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ABSTRACT. In this paper we establish necessary and sufficient
conditions for the convergence of a multistep iterative scheme to
a common fixed point of a finite family of Bregman quasi-total
asymptotically nonexpansive mappings in a real Banach space.
We then establish strong convergence theorems for finite families
of Bregman quasi-total asymptotically nonexpansive mappings
in a real uniformly convex Banach spaces. The results presented
generalize and improve some recently announced ones.
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1. INTRODUCTION

Let E be a real Banach space and K a nonempty closed convex
subset of E. The normalized duality map from E to 2E

∗
(E∗ is the

dual space of E) denoted by J is defined by
J(x) =

{
f ∈ E∗ : 〈x, f〉 = ‖x‖2, ‖x‖ = ‖f‖

}
.

Let T : K → K be a map, a point x ∈ K is called a fixed point
of T if Tx = x, and the set of all fixed points of T is denoted
by F (T ) = {x ∈ K : Tx = x}. The mapping T is called L-
Lipschitzian or simply Lipschitz if there exists L > 0, such that
‖Tx−Ty‖≤L‖x−y‖, ∀x, y∈K and if L = 1, then T is nonexpan-
sive. T is asymptotically nonexpansive if there exists a sequence
{µn}n≥1 ⊂ [0,∞) with limn→∞ µn = 0, such that for all x, y ∈ K,

‖T nx− T ny‖ ≤ (1 + µn)‖x− y‖ ∀n ≥ 1.

In 1967, Bregman [5] discovered an elegant and effective technique
for the use of so-called Bregman distance function in the process
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of designing and analyzing feasibility and optimization algorithms.
This opened a growing area of research in which Bregman’s tech-
nique is applied in various ways to design and analyze not only
iterative algorithms for solving feasibility and optimization prob-
lems, but also algorithms for solving variational inequalities, for
approximating equilibria and for computing fixed points of nonlin-
ear mappings. A mapping T is said to be Bregman firmly nonex-
pansive [17], if for all x, y ∈ C.

〈5f(Tx)−5f(Ty), Tx− Ty〉 ≤ 〈5f(x)−5f(y), Tx− Ty〉.

Or equivalently,

Df (Tx, Ty) + Df (Ty, Tx) +Df (Tx, x)

+ Df (Ty, y) ≤ Df (Tx, y) +Df (Ty, x).

Let K be a nonempty, closed, and convex subset of E and T
a mapping from K into itself. Let f : E → (−∞,+∞] be an
admissible function (i.e, a proper, convex and lower semicontinuous
on E and Gâteaux differentiable on int domf). Then T is said to
be:

(i) quasi−Bregman relatively nonexpansive if F (T ) 6= ∅ and

Df (p, Tx)≤Df (p, x) ∀x ∈ K and p ∈ F (T ).

In [16] quasi-Bregman relatively nonexpansive is called left
quasi-Bregman relatively nonexpansive.

(ii) Bregman quasi−asymptotically nonexpansive if there ex-
ists a sequence {µn}n≥1 ⊂ [0,∞) with limn→∞ µn = 0 such
that for all x ∈ K and p ∈ F (T )

Df (T
nx, p) ≤ (1 + µn)Df (x, p) ∀ n ≥ 1.

(iii) Bregman quasi − asymptotically nonexpansive in the in-
termediate sense [18] if F (T )) 6= ∅ and

lim sup
n→∞

sup
x∈K,p∈F (T )

(
Df (T

nx, p)−Df (x, p)
)
≤ 0. (1)

Put

σn = max

{
0, sup

x∈K,p∈F (T )

(
Df (T

nx, p)−Df (x, p)
)}

then σn → 0 as n→∞ and (1) reduces to

Df (T
nx, p) ≤ Df (x, p) + σn (2)
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(iv) Bregman quasi−totalasymptotically nonexpansive if there
exists nonnegative real sequences {µn} and {ln} with µn → 0,
ln → 0 as n→∞ and strictly increasing continuous func-
tion
φ : R+ → R+ with φ(0) = 0 such that for all x ∈ K and
p ∈ F (T ).

Df (T
nx, p) ≤ Df (x, p) + µnφ

(
Df (x, p)

)
+ ln, n ≥ 1 (3)

Example of Bregman quasi-total asymptotically nonexpansive map-
pings is given in [9].
Remark 1: If φ(λ) = λ, then (3) reduces to

Df (T
nx, p) ≤ (1 + µn)Df (x, p) + ln, n ≥ 1

In addition, if ln = 0 for all n ≥ 1, then Bregman quasi-total asymp-
totically nonexpansive mappings coincide with Bregman quasi- asymp-
totically nonexpansive mappings. If µn = 0 and ln = 0 for all n ≥ 1,
we obtain from (3) the class of mappings that includes the class of
Bregman quasi-nonexpansive mappings. If µn = 0 and ln = σn =
max{0, an}, where an := supx∈C,p∈F (T )

(
Df (p, T

nx)−Df (p, x)
)

for
all n ≥ 1, then (3) reduces to (2) which has been studied as Breg-
man quasi-asymptotically nonexpansive mappings in the interme-
diate sense. In 2007, Chidume and Ofoedu [10] constructed the
following iterative sequence, for approximation of common fixed
points of finite families of total asymptotically nonexpansive map-
pings.

x1 ∈ K,
xn+1 = (1− αn)xn + T n1 xn, if m = 1, n ≥ 1,

x1 ∈ K,
xn+1 = (1− αn)xn + αnT

n
1 y1n,

y1n = (1− αn)xn + αnT
n
2 y2n,

...

y(m− 2)n = (1− αn)xn + αnT
n
m−1y(m−1)n,

y(m− 1)n = (1− αn)xn + αnT
n
mxn, if m ≥ 2, n ≥ 1,

(4)

where {αn}∞n=1 is a sequence in [0,1] bounded away from 0 and 1.

