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APPROXIMATION OF COMMON FIXED POINTS
FOR FINITE FAMILIES OF BREGMAN
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ABSTRACT. In this paper we establish necessary and sufficient
conditions for the convergence of a multistep iterative scheme to
a common fixed point of a finite family of Bregman quasi-total
asymptotically nonexpansive mappings in a real Banach space.
We then establish strong convergence theorems for finite families
of Bregman quasi-total asymptotically nonexpansive mappings
in a real uniformly convex Banach spaces. The results presented
generalize and improve some recently announced ones.
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1. INTRODUCTION

Let E be a real Banach space and K a nonempty closed convex
subset of E. The normalized duality map from E to 2F" (E* is the
dual space of E) denoted by J is defined by

J(x) ={f € B*: (z, f) = ||, || = I£]I}

Let T : K — K be a map, a point x € K is called a fixed point
of T"if Tx = =z, and the set of all fixed points of T' is denoted
by F(T) = {x € K : Tx = z}. The mapping T is called L-
Lipschitzian or simply Lipschitz if there exists L > 0, such that
|Tx—Ty|| <L|jz—y|, Vr,y€ K and if L = 1, then T is nonexpan-
sive. T is asymptotically nonexpansive if there exists a sequence
{tin}n>1 C [0, 00) with lim, e p, = 0, such that for all z,y € K,

[Tz =Ty < (14 po)lle —yll Yn = 1.

In 1967, Bregman [5] discovered an elegant and effective technique
for the use of so-called Bregman distance function in the process
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of designing and analyzing feasibility and optimization algorithms.
This opened a growing area of research in which Bregman’s tech-
nique is applied in various ways to design and analyze not only
iterative algorithms for solving feasibility and optimization prob-
lems, but also algorithms for solving variational inequalities, for
approximating equilibria and for computing fixed points of nonlin-
ear mappings. A mapping T is said to be Bregman firmly nonex-
pansive [17], if for all z,y € C.

(Vf(Tx) = f(Ty), Tx —Ty) <(Vf(z) =V f(y), Tz —Ty).
Or equivalently,

D¢(Tx,Ty) + Dy(Ty,Tx)+ D¢(Tx,x)

Let K be a nonempty, closed, and convex subset of £ and T
a mapping from K into itself. Let f : F — (—o00,+o0] be an
admissible function (i.e, a proper, convex and lower semicontinuous
on E and Gateaux differentiable on int domf). Then T is said to
be:

(i) quasi — Bregman relatively nonexpansive if F(T) # () and
D¢(p,Tx) < D¢(p,z) Vo € K and p € F(T).

In [16] quasi-Bregman relatively nonexpansive is called left
quasi-Bregman relatively nonexpansive.

(ii) Bregman quasi— asymptotically nonexpansive if there ex-
ists a sequence { i, }n>1 C [0, 00) with lim, o g, = 0 such
that for all x € K and p € F(T)

D¢(T"z,p) < (1 + pin)Dy(x,p) V> 1.

(iii) Bregman quasi — asymptotically nonexpansive in the in-
termediate sense [18] if F/(T")) # 0 and

limsup  sup  (Dy(T"z,p) — Dy(z,p)) <O0. (1)
n—oo  xeK,peF(T)
Put
Op = maw{O, sup (Df(T"x,p) — Df(x,p))}
zeK,peF(T)

then o, — 0 as n — oo and (1) reduces to

D¢(T"z,p) < Dy(x,p) + on (2)
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(iv) Bregman quasi—totalasymptotically nonexpansive if there
exists nonnegative real sequences {y, } and {l,,} with u,, — 0,
[, — 0 as n — oo and strictly increasing continuous func-
tion
¢ : Rt — RT with ¢(0) = 0 such that for all z € K and
p e F(T).

Df(Tnx7p) < Df(x7p) +:U’n¢(Df<I7p)) +lp, n21 (3)

Example of Bregman quasi-total asymptotically nonexpansive map-
pings is given in [9].
Remark 1: If ¢(\) = A, then (3) reduces to

In addition, if I,, = 0 for all n > 1, then Bregman quasi-total asymp-
totically nonexpansive mappings coincide with Bregman quasi- asymp-
totically nonexpansive mappings. If y, = 0and [, =0foralln > 1,
we obtain from (3) the class of mappings that includes the class of
Bregman quasi-nonexpansive mappings. If u, = 0 and [, = 0, =
maz{0, an}, where a, := sup,cc ey (Df(p, T"x) — Dy (p,x)) for
all n > 1, then (3) reduces to (2) which has been studied as Breg-
man quasi-asymptotically nonexpansive mappings in the interme-
diate sense. In 2007, Chidume and Ofoedu [10] constructed the
following iterative sequence, for approximation of common fixed
points of finite families of total asymptotically nonexpansive map-

pings.

