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λ-SEQUENCES AND FIXED POINT THEOREMS

G-METRIC TYPE SPACES
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ABSTRACT. In this article, we prove a common fixed point
theorem for a family of self mappings in G-metric type spaces
using the idea of λ-sequences.
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1. INTRODUCTION AND PRELIMINARIES

In this section, we give the basic concepts and corresponding
notations attached to the ideas of G-metric type spaces and λ-
sequences. The first well known generalization of metric spaces is
due to Dhage, who introduced the so-called D-metric space in [1].
Later on and more recently, the works done by Mustafa and Sims
[8, 9] established a more general type of metric space, namely the
G-metric spaces. In this article, we introduce a slightly modified
version of G-metric that we call G-metric type in analogy to what
appears in [3, 4, 6] with respect to metric spaces. We give and
prove fixed point theorems in this setting. The results presented
here generalize similar ones already proved in [2, 5, 7, 8, 10].

Definition 1: (Compare [4]) Let X be a nonempty set, and let
the function D : X ×X → [0,∞) satisfy the following properties:

(D1) D(x, x) = 0 for any x ∈ X;
(D2) D(x, y) = D(y, x) for any x, y ∈ X;
(D3) D(x, y) ≤ α[D(x, z1) + D(z1, z2) + · · · + D(zn, y)] for any

points x, y, zi ∈ X, i = 1, 2, . . . , n where n ≥ 1 is a fixed
natural number and α some constant such that α ≥ 1.

The triplet (X,D, α) is called a metric type space.
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Definition 2: (Compare [9]) Let X be a nonempty set, and
let the function D : X × X × X → [0,∞) satisfy the following
properties:

(G1) D(x, y, z) = 0 if x = y = z whenever x, y, z ∈ X;
(G2) D(x, x, y) > 0 whenever x, y ∈ X with x 6= y;
(G3) D(x, x, y) ≤ D(x, y, z) whenever x, y, z ∈ X with z 6= y;
(G4) D(x, y, z) = D(x, z, y) = D(y, z, x) = . . ., (symmetry in all

three variables);
(G5) D(x, y, z) ≤ K[D(x, a, a) + D(a, y, z)[ whenever x, y, z, a ∈

X and K some constant such that K ≥ 1, (rectangle in-
equality)1.

The triplet (X,D,K) is called a G-metric type space.

It is therefore trivial to observe that, as metric type spaces gen-
eralize metric spaces, G-metric type spaces generalize G-metric
spaces. Moreover, for K = 1, we recover the classical G-metric.
Furthermore, if (X,D,K) is a G-metric type space, then for any
L ≥ K, (X,D,L) is also a G-metric type space. The concepts of
Cauchy sequence and convergence for a sequence in a G-metric type
space are defined in the same way as defined for a G-metric spaces
and this can be read in [9]. Nevertheless, for the convenient of the
ready, we shall recall the below definitions.

Definition 3: (Compare [9]) Let (X,D,K) be a G-metric type
space. Then a sequence (xn) ⊂ X

(i) is D-convergent to x ∈ X if limn,m→∞D(x, xn, xm) = 0,
that is, for each ε > 0 there exists N ∈ N such that
D(x, xn, xm) < ε for all m,n ≥ N ;

(ii) is G-Cauchy if for each ε > 0 there exists N ∈ N such that
D(xn, xm, xm) < ε for all m,n ≥ N ;

Definition 4: (Compare [9])
A G-metric type space (X,D,K) is G-complete if every D-Cauchy
sequence in (X,D,K) is D-convergent.

We complete this section by recalling the definition of a λ-sequence.

Definition 5: (Compare [2]) A sequence (xn)n≥1 in a metric
type space (X, d,K) is a λ-sequence if there exist 0 < λ < 1 and

1Following property D3 of Definition 1, this can be generalized as

D(x, y, z) ≤ Kn[D(x, z1, z1) +D(z1, z2, z2) + · · ·+D(zn, y, z)]

for any points x, y, z, zi ∈ X, i = 1, 2, . . . , n where n ≥ 1.
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n(λ) ∈ N such that

L−1∑
i=1

d(xi, xi+1) ≤ λL for each L ≥ n(λ) + 1.