They studied the convergence of this scheme to a common fixed
point of finite families of total asymptotically nonexpansive map-
pings in a uniformly convex Banach spaces.



BREGMAN QUASI-TOTAL ASYMPTOTICALLY NONEXPANSIVE MAPPINGS. . .285

Let {αn} be a real sequence in [ε, 1−ε], ε ∈ (0, 1). Let T1, T2, · · · , Tm :
E → E be a family of mappings. Define a sequence {xn} by

x1 ∈ E,
xn+1 = 5f∗

(
(1− αn)5 f(xn) + αn 5 f(Tn1 xn)

)
, if m = 1, n ≥ 1,

x1 ∈ E,
xn+1 = 5f∗

(
(1− αn)5 f(xn) + αn 5 f(Tn1 y1n)

)
,

y1n = 5f∗
(
(1− αn)5 f(xn) + αn 5 f(Tn2 y2n)

)
,

...

y(m−2)n = 5f∗
(
(1− αn)5 f(xn) + αn 5 f(Tnm−1y(m−1)n

)
,

y(m−1)n = 5f∗
(
(1− αn)5 f(xn) + αn 5 f(Tnmxn)

)
, if m ≥ 2, n ≥ 1,

(5)

It is our purpose in this paper to prove necessary and sufficient con-
ditions for the strong convergence of the scheme defined by (5) to
a common fixed point of finite family T1, T2, ..., Tm of uniformly-L-
Lipschzian Bregman total asymptotically quasi-nonexpansive map-
pings. We also prove sufficient condition for strong convergence of
the scheme to a common fixed point of mapping in real uniformly
convex Banach spaces.

2. PRELIMINARY

Throughout this paper, we shall assume f : E → (−∞,+∞] is a
proper, lower semi-continuous and convex function. We denote by
domf := {x ∈ E : f(x) < +∞} the domain of f . Let x ∈ intdomf,
the subdifferential of f at x is the convex set defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗, y − x〉 ≤ f(y), ∀y ∈ E},

where the fenchel conjugate of f is the function f ∗ : E∗ → (−∞,+∞]
defined by

f ∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ E}.

It is known that the young-Fenchel inequality holds:

〈x∗, x〉 ≤ f(x) + f ∗(x∗), ∀x ∈ E.

A function f on E is coercive [11] if the sublevel set of f is bounded;
equivalently,

lim
‖x‖→+∞

f(x) = +∞.



286 M. S. LAWAN, BASHIR ALI, M. H. HARBAU AND G. C. UGWUNNADI

A function f on E is said to be strongly coercive [19] if

lim
‖x‖→+∞

f(x)

‖x‖
= +∞.

For any x ∈ intdomf and y ∈ E, the right-hand derivative of f
at x in the direction y is defined by

f ◦(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
.

The function f is said to be Gâteaux differentiable at x if

limt→0+
f(x+ty)−f(x)

t
exists for any y. In this case, f ◦(x, y) coincides

with 5f(x), the value of the gradient 5f of f at x. The function
f is said to be Gâteaux differentiable if it is Gâteaux differentiable
at every point x ∈ intdomf . The function f is said to be Fréchet
differentiable at x if this limit is attained uniformly in ‖y‖ = 1.
Finally, f is said to be uniformly Fréchet differentiable on a subset
K of E if the limit is attained uniformly for x ∈ K and ‖y‖ = 1.
It is well known that if f is Gâteaux differentiable (resp. Fréchet
differentiable) on intdomf , then f is continuous and its Gâteaux
derivative 5f is norm-to-weak∗ continuous (resp. uniformly con-
tinuous) on intdomf (see also [1, 4]). We will need the following
results.
Lemma 1 [15] : If f : E → R is uniformly Fréchet differentiable
and bounded on bounded subsets of E, then 5f is uniformly con-
tinuous on bounded subsets of E from the strong topology of E to
the strong topology of E∗.
Definition 1 [2]: The function f is said to be:

(1) Essentially smooth, if ∂f is both locally bounded and single-
valued on its domain;

(ii) Essentially strictly convex, if (∂f)−1 is locally bounded on
its domain and f is strictly convex on every subset of domf ;

(iii) Legendre, if it is both essentially smooth and essentially
strictly convex.

Remark 2: Observe that if E is reflexive Banach space, Then we
have:

(i) f is essentially smooth if and only if f ∗ is essentially strictly
convex (see [2] Theorem 5.4);

(ii) (∂f)−1 = ∂f ∗ (see [4])
(iii) f is Legendre if and only if f ∗ is Legendre (see [2],Corollary

5.5)



BREGMAN QUASI-TOTAL ASYMPTOTICALLY NONEXPANSIVE MAPPINGS. . .287

(iv) If f is Legendre, then 5f is a bijection satisfying 5f =
(5f ∗)−1, ran5f = dom5f ∗ = intdomf ∗ and ran 5f ∗ =
domf = intdomf (see [2], Theorem 5.10 ).