4

r, € K,

Tpr1 = (1 —ap)x, + T2, fm=1n>1,

T € K,

Tor1 = (1 — ap)x, + T Y1,

yin = (1 — an)zn + @ T3 yan, (4)

y(m - 2)“ = (1 - an)$n + O‘nT;L—L—ly(mfl)na
yim—1), = (1 — )z, + @, Tlx,, iftm>2 n>1,

\

where {a,}52, is a sequence in [0,1] bounded away from 0 and 1.

They studied the convergence of this scheme to a common fixed
point of finite families of total asymptotically nonexpansive map-
pings in a uniformly convex Banach spaces.
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Let {a,, } be areal sequencein [e, 1—¢],e € (0,1). Let T}, Ts,- -+ , T}, :
E — FE be a family of mappings. Define a sequence {z,} by

($1 ek,

Tntl = Vf*((l —an) V f(zn) + an v f(fon))v ifm=1,n>1,
r1 € F,

In+1 = Vf*((l - an) \Y f($n> +ap f(Tflyln»y

Yin = Vf*((l —an) V f(zn) +an v f(TQH?J%))»

Ym—2)n = Vf*((l - an) Vv f(l'n) +an f(TrZ—ly(m—l)n)>
\Y(m—1)n = Vf*((l —an) V f(@n) +an v f(Tr?zxn))a ifm=>2n=>1,
(5)
It is our purpose in this paper to prove necessary and sufficient con-
ditions for the strong convergence of the scheme defined by (5) to
a common fixed point of finite family 77,75, ..., T}, of uniformly-L-
Lipschzian Bregman total asymptotically quasi-nonexpansive map-
pings. We also prove sufficient condition for strong convergence of
the scheme to a common fixed point of mapping in real uniformly
convex Banach spaces.

2. PRELIMINARY

Throughout this paper, we shall assume f : E — (—o0,400] is a
proper, lower semi-continuous and convex function. We denote by
domf :={zx € E: f(z) < +oo} the domain of f. Let « € intdomf,
the subdifferential of f at z is the convex set defined by

Of(x) ={z* € £ : f(x) + (2",y —x) < f(y), Vy € E},

where the fenchel conjugate of f is the function f* : E* — (—o00, +o0]
defined by

f*(a%) = sup{ (", ) — f(z) : & € B},
It is known that the young-Fenchel inequality holds:
(z%,2) < f(z) + f*(2*), Va€E.

A function f on F is coercive [11] if the sublevel set of f is bounded;
equivalently,

lim f(x) = +o0.
l|#]|—=+o0



286 M. S. LAWAN, BASHIR ALI, M. H. HARBAU AND G. C. UGWUNNADI

A function f on E is said to be strongly coercive [19] if

M = +00
lll|—+oo |||

For any x € intdomf and y € E, the right-hand derivative of f
at x in the direction y is defined by

o y) = lim LETW) = @)

t—0+ t

The function f is said to be Gateaux differentiable at x if

limy_, o+ w exists for any y. In this case, f°(z,y) coincides
with 7 f(x), the value of the gradient 7 f of f at x. The function
f is said to be Gateaux differentiable if it is Gateaux differentiable
at every point z € intdomf. The function f is said to be Fréchet
differentiable at x if this limit is attained uniformly in ||y|| = 1.
Finally, f is said to be uniformly Fréchet differentiable on a subset
K of E if the limit is attained uniformly for z € K and |ly|| = 1.
It is well known that if f is Gateaux differentiable (resp. Fréchet
differentiable) on intdomf, then f is continuous and its Gateaux
derivative 7 f is norm-to-weak* continuous (resp. uniformly con-
tinuous) on intdomf (see also [1, 4]). We will need the following
results.

Lemma 1 [15] : If f: F — R is uniformly Fréchet differentiable
and bounded on bounded subsets of E, then s/ f is uniformly con-
tinuous on bounded subsets of E from the strong topology of E to
the strong topology of E*.

Definition 1 [2]: The function f is said to be:

(1) Essentially smooth, if df is both locally bounded and single-
valued on its domain;

(ii) Essentially strictly convex, if (0f) " is locally bounded on
its domain and f is strictly convex on every subset of dom f;

(iii) Legendre, if it is both essentially smooth and essentially
strictly convex.

-1

Remark 2: Observe that if F is reflexive Banach space, Then we
have:

(i) f is essentially smooth if and only if f* is essentially strictly
convex (see [2] Theorem 5.4);
(ii) (0f)"" = af* (see [4])
(iii) f is Legendre if and only if f* is Legendre (see [2],Corollary
5.5)
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(iv) If f is Legendre, then s7f is a bijection satisfying 7 f =
(V") ranyf = domy/f* = intdomf* and ran v f* =
domf = intdomf (see [2], Theorem 5.10 ).

