, whereas in the iterative scheme (4.2) of Corollary B in
[1], the use of resolvent was made. Hence, our iterative scheme (17)
appears better and more realistic than the scheme (4.2) of Corollary
B in [1] for solving problem (16).
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NOMENCLATURE

For a nonnegative integer m, Hm(Ω) is the Sobolev space Wm,2(Ω)
defined by

Hm(Ω) = Wm,2(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for all |α| ≤ m},
where Dαu = ∂|α|u

∂x
α1
1 ∂x

α2
2 ...∂xαn

n
, α = (α1, α2, ..., αn) ∈ N, |α| = α1 +

α2 + ... + αn and (x1, x2, ..., xn) ∈ Ω ⊂ R
n.
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