Examples of Legendre functions were given in [2, 3]. One impor-
tant and interesting Legendre function is 1

p
‖ · ‖p (1 < p <∞) when

E is a smooth and strictly convex Banach space. In this case the
gradient 5f of f coincides with the generalized duality mapping
of E, i.e, 5f = Jp (1 < p <∞). In particular, 5f = I the identity
mapping in Hilbert spaces. In the rest of this paper, we always
assume that f : E → (−∞,+∞] is Legendre.
Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable
function. The function Df : domf× intdomf → (−∞,+∞], de-
fined by:

Df (x, y) := f(y)− f(x)− 〈5f(x), y − x〉, (6)

is called the Bregman distance of x to y with respect to f (see [8]
). It is obvious from the definition of Df that

Df (z, x) := Df (z, y) +Df (y, x) + 〈5f(y)−5f(x), z − y〉. (7)

Recall that the Bregman projection [5] of x ∈ intdomf onto nonempty,

closed and convex set K ⊂ domf is the unique vector P f
K(x) ∈ K

satisfying

Df (P
f
K(x), x) = inf{Df (y, x) : y ∈ K}.

Concerning the Bregman projection, the following are well known.
Lemma 2 [7] : Let K be a nonempty, closed and convex subset of
a reflexive Banach space E. Let f : E → R be a Gâteaux differen-
tiable and totally convex function and let x ∈ E Then

(a) z = P f
K(x) if and only if 〈5f(x)−5f(z), y−z〉 ≤ 0, ∀y ∈

K;
(b) Df (y, P

f
K(x)) +Df (P

f
K(x), x) ≤ Df (y, x), ∀x ∈ E, y ∈ K.

Let f : E → (−∞,+∞] be a Gâteaux differentiable function. The
modulus of total convexity of f at x ∈ intdomf is the function
vf (x, ·) : [0,+∞]→ [0,+∞] defined by

vf (x, t) := inf{Df (x, y) : y ∈domf, ‖y − x‖ = t}.

The function f is called totally convex at x if vf (x, t) > 0 whenever
t > 0. The function f is called convex if it is totally convex at any
point x ∈ intdomf and is said to be totally convex on bounded set
if vf (B, t) > 0 for any nonempty bounded subset B of E and t > 0,
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where the modulus of the total convexity of the function f on the
set B is the function vf : intdomf × [0,+∞)→ [0,+∞) defined by

vf (B, t) := inf{vf (x, t) : x ∈ B ∩ domf}.
The following result was proved in [14]
Lemma 3[14]: Let E be a Banach space and f : E → R be
a Gâteaux differentiable function which is uniformly convex on
bounded subset of E. Let {xn}n∈N and {yn}n∈N be bounded se-
quences in E. Then

lim
n→∞

Df (xn, yn) = 0 ⇔ lim
n→∞
||xn − yn|| = 0.

Lemma 4 [16] : Let f : E → R be Gâteaux differentiable and to-
tally convex function. If x0 ∈ E and the sequence {Df (xn, x0)} is
bounded the sequence {xn} is bounded too.
Lemma 5 [6] : The function f is totally convex on bounded set if
and only if the function f is sequentially consistent.
The following definition is slightly different from that in Butnariu
and Iusem [6].
Definition 2[12]: Let E be a Banach space. The function f : E →
R is said to be a Bregman function if the following conditions are
satisfied:

(i) f is continuous, strictly convex and Gâteaux differentiable;
(ii) the set {y ∈ E : Df (x, y) ≤ r} is bounded for all x ∈ E and

r > 0.

The following lemma follows from Butnariu and Iusem [6] and
Zǎlinescu [19].
Lemma 6: Let E be a reflexive Banach space and f : E → R be
a strongly coercive Bregman function. Then

(i) ∇f : E → E∗ is one-to-one, onto and norm-to-weak∗ con-
tinuous;

(ii) 〈x− y,∇f(x)−∇f(y)〉 = 0 if and only if x = y;
(iii) {x ∈ E : Df (x, y) ≤ r} is bounded for all y ∈ E and r > 0;
(iv) dom f ∗ = E∗, f ∗ is Gâteaux differentiable and ∇f ∗ =

(∇f)−1.

The following two results were proved in [19]
Theorem 1: Let E be a reflexive Banach space and let f : E → R
be a convex function which is bounded on bounded subsets of E.
Then the following assertions are equivalent:

(1) f is strongly coercive and uniformly convex on bounded
subsets of E;
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(2) domf ∗ = E∗, f ∗ is bounded on bounded subsets and uni-
formly smooth on bounded subsets of E∗;

(3) domf ∗ = E∗, f ∗ is Frechet differentiable and ∇f is uni-
formly norm-to-norm continuous on bounded subsets of E∗.

Theorem 2: Let E be a reflexive Banach space and let f : E → R
be a continuous convex function which is strongly coercive. Then
the following assertions are equivalent:

(1) f is bounded on bounded subsets and uniformly smooth on
bounded subsets of E;

(2) f ∗ is Frechet differentiable and f ∗ is uniformly norm-to-
norm continuous on bounded subsets of E∗;

(3) domf ∗ = E∗, f ∗ is strongly coercive and uniformly convex
on bounded subsets of E∗.

The following result was first proved in [7] (see also [12]).
Lemma 7: Let E be a reflexive Banach space, let f : E → R be
a strongly coercive Bregman function and let Vf be the function
defined by

Vf (x, x
∗) = f(x)− 〈x, x∗〉+ f ∗(x∗), x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:

(1) Df (x,∇f(x∗)) = Vf (x, x
∗) for all x ∈ E and x∗ ∈ E∗.

(2) Vf (x, x
∗) + 〈∇f ∗(x∗) − x, y∗〉 ≤ V (x, x∗ + y∗) for all x ∈ E

and x∗, y∗ ∈ E∗.
Lemma 8[14]: Let E be a Banach space and f : E → R be a
convex function which is uniformly convex on bounded subsets of
E. Let r > 0 be a constant and ρr be the gauge of uniform convexity
of f . Then

(i) For any x, y ∈ Br and α ∈ (0, 1),

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− α(1− α)ρr(||x− y||).
(ii) For any x, y ∈ Br,

ρr(||x− y||) ≤ Df (x, y)

(iii) If, in addition, f is bounded on bounded subsets and uni-
formly convex on bounded subsets of E then, for any x ∈
E, y∗, z∗ ∈ Br and α ∈ (0, 1),

Vf (x, αy
∗+(1−α)z∗) ≤ αVf (x, y∗)+(1−α)Vf (x, z∗)−α(1−α)ρ∗r(||y∗−x∗||).