Examples of Legendre functions were given in [2, 3]. One impor-
tant and interesting Legendre function is %H I (1 < p < 00) when
E is a smooth and strictly convex Banach space. In this case the
gradient 7 f of f coincides with the generalized duality mapping
of E,ie, 7 f = J, (1 < p < o0). In particular, \7f = I the identity
mapping in Hilbert spaces. In the rest of this paper, we always
assume that f: E — (—o0, +0o0] is Legendre.

Let f:FE — (—o00,+00] be a convex and Gateaux differentiable
function. The function Dy : domfx intdomf — (—o0,+00], de-
fined by:

Dy(x,y) == fy) = f(x) = (Vf(2),y — ), (6)
is called the Bregman distance of x to y with respect to f (see [§]
). It is obvious from the definition of D; that

Dy(z,2) == Dy(z,y) + Dy(y, x) + (Vf(y) =V f(x). 2z —y). (7)
Recall that the Bregman projection [5] of x € intdom f onto nonempty,

closed and convex set K C domf is the unique vector P};(x) c K
satisfying

Dy(Pf(x),z) = nt{Dy(y,z) : y € K}.

Concerning the Bregman projection, the following are well known.
Lemma 2 [7] : Let K be a nonempty, closed and convex subset of
a reflexive Banach space . Let f: E — R be a Gateaux differen-
tiable and totally convex function and let € E Then

(a) z = Pf(x) if and only if (7 f(x) =7 f(2),y—2) <0, Vye

K;

(b) Dy(y, P(x)) + Ds(Pf(x),2) < Dy(y,x), Vo€ B, yeKk.
Let f: E — (—o00,+00] be a Gateaux differentiable function. The
modulus of total convexity of f at x € intdomf is the function
ve(z,-) 1 [0, 4+00] = [0, 400] defined by

ve(x,t) == 1inf{D(z,y) : y €domf, ||y — x| = t}.

The function f is called totally convex at z if vs(z,t) > 0 whenever
t > 0. The function f is called convex if it is totally convex at any
point x € intdom f and is said to be totally convex on bounded set
if v;(B,t) > 0 for any nonempty bounded subset B of E and t > 0,
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where the modulus of the total convexity of the function f on the
set B is the function vy : intdomf X [0, 4+00) — [0, +00) defined by

vp(B,t) ;== inf{vs(x,t) : 2 € B N domf}.

The following result was proved in [14]

Lemma 3[14]: Let F be a Banach space and f : E — R be
a Gateaux differentiable function which is uniformly convex on
bounded subset of E. Let {z,}nen and {y,}neny be bounded se-
quences in E. Then

nh—{{.lon(wmyn) =0 < 7}1—>r{.10||$n - yn|| =0.

Lemma 4 [16] : Let f: E — R be Gateaux differentiable and to-
tally convex function. If 2y € E and the sequence {D¢(z,,z0)} is
bounded the sequence {z,} is bounded too.

Lemma 5 [6] : The function f is totally convex on bounded set if
and only if the function f is sequentially consistent.

The following definition is slightly different from that in Butnariu
and ITusem [6].

Definition 2[12]: Let E be a Banach space. The function f : £ —
R is said to be a Bregman function if the following conditions are
satisfied:

(i) f is continuous, strictly convex and Gateaux differentiable;
(ii) the set {y € E: Dy(z,y) < r} is bounded for all x € E and
r > 0.

The following lemma follows from Butnariu and Iusem [6] and
Zalinescu [19].
Lemma 6: Let E be a reflexive Banach space and f : ' — R be
a strongly coercive Bregman function. Then
(i) Vf : E — E* is one-to-one, onto and norm-to-weak* con-
tinuous;
(ii) (z —y,Vf(z) — Vf(y)) =0 if and only if z = y;
(iii) {x € E: D¢(x,y) < r} is bounded for all y € E and r > 0;
(iv) dom f* = E*, f* is Gateaux differentiable and V f* =
(V)
The following two results were proved in [19]
Theorem 1: Let E be a reflexive Banach space and let f : F — R
be a convex function which is bounded on bounded subsets of E.
Then the following assertions are equivalent:

(1) f is strongly coercive and uniformly convex on bounded
subsets of F;
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(2) domf* = E*, f* is bounded on bounded subsets and uni-
formly smooth on bounded subsets of E*;
(3) domf* = E* f* is Frechet differentiable and Vf is uni-
formly norm-to-norm continuous on bounded subsets of £*.
Theorem 2: Let E be a reflexive Banach space and let f: EF — R
be a continuous convex function which is strongly coercive. Then
the following assertions are equivalent:
(1) f is bounded on bounded subsets and uniformly smooth on
bounded subsets of F;
(2) f* is Frechet differentiable and f* is uniformly norm-to-
norm continuous on bounded subsets of E*;
(3) domf* = E*, f* is strongly coercive and uniformly convex
on bounded subsets of E*.
The following result was first proved in [7] (see also [12]).
Lemma 7: Let E be a reflexive Banach space, let f : E — R be
a strongly coercive Bregman function and let V; be the function

defined by
Vi(z,2") = f(z) — (x,2") + f*(2"), z € E, 2" € E".
Then the following assertions hold:
(1) Dy(x, Vf(z*)) = Vi(x,2*) for all x € E and 2* € E*.
(2) Vi(z,2*) +(Vf*(z*) —z,y*) < V(r,2*+y*) forallz € E
and z*,y* € E*.
Lemma 8[14]: Let E be a Banach space and f : E — R be a

convex function which is uniformly convex on bounded subsets of

E. Let r > 0 be a constant and p,. be the gauge of uniform convexity
of f . Then

(i) For any z,y € B, and a € (0,1),

flaz+ (1 —a)y) <af(e)+ (1 -a)f(y) —a(l —a)p(|z —yl]).
(ii) For any x,y € B,,

pr(llz = yll) < Dy(2,y)

(iii) If, in addition, f is bounded on bounded subsets and uni-
formly convex on bounded subsets of E then, for any = €
E,y*,z* € B, and a € (0,1),

Vi(a,ay*+(1-)=") < aVj(a,y")+1—a)Vy(z, =) —a(l—a)pi(lly*—a*|).
Lemma 9 [16] : Let f : E — R be a Gateaux differentiable and to-
tally convex function, g € F and let K be a nonempty, closed and

convex subset of . Suppose that the sequence {z,} is bounded and
any weak subsequential limit of {x,,} belongs to K. If D(z,,x) <
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Df(P};(:co),xo) for any n € N, then {z,} converges strongly to
Pl (o).

Lemma 10 [13] : Let E be a real reflexive Banach space, F :
E — (—00,400] be a proper lower semi-continuous function, then
F: E — (—o00,400] is a proper weak® lower semi-continuous and
convex function. Thus, for all z € E, we have

Lemma 11 (see Lemma 4 in [10]) : Let {a,}, {an} and {b,} be
sequences of nonnegative real numbers such that
Ant1 S (1 + an)an + bn
Suppose that > 7 «a, < oo and Y ", b, < oo. Then a,, is
bounded and lim,,_,, a,, exists. Moreover, if in addition,
liminf,, . a, = 0, thenlim,,_,, a, = 0.

3. MAIN RESULTS

Let E a real uniformly convex Banach space and Ty, 75, -+, T}, :
E — FE be m Bregman quasi-total asymptotically nonexpansive
mappings. We define the iterative sequence {x,} by

(.%1 ek,

Tntl = Vf*((l —an) V f(zn) +O‘an(Tf$n))v if m=1,n>1,
T € F,

Tpt1 = Vf*((l —ap) V f(zn) +an v f(Tlnyln»y

Yin = Vf*((l —ap) V f(zn) +an v f(TQHZDn))»

Ym—2)n = Vf*((l - Oén> Vv f(l'n) +an f(TrZ—ly(m—l)n)>
\Y(m—1)n = Vf*((l —ap) V f(zn) + an v f(Tr?rfn))a it m>2n>1,
(9)

where {a,}22, is a sequence in [0,1].

Theorem 3 : Let E be a real uniformly convex Banach space, and
f:E— R a convex, continuous, strongly coercive and Gateaux
differentiable function which is bounded on bounded subsets and
uniformly convex on bounded subsets of E. Let T;: E — FE i =
1,2,...,m be Bregman quasi-total asymptotically nonexpansive
mappings with sequences {p,}, {lin} C [0,00) n > 1 and map-
pings ¢; : [0,00) — [0,00) i = 1,2,...,m such that > >° p, <
00, > lpy<oo, i=1,2,...,mand F :=nN" F(T;) #0. Let
{z,,} be defined as in (9) and suppose there exists M;, M} > 0 such
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that ¢(A\;) <M\ forall \;,>M,; i =1,2,...,m, then the sequence
{z,} is bounded and lim,,_,o, D¢(z,, p) exist, where p € F.
Proof:For m = 1 we have from (9) that z; € E, and

Tn+1 = Vf*((l - an) V f(xn) +an \V4 f(Tlnxn))7
then

Df('xn-‘rl)p) Df( \VA f*((l —an)V f(zn) +an v f(fon)>,p)
(1 —ay)Dg(xn,p) + Dy (17, p)

(1 = o) Dy(an, p)

+ an [ Dy(xn, ) + p1nd1 (D (20, p)) + lin)