Remark 1: We know (see [9]) that given a metric type space
(X, d,K), we can build a G-metric type (X,D,K) space by setting

D(x, y, z) = max{d(x, y), d(y, z), d(x, z)},
whenever x, y, z ∈ X.

In this paper, we shall call the G-metric type space (X,D,K)
(given above), the d-induced G-metric type space. It is an
immediate consequence of the above definition that the d-induced
G-metric type space (X,D,K) isG-complete if and only if (X, d,K)
is complete2. Hence we extend λ-sequence to G-metric type space
in the following way:

Definition 6: (Compare [2]) A sequence (xn)n≥1 in a G-metric
type space (X,D,K) is a λ-sequence if there exist 0 < λ < 1 and
n(λ) ∈ N such that

L−1∑
i=1

D(xi, xi+1, xi+1) ≤ λL for each L ≥ n(λ) + 1.

Remark 2: Let (X, d,K) be a metric type space, then any λ-
sequence in (X, d,K) is also a λ-sequence in the d-induced G-metric
type space (X, d,K).

We now state and prove the main results of this article.

2. MAIN RESULTS

Let Φ be the class of continuous, non-decreasing, sub-additive and
homogeneous functions F : [0,∞) → [0,∞) such that F−1(0) =
{0}. The following result is analogous to the main result of Vetro
[10] and the proof is similar.

Theorem 1: (Copmare [10, Theorem 2.1.]) Let (X, d,K) be
a complete metric type, (X,D,K) the d-induced G-complete G-
metric type space and {Tn} be a sequence of self mappings on X.

2The reverse construction is given in [5]. In that reference the authors build
a metric space out of a G-metric space and prove that the completeness of the
two spaces are equivalent.
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Assume that there exist two sequences (an) and (bn) of elements of
X such

F (D(Ti(x), Tj(y), Tj(z))) ≤ F (δi,j [D(x, Ti(x), Ti(x)) +D(y, Tj(y), Tj(z))]) (1)

+ F (γi,jD(x, y, z))

for x, y, z ∈ X with x 6= y, 0 ≤ δi,j, γi,j < 1, i, j = 1, 2, · · · , and
some F ∈ Φ, homogeneous with degree s, where δi,j = D(ai, aj, aj)

and γi,j = D(bi, bj, bj). If the sequence (sn) where si =
δsi,i+1+γ

s
i,i+1

1−δsi,i+1
is

a non-increasing λ-sequence of R+ endowed with the max 3 metric,
then {Tn} has a unique common fixed point in X.

Proof: We split the proof into two steps. For any x0 ∈ X, we
construct the sequence (xn) by setting xn = Tn(xn−1), n = 1, 2, · · · .
Using (1) and the homogeneity of F , we obtain

F (D(x1, x2, x2)) = F (D(T1(x0), T2(x1), T2(x1)))

≤ δs1,2F ([D(x0, T1(x0), T1(x0))) +D(x1, T2(x1), T2(x1))])

+ γs1,2F (D(x0, x1, x1))

= δs1,2F ([D(x0, x1, x1) +D(x1, x2, x2)]) + γs1,2F (D(x0, x1, x1)).

By the sub-additivity of F , we have

(1− δs1,2)F (D(x1, x2, x2)) ≤ (δs1,2 + γs1,2)F (D(x0, x1, x1)),

i.e.

F (D(x1, x2, x2)) ≤
(
δs1,2 + γs1,2
1− δs1,2

)
F (D(x0, x1, x1)).

Also, we get

F (D(x2, x3, x3)) = F (D(T2(x1), T3(x2), T3(x2)))

≤
(
δs2,3 + γs2,3
1− δs2,3

)
F (D(x1, x2, x2))

≤
(
δs2,3 + γs2,3
1− δs2,3

)(
δs1,2 + γs1,2
1− δs1,2

)
F (D(x0, x1, x1)).