Lemma 9 [16] : Let f : E → R be a Gâteaux differentiable and to-
tally convex function, x0 ∈ E and let K be a nonempty, closed and
convex subset of E. Suppose that the sequence {xn} is bounded and
any weak subsequential limit of {xn} belongs to K. If Df (xn, x0) ≤
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Df (P
f
K(x0), x0) for any n ∈ N, then {xn} converges strongly to

P f
K(x0).

Lemma 10 [13] : Let E be a real reflexive Banach space, F :
E → (−∞,+∞] be a proper lower semi-continuous function, then
F : E → (−∞,+∞] is a proper weak∗ lower semi-continuous and
convex function. Thus, for all z ∈ E, we have

Df

(
z,5f ∗

(
N∑
i=1

ti5f(xi)

))
≤

N∑
i=1

tiDf (z, xi). (8)

Lemma 11 (see Lemma 4 in [10]) : Let {an}, {αn} and {bn} be
sequences of nonnegative real numbers such that
an+1 ≤ (1 + αn)an + bn.

Suppose that
∑∞

n=1 αn <∞ and
∑∞

n=1 bn <∞. Then an is
bounded and limn→∞ an exists. Moreover, if in addition,
lim infn→∞ an = 0, then limn→∞ an = 0.

3. MAIN RESULTS

Let E a real uniformly convex Banach space and T1, T2, · · · , Tm :
E → E be m Bregman quasi-total asymptotically nonexpansive
mappings. We define the iterative sequence {xn} by

x1 ∈ E,
xn+1 = 5f∗

(
(1− αn)5 f(xn) + αn 5 f(Tn1 xn)

)
, if m = 1, n ≥ 1,

x1 ∈ E,
xn+1 = 5f∗

(
(1− αn)5 f(xn) + αn 5 f(Tn1 y1n)

)
,

y1n = 5f∗
(
(1− αn)5 f(xn) + αn 5 f(Tn2 y2n)

)
,

...

y(m−2)n = 5f∗
(
(1− αn)5 f(xn) + αn 5 f(Tnm−1y(m−1)n

)
,

y(m−1)n = 5f∗
(
(1− αn)5 f(xn) + αn 5 f(Tnmxn)

)
, if m ≥ 2, n ≥ 1,

(9)

where {αn}∞n=1 is a sequence in [0,1].
Theorem 3 : Let E be a real uniformly convex Banach space, and
f : E → R a convex, continuous, strongly coercive and Gâteaux
differentiable function which is bounded on bounded subsets and
uniformly convex on bounded subsets of E. Let Ti : E → E i =
1, 2, . . . ,m be Bregman quasi-total asymptotically nonexpansive
mappings with sequences {µin}, {lin} ⊂ [0,∞) n ≥ 1 and map-
pings φi : [0,∞) → [0,∞) i = 1, 2, . . . ,m such that

∑∞
n=1 µin <

∞,
∑∞

n=1 lin <∞, i = 1, 2, . . . ,m and F := ∩mi=1F (Ti) 6= ∅. Let
{xn} be defined as in (9) and suppose there exists Mi, M

∗
i > 0 such
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that φ(λi)≤M∗
i λi for all λi≥Mi i = 1, 2, . . . ,m, then the sequence

{xn} is bounded and limn→∞Df (xn, p) exist, where p ∈ F.
Proof:For m = 1 we have from (9) that x1 ∈ E, and

xn+1 = 5f ∗
(
(1− αn)5 f(xn) + αn5 f(T n1 xn)

)
,

then

Df (xn+1, p) = Df

(
5 f ∗

(
(1− αn)5 f(xn) + αn5 f(T n1 xn)

)
, p
)

≤ (1− αn)Df (xn, p) + αnDf (T
n
1 xn, p)

≤ (1− αn)Df (xn, p)

+ αn
[
Df (xn, p) + µ1nφ1

(
Df (xn, p)

)
+ l1n

]
= Df (xn, p) + αnµ1nφ1

(
Df (xn, p)

)
+ αnl1n.

Since φ1 is an increasing function, it follows that φ1(λ1) ≤ φ1(M1)
whenever λ1≤M1 and by hypothesis φ1(λ1)≤M∗

1λ1, if λ1≥M1. In
either case, we have

φ1

(
Df (xn, p)

)
≤ φ1(M1) +M∗

1Df (xn, p)

for some M1 > 0, M∗
1 > 0. Thus,

Df (xn+1, p) ≤ Df (xn, p) + αnµ1nφ1(M1)

+ αnµ1nM
∗
1Df (xn, p) + αnl1n

= (1 + µ1nQ1)Df (xn, p) + (µ1n + l1n)Q1,

for some constant Q1 ≥ 1.
Next, for m = 2, we obtain from (9) that

x1 ∈ E,
xn+1 = 5f ∗

(
(1− αn)5 f(xn) + αn5 f(T n1 y1n)

)
,

y1n = 5f ∗
(
(1− αn)5 f(xn) + αn5 f(T n2 xn)

)
,

from this, we have

Df (xn+1, p) = Df

(
5 f ∗

(
(1− αn)5 f(xn) + αn5 f(T n1 y1n)

)
, p
)

≤ (1− αn)Df (xn, p) + αnDf (T
n
1 y1n, p)

≤ (1− αn)Df (xn, p) + αn
[
Df (y1n, p)

+ µ1nφ1

(
Df (y1n, p)

)
+ l1n

]
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and

Df (y1n, p) = Df

(
5 f ∗

(
(1− αn)5 f(xn) + αn5 f(T n2 xn)

)
, p
)

≤ (1− αn)Df (xn, p) + αnDf (T
n
2 xn, p)

≤ (1− αn)Df (xn, p)

+ αn

[
Df (xn, p) + µ2nφ2

(
Df (xn, p)

)
+ l2n

]
(10)

Again, since φi is an increasing function for i = 1, 2, it follows that
φi(λi)≤ φi(Mi) +M∗

i λi for some Mi > 0, M∗
i > 0, i = 1, 2.