Df(xmp> + anﬂ1n¢1 (Df(xmp» + anlln-

IAIA

Since ¢, is an increasing function, it follows that ¢1(\1) < ¢1(M;)
whenever A\; < M; and by hypothesis ¢; (A1) < M7\, if Ay > M. In
either case, we have

o1 (Df(iﬂmp)) < ¢1(My) + My Dy(zn, p)
for some M; > 0, M; > 0. Thus,
Df<xn+17p) < Df(f[)n,p) + anﬂln¢1(Ml>

+ Oén,ulan*Df(xnap) + CYnlln
- (1 + ,uanl)Df(xmp> + (Nln + lln)Qla

for some constant (; > 1.
Next, for m = 2, we obtain from (9) that

r €L,
Tpt1 = Vf* ((1 - O‘n) V f(xn) + a, V f(Tlnyln))a

from this, we have

Df($n+1,p) = Df( \Y4 f*((l — ) V f(wn) + an f(Tlnyln)),p)
(1 — ay)Dg(xn, p) + an D (17 Y1n, p)

(1= @) Dy, p) + n [Dy (Y10, 1)

+ 1110 ®1 (D (Y1n, p)) + lin]

<
<
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and

D¢ (Yin, p) Df( V f*((l — ) V f(7n) + a7 f(TgL:L‘n)),p)
(1- O‘n)Df(xmp> + O‘an(Tglxnap>

(1 —an) Dy (n, p)
+an [Df(xn7p) +M2n¢2(Df(xnap)) +l2n] (1())

Again, since ¢; is an increasing function for i = 1, 2, it follows that
¢z()\z) < gbz(Mz) + M:AZ for some M; > 0, ]\4:< >0,1=1,2.
Hence,

IA A

Di(@ps1,p) < (L= an)Dy(xn,p) + anD(Yin, p) + anpiindr (M)
+ i1 M D¢ (Y10, ) + anlin
< (1= an)Dy(wn, p) + an[Dy(xn, p) + anfizgda(Mo)
+ Qnpion M5 D (1, p) + anl2n} + o fi1n @1 (M)
+ appiin M [ Dy (20, ) + npianda(Ms)
+ appion M5 D2y, p) + anlgn] + anlip
Df('rnap) + anu2n¢2<M2) + O‘ﬂﬂ%Mz*Df(xmp)
+ aplon + nftin®r (Ml) + an,ulanDf(xmp)
+ Qi fiinfion®2(Ma) MY + aupirnpion My M3 Dy (2, p)
+ apfiinlon MT + anlyy,
< (14 (pin + p20)Q2) Dy (20, p)
+ (10 + t2n + lin + l20)Q2,

for some constant )2 > 0.
Following the computation above, we obtain for some m € N

IN

Dy(ninp) < (1 QY ujn)Dfm,p) +Q (s + L)
j=1 j=1

for some @ > 0.
Hence

where 6, = Q> 07 piin and v, = QD07 (ftjn+1n). Observed that
Yo 0, <ooand Y o7 v, < oo. It follows from (11) and Lemma
11 that the sequence {z,} is bounded and lim,,_,o D¢(z,,p) exists
for each p € F.

3.1 NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE
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Theorem 4: Let E be a real uniformly convex Banach space, and
f:E— R a convex, continuous, strongly coercive and Gateaux
differentiable function which is bounded on bounded subsets and
uniformly convex on bounded subsets of F. Let T; : E — F i =
1,2,...,m be Bregman quasi-total asymptotically nonexpansive
mappings with sequences {i,}, {lin} C [0,00) and mapping ¢; :
[0,00) = [0,00) n>1 i =1,2,...,m, such that >, pn, <
00, > lmy<oo, i=1,2,....mand F:=nN" F(T;) #0. Let
{z,} be defined as in (9) and suppose there exists M;, M} > 0
such that ¢(\;) < MFA; for all \; > M; ¢ = 1,2,...,m, then
the sequence {z,} converges strongly to a common fixed point of
T;, 1 =1,2,...,mif and only if

liminf, o (infyep Dy(2n,y)) =0, n > 1.

Proof: The necessity is trivial. We prove the sufficiency. Let
liminf, o (infyep Dy(zn,y)) = 0, we show {z,} is Cauchy se-
quence in E. From (11) and Lemma 11, we have that
limnﬁoogi/Iel‘ng(l'n,p)) exists. Since lim inf,,_, (infyep Dy (zy, y)) =

0, it follows that lim,,_,~ (infyep Dy(xp, y)) = 0. Thus given € > 0

there exists a positive integer Ny and p* € F' such that Vn > Ny,

D¢(x,,p*) < e. This shows that lim D(z,,p*) = 0. Thus in view
n—oo

of Lemma 3, we have lim ||z, — p*|| = 0. Then there exists N; € N
n—oo

such that Vn > Ny, ||z, — p*|| < 5.
For any k € N, we have Vn > N,

Hajn—kk - an < ”xn-i-k _p*” + ||p>k - xn”

