HARMONIC INDEX AND RANDIĆ INDEX OF GENERALIZED TRANSFORMATION GRAPHS

H. S. RAMANE ${ }^{1}$, B. BASAVANAGOUD AND R. B. JUMMANNAVER

ABSTRACT. The harmonic index of a graph G is defined as the sum of weights $\frac{2}{d_{G}(u)+d_{G}(v)}$ of all edges $u v$ of G and the Randić index of a graph G is defined as the sum of weights $\frac{1}{\sqrt{d_{G}(u) d_{G}(v)}}$ of all edges $u v$ of G, where $d_{G}(u)$ is the degree of a vertex u in G. In this paper, the expressions for the harmonic index and Randić index of the generalized transformation graphs $G^{x y}$ and for their complement graphs are obtained in terms of the parameters of underline graphs.

Keywords and phrases: Degree of a vertex, harmonic index, Randić index, generalized transformation graphs 2010 Mathematical Subject Classification: 05C76, 05C07, 92E10

1. INTRODUCTION

Let G be a simple, undirected graph with n vertices and m edges. Let $V(G)$ and $E(G)$ be the vertex set and edge set of G respectively. If u and v are adjacent vertices of G, then the edge connecting them will be denoted by $u v$. The degree of a vertex u in G is the number of edges incident to it and is denoted by $d_{G}(u)$.

The Randić index [20] $R(G)$ is one of the most successful molecular descriptors in the studies of structure-property and structureactivity relationships $[6,10,11,19]$ and is defined as

$$
R(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u) d_{G}(v)}}
$$

For mathematical properties of this graph invariant, see [7, 12].
The harmonic index [4] is defined as

$$
H(G)=\sum_{u v \in E(G)} \frac{2}{d_{G}(u)+d_{G}(v)}
$$

[^0]The harmonic index and Randić index are well correlated [12]. Bounds for the harmonic index have been reported in [13, 23]. Favaron et al. [5] considered the relationship between the harmonic index and the eigenvalues of graphs. Deng at al. [3] studied the relationship between the harmonic index and chromatic number of a graph. Harmonic index of trees was considered in [2, 17]. Harmonic index of unicyclic graphs and bicyclic graphs was obtained in $[8,18,26,27,28]$. Bounds for the harmonic index of graph operations were obtained by Shwetha Shetty et al. [22]. For other results on harmonic index one can refer $[2,14,15,24,25]$.

The generalized transformation graph $G^{x y}$, introduced recently by Basavanagoud et al. [1], is a graph whose vertex set is $V(G) \cup E(G)$, and $\alpha, \beta \in V\left(G^{x y}\right)$. The vertices α and β are adjacent in $G^{x y}$ if and only if (a) and (b) holds:
(a) $\alpha, \beta \in V(G), \alpha, \beta$ are adjacent in G if $x=+$ and α, β are not adjacent in G if $x=-$.
(b) $\alpha \in V(G)$ and $\beta \in E(G), \alpha, \beta$ are incident in G if $y=+$ and α, β are not incident in G if $y=-$.

One can obtain the four graphical transformations of graphs as G^{++}, G^{+-}, G^{-+}and G^{--}. An example of generalized transformation graphs and their complements are depicted in the Fig. 1. Note that G^{++}is just the semitotal-point graph of G, which was introduced by Sampathkumar and Chikkodimath [21]. The vertex v of $G^{x y}$ corresponding to a vertex v of G is referred to as a point vertex. The vertex e of $G^{x y}$ corresponding to an edge e of G is referred to as a line vertex.

Proposition 1.1: [1] Let G be a graph with n vertices and m edges. Let $u \in V(G)$ and $e \in E(G)$. Then the degrees of point and line vertices in $G^{x y}$ are
(i) $d_{G^{++}}(u)=2 d_{G}(u)$ and $d_{G^{++}}(e)=2$.
(ii) $d_{G^{+-}}(u)=m$ and $d_{G^{+-}}(e)=n-2$.
(iii) $d_{G^{-+}}(u)=n-1$ and $d_{G^{-+}}(e)=2$.
(iv) $d_{G^{--}}(u)=n+m-1-2 d_{G}(u)$ and $d_{G^{--}}(e)=n-2$.