Hence,

Df (xn+1, p) ≤ (1− αn)Df (xn, p) + αnDf (y1n, p) + αnµ1nφ1(M1)

+ αnµ1nM
∗
1Df (y1n, p) + αnlin

≤ (1− αn)Df (xn, p) + αn
[
Df (xn, p) + αnµ2nφ2(M2)

+ αnµ2nM
∗
2Df (xn, p) + αnl2n

]
+ αnµ1nφ1(M1)

+ αnµ1nM
∗
1

[
Df (xn, p) + αnµ2nφ2(M2)

+ αnµ2nM
∗
2Df (xn, p) + αnl2n

]
+ αnl1n

≤ Df (xn, p) + αnµ2nφ2(M2) + αnµ2nM
∗
2Df (xn, p)

+ αnl2n + αnµ1nφ1(M1) + αnµ1nM
∗
1Df (xn, p)

+ αnµ1nµ2nφ2(M2)M
∗
1 + αnµ1nµ2nM

∗
1M

∗
2Df (xn, p)

+ αnµ1nl2nM
∗
1 + αnl1n

≤
(
1 + (µ1n + µ2n)Q2

)
Df (xn, p)

+ (µ1n + µ2n + l1n + l2n)Q2,

for some constant Q2 > 0.
Following the computation above, we obtain for some m ∈ N

Df (xn+1, p)≤
(

1 +Q

m∑
j=1

µjn

)
Df (xn, p) +Q

m∑
j=1

(µjn + ljn)

for some Q > 0.
Hence

Df (xn+1, p)≤ (1 + δn)Df (xn, p) + γn, n≥ 1, (11)

where δn = Q
∑∞

n=1 µjn and γn = Q
∑∞

n=1(µjn+ljn). Observed that∑∞
n=1 δn <∞ and

∑∞
n=1 γn <∞. It follows from (11) and Lemma

11 that the sequence {xn} is bounded and limn→∞Df (xn, p) exists
for each p ∈ F .

3.1 NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE
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Theorem 4: Let E be a real uniformly convex Banach space, and
f : E → R a convex, continuous, strongly coercive and Gâteaux
differentiable function which is bounded on bounded subsets and
uniformly convex on bounded subsets of E. Let Ti : E → E i =
1, 2, . . . ,m be Bregman quasi-total asymptotically nonexpansive
mappings with sequences {µin}, {lin} ⊂ [0,∞) and mapping φi :
[0,∞) → [0,∞) n ≥ 1 i = 1, 2, . . . ,m, such that

∑∞
n=1 µin <

∞,
∑∞

n=1 lin <∞, i = 1, 2, . . . ,m and F := ∩mi=1F (Ti) 6= ∅. Let
{xn} be defined as in (9) and suppose there exists Mi, M

∗
i > 0

such that φ(λi) ≤ M∗
i λi for all λi ≥ Mi i = 1, 2, . . . ,m, then

the sequence {xn} converges strongly to a common fixed point of
Ti, i = 1, 2, . . . ,m if and only if
lim infn→∞

(
infy∈F Df (xn, y)

)
= 0, n ≥ 1.

Proof: The necessity is trivial. We prove the sufficiency. Let
lim infn→∞

(
infy∈F Df (xn, y)

)
= 0, we show {xn} is Cauchy se-

quence in E. From (11) and Lemma 11, we have that
limn→∞( inf

y∈F
Df (xn, p)) exists. Since lim infn→∞

(
infy∈F Df (xn, y)

)
=

0, it follows that limn→∞
(

infy∈F Df (xn, y)
)

= 0. Thus given ε > 0
there exists a positive integer N0 and p∗ ∈ F such that ∀n ≥ N0,
Df (xn, p

∗) < ε. This shows that lim
n→∞

Df (xn, p
∗) = 0. Thus in view

of Lemma 3, we have lim
n→∞
‖xn− p∗‖ = 0. Then there exists N1 ∈ N

such that ∀n ≥ N1, ‖xn − p∗‖ < ε
2
.

For any k ∈ N, we have ∀n ≥ N1

‖xn+k − xn‖ ≤ ‖xn+k − p∗‖+ ‖p∗ − xn‖

<
ε

2
+
ε

2
= ε,

and so {xn} is a Cauchy sequence. Let xn → u, we need to show
that u ∈ F . Let Ti ∈ {T1, T2, . . . , Tm}. Then for N∗ ∈ N sufficiently
large and p∗ ∈ F such that for all n ≥ N∗ we have ‖xn−u‖ < ε

6(1+ω1)

and ‖xn − p∗‖ < ε
6(1+ω1)

. Hence

‖u− p∗‖ ≤ ‖u− xn‖+ ‖xn − p∗‖ <
ε

3(1 + ω1)
.
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Thus we have the following estimates for n ≥ N∗, arbitrary Ti, i =
1, 2, · · · ,m and ω1 = max

1≤i≤m
{ui1}:

‖u− Tiu‖ ≤ ‖u− xn‖+ ‖xn − p∗‖+ ‖p∗ − Tiu‖
≤ ‖p− xn‖+ ‖xn − p∗‖+ (1 + ui1)‖p∗ − u‖
≤ ‖p− xn‖+ ‖xn − p∗‖+ (1 + ω1)‖p∗ − u‖

≤ ε

6(1 + ω1)
+

ε

6(1 + ω1)
+
ε

3
.