€ €
__i__:e’

2 2

and so {z,} is a Cauchy sequence. Let x, — u, we need to show
that u € F. Let T; € {T1,T5, ..., T, }. Then for N* € N sufficiently

large and p* € F such that for all n > N* we have ||z, —u|| < )

and ||z, — p*| < . Hence

€
6(1+w1)

€
u—p < |lu—z,||+ |z, —p*|| < =—.
Ju=rll < Tu= o =2l < 5
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Thus we have the following estimates for n > N*, arbitrary T;,i =

1,2,--- ,mand w; = max {ui }:
lu =Tl < lu—an| + [Jon —p*|| + [[p" — Tiul]
< lp =zl + lzn = "l + (1 + ) [p" — ul
< lp = aall + llzn — ™[ + (1 + wi)llp* — ul]

€ € €

+ + -
6(14+w) 6(14w) 3

IN

This shows that u € F(T;) for each i € {1,2,--- ;m} and sou € F.
This complete the proof.

Lemma 13: Let F be a real uniformly convex Banach space, and
f E — R a convex, continuous,strongly coercive and Gateaux dif-
ferentiable function which is bounded on bounded subsetsand uni-
formly convex on bounded subsets of E. Let T;: F — FE, i =
1,2,...,m be m Bregman quasi-total asymptotically nonexpansive
mappings and uniformly L;-Lipschitzian which is also uniformly
asymptotically regular, with sequences { .}, {lin}, C [0,00) n >1
and mappings ¢; : [0,00) — [0,00) such that > >°, p, < o0,
Yot lin < 00, = 1,2,...,m, and F := N2, F(T;) # (. Let
{a,} C 6,1 — ¢ for some € € (0,1),. From arbitrary x; € E define
the sequence {z,} by (9). Suppose that there exist M;, M} > 0
such that ¢;(\;) < M} \; whenever \; > M; i = 1,2,...,m then
lim, oo [| 1] T — 20]| =0, i =1,2,... ,m.

Proof: Let p € F then by Theorem 3, lim,, o Dy(x,,p) exists.
Let lim,, oo D¢(xpn,p) = 7. If r = 0 then by continuity of T, i =
1,2,...,m we are done. Now suppose r > 0, we show lim,, o || 172, —
|| =0,i=1,2,...,m.

In Theorem 4, we have shown that {x,} is Cauchy. In particular
for m =1, we get from (9) that

11 €K 2,00 =V ((1—0a,)Vf(x,)+a,Vf(T]z,)).
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Using this and Lemma 8, we have for some constant ); > 0 that

Dy(p, 1) = D(p, V(1 = an)Vf(n) + onV f(T]'20)))
= Vi(p, (1 = )V f(zn) + aV f(T1'20))
= [(p) = (p,(1 — )V f(zn) + @V f(TT2,))
+f((1 = )V f(2n) + @V f(T7 1))
< (=) f(p) +anf(p) = (1= an)(p, V(zn))
—an(p, VI (T{'wn)
+(1 — ) (VI (TT2n)) + an f (Vf(T1'2,))
—an(1 = an)ps(|[V f(yn) = V(T 2a)l])
= (1=an)Vy(p, V(zn)) + anV(p, Vf(IT2,))
—an(l = an)ps([[V f(yn) = Vf(T1'20)|])
= (1= 0an)Ds(p,zs) + anDy(p, T1'xy)
= (1 = ) ps(I[V f(2n) = V(T]'20)]])
(1 — ) Dy(p, xn) + an[Dy(p, z0)
+1n 1 (Dy(p, ) + lin]
= (1 = ) ps(I[V f(2n) = V(T]'20)]])
Dy(p, n) + (H1n + l1n) @1
—on(1 = an)p([IV f(2n) = V(TT'z0)]]).

IN

IN

Thus,

Ep(IVf(zn) = VI(TTza)l)) < Dyp,n) = Dy(p, Tnsa)
+ (,uln + lln)Ql
which implies,

e’}

Y pi(IVf(@n) = V(T aa)l) < Dy(p,a1) +Qu Y (pin + lin)-
n=1

n=1
Hence 3302, pi(11VF(@n) = V(T 2n)l]) < 00. So, lim pi([|Vf(wn) =V (T{wn)l]) =
0; and properties of p* imply Jim [[Vf(zn) = VA(T{'zn)|| = 0. Since V f* is
uniformly norm-to-norm continuous on bounded subsets of £E*, we
arrive at

Jim |, — Tz, || = 0. (12)

For m = 2, (9) becomes

x| € FE
{ Tpp1 = V(1 =)V (xn) + o V(TTY1n)) (13)
Yin = VI (aVf(zn) + (1 —an)V(T32,))
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using (10), (22) and Lemma 8, we obtain, for some ()3 > 0 that