By repeating the above process, we have

F (D(xn, xn+1, xn+1)) ≤
n∏
i=1

(
δsi,i+1 + γsi,i+1

1− δsi,i+1

)
F (D(x0, x1, x1)). (2)

3The max metric m refers to m(x, y) = max{x, y}
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Hence we derive, by making use of the the rectangle inequality
and the properties of F , that for p > 0

F (D(xn, xn+p, xn+p)) ≤ Ks(p−1)[F (D(xn, xn+1, , xn+1)) + F (D(xn+1, xn+2, xn+2))

+ . . .+ F (D(xn+p−1, xn+p, xn+p))]

≤ Ks(p−1)

[
n∏
i=1

(
δsi,i+1 + γsi,i+1

1− δsi,i+1

)
F (D(x0, x1, x1))

+

n+1∏
i=1

(
δsi,i+1 + γsi,i+1

1− δsi,i+1

)
F (D(x0, x1, x1))

+ . . .+

+

n+p−1∏
i=1

(
δsi,i+1 + γsi,i+1

1− δsi,i+1

)
F (D(x0, x1, x1))


= Ks(p−1)

p−1∑
k=0

n+k∏
i=1

(
δsi,i+1 + γsi,i+1

1− δsi,i+1

)
F (D(x0, x1, x1))


= Ks(p−1)

n+p−1∑
k=n

k∏
i=1

(
δsi,i+1 + γsi,i+1

1− δsi,i+1

)
F (D(x0, x1, x1))

 .

Now, let λ and n(λ) as in Definition 6, then for n ≥ n(λ) and
using the fact the geometric mean of non-negative real numbers is
at most their arithmetic mean, it follows that

F (D(xn, xn+p, xn+p)) ≤ Ks(p−1)

n+p−1∑
k=n

[
1

k

k∑
i=1

(
δsi,i+1 + γsi,i+1

1− δsi,i+1

)]k
F (D(x0, x1, x1))


(3)

≤ Ks(p−1)

n+p−1∑
k=n

λk

F (D(x0, x1, x1))


≤ Ks(p−1) λn

1− λ
F (D(x0, x1, x1)).

Letting n → ∞ and since F−1(0) = {0} and F is continuous, we
deduce that D(xn, xn+p, xn+p)→ 0. Thus (xn) is a Cauchy sequence
and, by G-completeness of X, converges to say x∗ ∈ X.

Moreover, for any natural number m 6= 0, we have

F (D(xn, Tm(x∗), Tm(x∗))) = F (D(Tn(xn−1), Tm(x∗), Tm(x∗)))

≤ δsn,m[F (D(xn−1, xn, xn))

+ F (D(x∗, Tm(x∗), Tm(x∗)))]

+ γsn,mF (D(xn−1, x
∗, x∗)).
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Again, letting n→∞, we get

F (D(x∗, Tm(x∗), Tm(x∗))) ≤ δsn,m[F (D(x∗, x∗, x∗))

+ F (D(x∗, Tm(x∗), Tm(x∗)))]

+ γsn,mF (D(x∗, x∗, x∗))

≤ δsn,mF (D(x∗, Tm(x∗), Tm(x∗))),

and since 0 ≤ δn,m < 1, it follows that F (D(x∗, Tm(x∗), Tm(x∗))) =
0, i.e. Tm(x∗) = x∗. Then x∗ is a common fixed point of {Tm}m≥1.

To prove the uniqueness of x∗, let us suppose that y∗ is a common
fixed point of {Tm}m≥1, that is Tm(y∗) = y∗ for any m ≥ 1. Then,
by (1), we have

F (D(x∗, y∗, y∗)) ≤ F (D(Tm(x∗), Tm(y∗), Tm(y∗)))

≤ δsn,m[F (D(x∗, Tm(x∗), Tm(x∗))

+ F (D(y∗, Tm(y∗), Tm(y∗))]

+ γsn,mF (D(x∗, y∗, y∗))

= δsn,m[F (D(x∗, x∗, x∗) + F (D(y∗, y∗, y∗)]

+ γsn,mF (D(x∗, y∗))

= γsn,mF (D(x∗, y∗, y∗)).

And again, since 0 ≤ γn,m < 1, x∗ = y∗. So x∗ is the unique
common fixed point of {Tm}. As particular cases of Theorem 1, we

have the following two corollaries.