This shows that u ∈ F (Ti) for each i ∈ {1, 2, · · · ,m} and so u ∈ F .
This complete the proof.
Lemma 13: Let E be a real uniformly convex Banach space, and
f : E → R a convex, continuous,strongly coercive and Gâteaux dif-
ferentiable function which is bounded on bounded subsetsand uni-
formly convex on bounded subsets of E. Let Ti : E → E, i =
1, 2, . . . ,m be m Bregman quasi-total asymptotically nonexpansive
mappings and uniformly Li-Lipschitzian which is also uniformly
asymptotically regular, with sequences {µin}, {lin}, ⊂ [0,∞) n ≥ 1
and mappings φi : [0,∞) → [0,∞) such that

∑∞
n=1 µin < ∞,∑∞

n=1 lin < ∞, i = 1, 2, . . . ,m, and F := ∩mi=1F (Ti) 6= ∅. Let
{αn} ⊂ [ε, 1− ε] for some ε ∈ (0, 1),. From arbitrary x1 ∈ E define
the sequence {xn} by (9). Suppose that there exist Mi, M

∗
i > 0

such that φi(λi) ≤M∗
i λi whenever λi ≥Mi i = 1, 2, . . . ,m then

limn→∞ ‖T ni xn − xn‖ = 0, i = 1, 2, . . . ,m.
Proof: Let p ∈ F then by Theorem 3, limn→∞Df (xn, p) exists.
Let limn→∞Df (xn, p) = r. If r = 0 then by continuity of Ti, i =
1, 2, . . . ,m we are done. Now suppose r > 0, we show limn→∞ ‖T ni xn−
xn‖ = 0, i = 1, 2, . . . ,m.

In Theorem 4, we have shown that {xn} is Cauchy. In particular
for m = 1, we get from (9) that

x1 ∈ K xn+1 = ∇f ∗((1− αn)∇f(xn) + αn∇f(T n1 xn)).
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Using this and Lemma 8, we have for some constant Q1 > 0 that

Df (p, xn+1) = Df (p,∇f ∗((1− αn)∇f(xn) + αn∇f(T n1 xn)))

= Vf (p, (1− αn)∇f(xn) + αn∇f(T n1 xn))

= f(p)− 〈p, (1− αn)∇f(xn) + αn∇f(T n1 xn)〉
+f ∗((1− αn)∇f(xn) + αn∇f(T n1 xn))

≤ (1− αn)f(p) + αnf(p)− (1− αn)〈p,∇f(xn)〉
−αn〈p,∇f(T n1 xn)

+(1− αn)f ∗(∇f(T n1 xn)) + αnf
∗(∇f(T n1 xn))

−αn(1− αn)ρ∗s(||∇f(yn)−∇f(T n1 xn)||)
= (1− αn)Vf (p,∇f(xn)) + αnV (p,∇f(T n1 xn))

−αn(1− αn)ρ∗s(||∇f(yn)−∇f(T n1 xn)||)
= (1− αn)Df (p, xn) + αnDf (p, T

n
1 xn)

−αn(1− αn)ρ∗s(||∇f(xn)−∇f(T n1 xn)||)
≤ (1− αn)Df (p, xn) + αn[Df (p, xn)

+µ1nφ1(Df (p, xn)) + l1n]

−αn(1− αn)ρ∗s(||∇f(xn)−∇f(T n1 xn)||)
≤ Df (p, xn) + (µ1n + l1n)Q1

−αn(1− αn)ρ∗s(||∇f(xn)−∇f(T n1 xn)||).

Thus,

ε2ρ∗s(||∇f(xn)−∇f(T n1 xn)||) ≤ Df (p, xn)−Df (p, xn+1)

+ (µ1n + l1n)Q1

which implies,

ε2
∞∑

n=1

ρ∗s(||∇f(xn)−∇f(Tn
1 xn)||) ≤ Df (p, x1) +Q1

∞∑
n=1

(µ1n + l1n).

Hence ε2
∑∞

n=1 ρ
∗
s(||∇f(xn)−∇f(Tn

1 xn)||) <∞. So, lim
n→∞

ρ∗s(||∇f(xn)−∇f(Tn
1 xn)||) =

0; and properties of ρ∗s imply lim
n→∞

||∇f(xn)−∇f(Tn
1 xn)|| = 0. Since ∇f ∗ is

uniformly norm-to-norm continuous on bounded subsets of E∗, we
arrive at

lim
n→∞
||xn − T n1 xn|| = 0. (12)

For m = 2, (9) becomes x1 ∈ E
xn+1 = ∇f ∗((1− αn)∇f(xn) + αn∇f(T n1 y1n))
y1n = ∇f ∗(αn∇f(xn) + (1− αn)∇f(T n2 xn))

(13)
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using (10), (22) and Lemma 8, we obtain, for some Q3 > 0 that

Df (p, xn+1) ≤ (1− αn)Df (p, xn) + αnDf (p, T
n
1 y1n)

−αn(1− αn)ρ∗s(||∇f(xn)−∇f(T n1 y1n)||)
≤ (1− αn)Df (p, xn)

+ αn[Df (p, y1n) + µ1nφ1(Df (p, y1n)) + l1n]

−αn(1− αn)ρ∗s(||∇f(xn)−∇f(T n1 y1n)||)
≤ Df (p, xn) + (µ2n + l2n + µ1n + l1n)Q3

−αn(1− αn)ρ∗s(||∇f(xn)−∇f(T n1 y1n)||).
Thus,

ε2ρ∗s(||∇f(xn)−∇f(T n1 y1n)||) ≤ Df (p, xn)−Df (p, xn+1)

+ (µ2n + l2n + µ1n + l1n)Q3

which implies ,

ε2
∞∑
n=1

ρ∗s(||∇f(xn)−∇f(T n1 y1n)||)

≤ Df (p, x1) +Q3

∞∑
n=1

(µ2n + l2n + µ1n + l1n) <∞.