Df(p, xn+1) < (1 - an>Df<pv xn) + aan(p, Tlnyln)
—an(1 = an)ps(IIV f(z0) = VF(TTy1n)|])
(1 — o) Dy(p, zn)

+ Dy (p, Yin) + 11001(Ds (P, Y1n)) + lin)
—an (1 — an)ps([|V f(zn) = VF(TTy10)l])
Dy(p, ) + (20 + lon + pi1n + 110) @3
—on (1 — an)p([IV f (z0) = VI (TT'y1)l])-

IN

IN

Thus,
Es(IVf(zn) = VITTyn)ll) < Dp(p,xn) — Dy(p, Tnsa)
+ (pt2n + lon + ptin + lin) @3

which implies ,

€ Zp:(HVf(fn) = VI(TTy)ll)

[e.e]

S Df(p7 xl) + QS Z(,UQH + l2n + Hin + lln) < Q.

n=1
So, lim p¥||V f(z,) — Vf(TTy1n)|| = 0, and properties of p, yield
n—oo
lim ||V f(z,) = Vf(TT%1,)|| = 0. Since V f* is uniformly norm-to-
n—oo

norm continuous on bounded subsets of £*, we obtain

Tim [, — T}y, ]| = 0. (14)
Thus from Lemma 3, we obtain

lim D¢(xp,, T1'y1n) = 0. (15)

n—oo

Also, from (7) and (15), we have
Dy(p,zn) < Dy(p,T{'y1n) + Ds(TT Y10, T0)
+(VI(T'yn) = V@), p — T7y1n)
< Dy T1'1n) + Dy (1710, Tn)
+ IV (TTy1n) = Vi (@a)llllp = Tyl
< Ds(p, y1n) + 1M + lin + D (T7Y10, 7)
HIVF(TTyn) = Vo (@a)llllp = TTY1nl|
for some constant M > 0. Hence, we deduce from this that

r < lHminfD¢(p, yin).
n—oo
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Also, since

Df(p7 yln) S (1 + ,u2nQ2)Df(pa xn) + (M?n + l2n)Q27
this gives
limsupDy(p, y1n) < 7

n—0o0

Thus
nh_{gon(pa Yin) =T
Also from (22) and Lemma 8, we obtain, for some ()5 > 0 that
D¢(p,y1n) < (1= an)Dys(p,xn) + o Dy(p, T3 wn)
—on(1 = an)p([|V f(2n) = V[ (TT'z0)]])
< (T4 anponQ2) Dy (p, 20) 4 (pi2n + l2n) Q2
—an (1 = an)ps(|[V f(20n) = V(T{'2)|]).
Therefore
eps([IV f(zn) = VI (T{w)]])
< (T4 anpon@2)Dy(p, x0) — Dp(p, y1n) + (ti2n + lon) Q2
So, lim pf||Vf(z,) — Vf(T3x,)|| = 0, and properties of p, yield
lim T|l|_>Vo?f(xn) — Vf(T3z,)|| = 0. Since V f* is uniformly norm-to-
ggﬁn continuous on bounded subsets of £E*, we obtain

lim ||z, — Ty'z,|| = 0. (16)

n—oo

Hence, from Lemma 3, we obtain

lim Dy (x,, T5'x,) = 0. (17)

n—o0

So, from (22) and (17), we obtain

Df(xm Yin) < (1-— O‘TL)Df(xnv Ty)
+ a,Dys(z,, T5'x,) — 0 as n — oo. (18)

which implies from Lemma 3, that

lim ||z, — y1n|| = 0. (19)
n—oo
Also,
[TV'z, — x| < TV %0 = Tyl + |17 Y10 — 20|
< Lil|zn = yuall + (|17 Y10 — w2l

Hence, from (14) and (19), we obtain

lim || 11"z, — || = 0.
n—oo
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Hence
lim ||11'z, — z,|| = lim ||T5'2, — x,|| = 0.
n—00 n—00
Continuing, we get
lim ||T]'x, — z,|| =0, ¢=1,2,--- ,m. (20)
n—o0
Furthermore
< (Li 4+ D|zn = Ty + [T g — T, |.

From (20) and asymptotic regularity of T;, for each i € {1,2.---  m},
we obtain

lim || Tz, — x,|| = 0. (21)
n—o0

This complete the proof.