Corollary 1: Let (X, d,K) be a complete metric type, (X,D,K)
the d-induced D-complete G-metric type space and {Tn} be a se-
quence of self mappings on X. Assume that there exist two se-
quences (an) and (bn) of elements of X such

D(Ti(x), Tj(y), Tj(z)) ≤ δi,j [D(x, Ti(x), Ti(x)) +D(y, Tj(y), Tj(z))]

+ γi,jD(x, y, z) (4)

for x, y ∈ X with x 6= y, 0 ≤ δi,j, γi,j < 1, i, j = 1, 2, · · · , where
δi,j = D(ai, aj, aj) and γi,j = D(bi, bj, bj).

If the sequence (sn) where si =
δi,i+1+γi,i+1

1−δi,i+1
is a λ-sequence of R+

endowed with the max metric max, then {Tn} has a unique common
fixed point in X.

Proof: Apply Theorem 1 by putting F = I[0,∞), the identity
map.
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Corollary 2: (Compare [10, Corollary 2.1.]) Let (X, d,K) be
a complete metric type, (X,D,K) the d-induced D-complete G-
metric type space and {Tn} be a sequence of self mappings on X.
Assume that there exists a sequences (an) of elements of X such

F (D(Ti(x), Tj(y), Tj(z))) ≤ F (δi,j[D(x, Ti(x), Ti(x))

+D(y, Tj(y), Tj(z))]) (5)

for x, y ∈ X with x 6= y, 0 ≤ δi,j < 1, i, j = 1, 2, · · · , and for some
F ∈ Φ homogeneous with degree s, where δi,j = D(ai, aj, aj). If the

sequence (sn) where si =
δsi,i+1

1−δsi,i+1
is a non-decreasing λ-sequence of

R+ endowed with the max metric, then {Tn} has a unique common
fixed point in X.

Proof. Apply Theorem 1 by putting4 γi,i+1 = 0.

Example 1: (Compare [2]) Let X = [0, 1] and d(x, y) = max{x, y}
whenever x, y ∈ [0, 1]. Clearly, (X, d) is a complete metric space.
The d-induced D-complete G-metric is therefore D(x, y, z) = max
{x, y, z} whenever x, y, z ∈ [0, 1] Following the notation in the

definition, we set ai =
(

1
1+2i

)2
so that δi,j =

(
1

1+2η

)2
where η =

min{i, j}. We also define Ti(x) = x
16i

for all x ∈ X and i = 1, 2, · · ·
and F : [0,∞) → [0,∞), x 7→

√
x. Then F is continuous, non-

decreasing, sub-additive and homogeneous of degree s = 1
2

and
F−1(0) = {0}. Assume i < j and x > y ≥ z. Hence we have

F (D(Ti(x), Tj(y), Tj(z))) =

√
x

16i

and

F (δi,j[D(x, Ti(x), Ti(x))+D(y, Tj(y), Tj(z)]) =

√(
1

1 + 2i

)2

(x+ y).

Therefore condition (5) is satisfied for all x, y ∈ X with x 6= y.
Moreover, since F is homogeneous of degree s = 1

2
, the sequence

si =
δsi,i+1

1− δsi,i+1

=
1

2i

satisfies the conditions of Theorem . Then by Corollary 2, {Tn} has
a common fixed point, which is this case x∗ = 0.

4In this case, we can choose (bn) to be any constant sequence of elements of
X.
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Using the same idea as in the proof of Theorem 1, one can estab-
lish the following result.

Theorem 2: (Copmare [10, Theorem 2.2.]) Let (X,D,K) be a
complete metric type space and {Tn} be a sequence of self mappings
on X. Assume that there exist two sequences (an) and (bn) of
elements of X such

F (D(T pi (x), T pj (y), T pj (z))) ≤ F (δi,j[D(x, T pi (x), T pi (x))

+D(y, T pj (y), T pj (y))]) (6)

+ F (γi,jD(x, y, z))

for x, y ∈ X with x 6= y, 0 ≤ δi,j, γi,j < 1, i, j = 1, 2, · · · , and for
some F ∈ Φ homogeneous with degree s, where δi,j = D(ai, aj, aj)
and γi,j = D(bi, bj, bj).

If the sequence (sn) where si =
δsi,i+1+γ

s
i,i+1

1−δsi,i+1
is a non-decreasing

λ-sequence of R+ endowed with the max metric, then {Tn} has a
unique common fixed point in X.
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