So, lim
n→∞

ρ∗s||∇f(xn) − ∇f(T n1 y1n)|| = 0, and properties of ρs yield

lim
n→∞
||∇f(xn)−∇f(T n1 y1n)|| = 0. Since ∇f ∗ is uniformly norm-to-

norm continuous on bounded subsets of E∗, we obtain

lim
n→∞
||xn − T n1 y1n|| = 0. (14)

Thus from Lemma 3, we obtain

lim
n→∞

Df (xn, T
n
1 y1n) = 0. (15)

Also, from (7) and (15), we have

Df (p, xn) ≤ Df (p, T
n
1 y1n) +Df (T

n
1 y1n, xn)

+ 〈∇f(T n1 y1n)−∇f(xn), p− T n1 y1n〉
≤ Df (p, T

n
1 y1n) +Df (T

n
1 y1n, xn)

+ ||∇f(T n1 y1n)−∇f(xn)||||p− T n1 y1n||
≤ Df (p, y1n) + µ1nM + l1n +Df (T

n
1 y1n, xn)

+||∇f(T n1 y1n)−∇f(xn)||||p− T n1 y1n||
for some constant M > 0. Hence, we deduce from this that

r ≤ lim inf
n→∞

Df (p, y1n).
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Also, since

Df (p, y1n) ≤ (1 + µ2nQ2)Df (p, xn) + (µ2n + l2n)Q2,

this gives

lim sup
n→∞

Df (p, y1n) ≤ r.

Thus

lim
n→∞

Df (p, y1n) = r.

Also from (22) and Lemma 8, we obtain, for some Q2 > 0 that

Df (p, y1n) ≤ (1− αn)Df (p, xn) + αnDf (p, T
n
2 xn)

−αn(1− αn)ρ∗s(||∇f(xn)−∇f(T n1 xn)||)
≤ (1 + αnµ2nQ2)Df (p, xn) + (µ2n + l2n)Q2

−αn(1− αn)ρ∗s(||∇f(xn)−∇f(T n1 xn)||).
Therefore

ε2ρ∗s(||∇f(xn)−∇f(T n1 xn)||)
≤ (1 + αnµ2nQ2)Df (p, xn)−Df (p, y1n) + (µ2n + l2n)Q2

So, lim
n→∞

ρ∗s||∇f(xn) − ∇f(T n2 xn)|| = 0, and properties of ρs yield

lim
n→∞
||∇f(xn) −∇f(T n2 xn)|| = 0. Since ∇f ∗ is uniformly norm-to-

norm continuous on bounded subsets of E∗, we obtain

lim
n→∞
||xn − T n2 xn|| = 0. (16)

Hence, from Lemma 3, we obtain

lim
n→∞

Df (xn, T
n
2 xn) = 0. (17)

So, from (22) and (17), we obtain

Df (xn, y1n) ≤ (1− αn)Df (xn, xn)

+ αnDf (xn, T
n
2 xn)→ 0 as n→∞. (18)

which implies from Lemma 3, that

lim
n→∞
||xn − y1n|| = 0. (19)

Also,

||T n1 xn − xn|| ≤ ||T n1 xn − T n1 y1n||+ ||T n1 y1n − xn||
≤ L1||xn − y1n||+ ||T n1 y1n − xn||.

Hence, from (14) and (19), we obtain

lim
n→∞
||T n1 xn − xn|| = 0.
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Hence

lim
n→∞
||T n1 xn − xn|| = lim

n→∞
||T n2 xn − xn|| = 0.

Continuing, we get

lim
n→∞
||T ni xn − xn|| = 0, i = 1, 2, · · · ,m. (20)

Furthermore

||Tixn − xn|| ≤ ||Tixn − Ti(T ni xn)||
+ ||Ti(T ni xn)− T ni xn||+ ||T ni xn − xn||

≤ (Li + 1)||xn − T ni xn||+ ||T n+1
i xn − T ni xn||.

From (20) and asymptotic regularity of Ti, for each i ∈ {1, 2. · · · ,m},
we obtain

lim
n→∞
||Tixn − xn|| = 0. (21)

This complete the proof.
Theorem 5: Let E be a real uniformly convex Banach space, and
f : E → R a convex, continuous, strongly coercive and Gâteaux
differentiable function which is bounded on bounded subsets and
uniformly convex on bounded subsets of E. Let Ti : E → E, i =
1, 2, . . . ,m be m Bregman quasi-total asymptotically nonexpan-
sive mappings and uniformly Li-Lipschitzian which is also uni-
formly asymptotically regular with sequences {µin}, {lin} ⊂ [0,∞)
and mappings φi : [0,∞) → [0,∞), i = 1, 2, . . . ,m and F :=
∩mi=1F (Ti) 6= ∅. Let {αin} ⊂ [ε, 1 − ε] for some ε ∈ (0, 1),. From ar-
bitrary x1 ∈E define the sequence {xn} by (9). Suppose that there
exist Mi, M