Theorem 5: Let E be a real uniformly convex Banach space, and
f:EF— R a convex, continuous, strongly coercive and Gateaux
differentiable function which is bounded on bounded subsets and
uniformly convex on bounded subsets of E. Let T; : E — E, i =
1,2,...,m be m Bregman quasi-total asymptotically nonexpan-
sive mappings and uniformly L;-Lipschitzian which is also uni-
formly asymptotically regular with sequences { i}, {lin} C [0, 00)
and mappings ¢; : [0,00) — [0,00),7 = 1,2,...,m and F :=
N2 F(T;) # 0. Let {i,} C [e,1 — €] for some € € (0,1),. From ar-
bitrary x; € E define the sequence {z,} by (9). Suppose that there
exist M;, M} > 0 such that ¢;(\;) < M}\; whenever \; > M; i =
1,2,...,m and that at least one of 13,75, ...,T,, is semi-compact,
then {x,} converges strongly to some x* € F.

Proof:Without lost of generality, let 77 be semi-compact. Since
T is semi-compact, there exists a subsequence {zy, } of {z,} such
that for some z* € E, Tix,, — x* as k — oo. This implies that
'z, — x* as k — oo. Thus T)*"'z,, — Tix* as k — oo and
from (20) we have limg_,oo 2, = x*. Also from (20) T3*z,, —
v, T3*w,, — x*, ..., T%z, — z* as k — oco. Thus T,* "'z, —
Tox*, T3 w,, — Tsa*, ..., Tp'" 2, — T,o* as k — oco. Now
| Znsr = Tog | < NTT* Y10y — Ty || from (14), it follows that z,,,, —
x* as k — 0o. Next, we show that z* € F. Observed that

lo* = Tia™| < o™ = Zo, | 4+ Nomgy = T 2|

HIT gy = TV, |+ 1T 2, — Tha”.
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Taking the limit as £k — oo and using the fact that T} is uniformly
asymptotically regular we have that z* = Ty2* and so z* € F(T}).
Also,

lo* = Toa™ || < [lo" = Zn, | 4 N2mgy = T 2|

T gy = T, | 4 1T 2, — Toa”.

Taking the limit as £k — oo and using the fact that T, is uniformly
asymptotically regular we obtain that z* = Tox* and so z* € F(T3).
Again,

||$* - Tgl'*H S ||ZL'* - xnk+1|| + ||x7lk+1 - T£k+lxnk+1”

H T3 gy = T |+ 11T 2, — T2

As k — oo, we have that z* € F(T3). Eventually, we have that,
z* € F. But by Theorem 3 lim,,_,o, Dy(x,, z*) exists, 2* € F. Hence
{x,} converges strongly to z* € F. This complete the proof.

Below we give example of Bregman total quasi-asymptotically non-
expansive mappings on the real line.

Example 1: Let £ =R, f(z) =z, and fori = 1,2,3,...,m, define
T,: E — E by T)x = 3i:17 Then f is proper, lower semicontinuous
and convex and 0 € F(T;) for each i = 1,2,3,..., m. Thus,
Dy(T'x,0) = [f(0) = f(T7'z) = (V[(T}'z),0 — T}"x)
= 0= TP — (V(T72), ~T7)

1 1 1

= _Bﬁx_<3%7_3ﬁx>
_ 1 n 1 _ 1( n 1 )
o 3mx 32mx_ 3in X 3mm

1 1
< gmltete)=570-2-(1,0-2)

1
= 3w (f(0) = f(2) = {Vf(2),0 —2)) = Dy(=,0)

1
< (L 55)Dy(,0) + vin
1

= Df(x,0)+3%Df(x,0)+vm

where v;, =0Vn > 1and i =1,2,3,...,m. If ¢p(t) =t fort >0
and u;, = 3,%1, then
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showing that T; Bregman total quasi-asymptotically nonexpansive
mapping for each ¢ =1,2,3...,m.

4 NUMERICAL EXAMPLE

In this section, we demonstrate the convergence of the iterative
scheme (9) on the real line. Let m = 3 theni=1,2,3. Let f : R —
R, f(z) = 222, then Vf(z) = 3z, since f*(z*) = sup{(a*, z) —

f(x):x € R}, then f*(z) = 222 and Vf*(z) = 2z. For T, : R —» R

defined by T;x = %x, for © = 1,2,3. From the scheme we obtain

1 € R
Tp41 = (1 - Oén)xn + g%nanyln

22
Yin = (]- - an)xn + 32%0571an ( )
Yon = (1 - an)gjn + 33Lnanxn

Hence
1 .
Tpa1 = (1 — )y + —an(l — ap)x, + —a2 (1 — o)z, + —a,.
+1 ( ) + 3n ( ) + 33n n( ) + 36n "
Take the initial point z; = 0.5 and «, = %’ the numerical

experiment result using MATLAB is given in Figure 1, which shows
the iteration process of the sequence {z,} converges to 0.

o
n

“Walue of the sequence:xn
o o o o
= e R
—_ m [} m o o E=N m
T T

=

f]

53]
T

[=]

20 28 30 35 40 45 50
Mumnber of iterations:n

FIGURE 1. x; = 0.5, the convergence process of the
sequence {x,}.
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