∗
i > 0 such that φi(λi)≤M∗

i λi whenever λi ≥Mi i =
1, 2, . . . ,m and that at least one of T1, T2, . . . , Tm is semi-compact,
then {xn} converges strongly to some x∗ ∈ F .
Proof:Without lost of generality, let T1 be semi-compact. Since
T1 is semi-compact, there exists a subsequence {xnk

} of {xn} such
that for some x∗ ∈ E, T1xnk

→ x∗ as k → ∞. This implies that
T nk
1 xnk

→ x∗ as k → ∞. Thus T
nk+1

1 xnk
→ T1x

∗ as k → ∞ and
from (20) we have limk→∞ xnk

= x∗. Also from (20) T nk
2 xnk

→
x∗, T nk

3 xnk
→ x∗, . . . , T nk

m xnk
→ x∗ as k → ∞. Thus T

nk+1

2 xnk
→

T2x
∗, T

nk+1

3 xnk
→ T3x

∗, . . . , T
nk+1
m xnk

→ Tmx
∗ as k → ∞. Now

‖xnk+1
− xnk

‖ ≤ ‖T nk
1 y1nk

− xnk
‖ from (14), it follows that xnk+1

→
x∗ as k →∞. Next, we show that x∗ ∈ F. Observed that

‖x∗ − T1x∗‖ ≤ ‖x∗ − xnk+1
‖+ ‖xnk+1

− T nk+1

1 xnk+1
‖

+ ‖T nk+1

1 xnk+1
− T nk+1

1 xnk
‖+ ‖T nk+1

1 xnk
− T1x∗‖.
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Taking the limit as k →∞ and using the fact that T1 is uniformly
asymptotically regular we have that x∗ = T1x

∗ and so x∗ ∈ F (T1).
Also,

‖x∗ − T2x∗‖ ≤ ‖x∗ − xnk+1
‖+ ‖xnk+1

− T nk+1

2 xnk+1
‖

+ ‖T nk+1

2 xnk+1
− T nk+1

2 xnk
‖+ ‖T nk+1

2 xnk
− T2x∗‖.

Taking the limit as k →∞ and using the fact that T2 is uniformly
asymptotically regular we obtain that x∗ = T2x

∗ and so x∗ ∈ F (T2).
Again,

‖x∗ − T3x∗‖ ≤ ‖x∗ − xnk+1
‖+ ‖xnk+1

− T nk+1

3 xnk+1
‖

+ ‖T nk+1

3 xnk+1
− T nk+1

3 xnk
‖+ ‖T nk+1

3 xnk
− T3x∗‖.

As k → ∞, we have that x∗ ∈ F (T3). Eventually, we have that,
x∗ ∈ F. But by Theorem 3 limn→∞Df (xn, x

∗) exists, x∗ ∈ F. Hence
{xn} converges strongly to x∗ ∈ F. This complete the proof.

Below we give example of Bregman total quasi-asymptotically non-
expansive mappings on the real line.

Example 1: Let E = R, f(x) = x, and for i = 1, 2, 3, . . . ,m, define
Ti : E → E by Tix = 1

3i
x. Then f is proper, lower semicontinuous

and convex and 0 ∈ F (Ti) for each i = 1, 2, 3, . . . ,m. Thus,

Df (T
n
i x, 0) = f(0)− f(T ni x)− 〈∇f(T ni x), 0− T ni x〉

= 0− T ni x− 〈∇f(T ni x),−T ni x〉

= − 1

3in
x− 〈 1

3in
,− 1

3in
x〉

= − 1

3in
x+

1

32in
x =

1

3in
(−x+

1

3in
x)

≤ 1

3in
(−x+ x) =

1

3in
(0− x− 〈1, 0− x〉)

=
1

3in
(f(0)− f(x)− 〈∇f(x), 0− x〉) = Df (x, 0)

≤ (1 +
1

3in
)Df (x, 0) + vin

= Df (x, 0) +
1

3in
Df (x, 0) + vin

where vin = 0 ∀n ≥ 1 and i = 1, 2, 3, . . . ,m. If φ(t) = t for t > 0
and uin = 1

3in
, then

Df (T
n
i x, 0) ≤ Df (x, 0) + uinφ(Df (x, 0)) + vin,
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showing that Ti Bregman total quasi-asymptotically nonexpansive
mapping for each i = 1, 2, 3 . . . ,m.

4 NUMERICAL EXAMPLE

In this section, we demonstrate the convergence of the iterative
scheme (9) on the real line. Let m = 3 then i = 1, 2, 3. Let f : R→
R, f(x) = 2

3
x2, then ∇f(x) = 4

3
x, since f ∗(x∗) = sup{〈x∗, x〉 −

f(x) : x ∈ R}, then f ∗(z) = 3
8
z2 and ∇f ∗(z) = 3

4
z. For Ti : R→ R

defined by Tix = 1
3i
x, for i = 1, 2, 3. From the scheme we obtain

x1 ∈ R
xn+1 = (1− αn)xn + 1

3n
αny1n

y1n = (1− αn)xn + 1
32n
αny2n

y2n = (1− αn)xn + 1
33n
αnxn

(22)

Hence

xn+1 = (1− αn)xn +
1

3n
αn(1− αn)xn +

1

33n
α2
n(1− αn)xn +

1

36n
α3
nxn.

Take the initial point x1 = 0.5 and αn = n+1
4n

, the numerical
experiment result using MATLAB is given in Figure 1, which shows
the iteration process of the sequence {xn} converges to 0.

Figure 1. x1 = 0.5, the convergence process of the
sequence {xn}.
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