The complement of G will be denoted by \bar{G}. If G has n vertices and m edges then the number of vertices of $G^{x y}$ is $n+m$. By Proposition 1.1 and taking into account that $d_{\bar{G}}(u)=n-1-d_{G}(u)$, we have following proposition:

Proposition 1.2: Let G be a graph with n vertices and m edges. Let $u \in V(G)$ and $e \in E(G)$. Then the degrees of point and line vertices in $\overline{G^{x y}}$ are
(i) $d_{\overline{G^{++}}}(u)=n+m-1-2 d_{G}(u)$ and $d_{\overline{G^{++}}}(e)=n+m-3$.
(ii) $d_{\overline{G^{+-}}}(u)=n-1$ and $d_{\overline{G^{+-}}}(e)=m+1$.
(iii) $d_{\overline{G^{-+}}}(u)=m$ and $d_{\overline{G^{-+}}}(e)=n+m-3$.
(iv) $d_{\overline{G^{-}}}(u)=2 d_{G}(u)$ and $d_{\overline{G^{--}}}(e)=m+1$.

Figure 1: Graph G, its generalized transformations $G^{x y}$ and their complements $\overline{G^{x y}}$

In this paper we obtain the expressions for the harmonic index and Randić index of generalized transformation graphs $G^{x y}$ and of their complements $\overline{G^{x y}}$ in terms of the parameters of underline graphs.

2. HARMONIC INDEX OF $G^{x y}$

Theorem 2.1: Let G be a graph with n vertices and m edges. Then

$$
H\left(G^{++}\right)=\frac{1}{2} H(G)+\sum_{u \in V(G)} \frac{d_{G}(u)}{1+d_{G}(u)}
$$

Proof: Partition the edge set $E\left(G^{++}\right)$into subsets E_{1} and E_{2}, where $E_{1}=\{u v \mid u v \in E(G)\}$ and
$E_{2}=\{u e \mid$ the vertex u is incident to the edge e in $G\}$. It is easy to check that $\left|E_{1}\right|=m$ and $\left|E_{2}\right|=2 m$. By Proposition 1.1, if $u \in$ $V(G)$ then $d_{G^{++}}(u)=2 d_{G}(u)$ and if $e \in E(G)$ then $d_{G^{++}}(e)=2$. Therefore

$$
\begin{aligned}
H\left(G^{++}\right) & =\sum_{u v \in E\left(G^{++}\right)} \frac{2}{d_{G^{++}}(u)+d_{G^{++}}(v)} \\
& =\sum_{u v \in E_{1}} \frac{2}{d_{G^{++}}(u)+d_{G^{++}}(v)}+\sum_{u e \in E_{2}} \frac{2}{d_{G^{++}}(u)+d_{G^{++}}(e)} \\
& =\sum_{u v \in E(G)} \frac{2}{2 d_{G}(u)+2 d_{G}(v)}+\sum_{u e \in E_{2}} \frac{2}{2 d_{G}(u)+2} \\
& =\frac{1}{2} \sum_{u v \in E(G)} \frac{2}{d_{G}(u)+d_{G}(v)}+\sum_{u e \in E_{2}} \frac{1}{d_{G}(u)+1} \\
& =\frac{1}{2} H(G)+\sum_{u e \in E_{2}} \frac{1}{1+d_{G}(u)} .
\end{aligned}
$$

In the second part of above equation, the quantity $\frac{1}{1+d_{G}(u)}$ appears $d_{G}(u)$ times. Hence above expression can be written as

$$
H\left(G^{++}\right)=\frac{1}{2} H(G)+\sum_{u \in V(G)} \frac{d_{G}(u)}{1+d_{G}(u)}
$$

Theorem 2.2: Let G be a graph with n vertices and m edges. Then

$$
H\left(G^{+-}\right)=1+\frac{2 m(n-2)}{m+n-2}
$$

Proof: Partition the edge set $E\left(G^{+-}\right)$into subsets E_{1} and E_{2}, where $E_{1}=\{u v \mid u v \in E(G)\}$ and
$E_{2}=\{u e \mid$ the vertex u is not incident to the edge e in $G\}$. It is easy to check that $\left|E_{1}\right|=m$ and $\left|E_{2}\right|=m(n-2)$. By Proposition 1.1, if $u \in V(G)$ then $d_{G^{+-}}(u)=m$ and if $e \in E(G)$ then $d_{G^{+-}}(e)=$
$n-2$. Therefore

$$
\begin{aligned}
H\left(G^{+-}\right) & =\sum_{u v \in E\left(G^{+-}\right)} \frac{2}{d_{G^{+-}}(u)+d_{G^{+-}}(v)} \\
& =\sum_{u v \in E_{1}} \frac{2}{d_{G^{+-}}(u)+d_{G^{+-}}(v)}+\sum_{u e \in E_{2}} \frac{2}{d_{G^{+-}}(u)+d_{G^{+-}}(e)} \\
& =\sum_{u v \in E(G)} \frac{2}{m+m}+\sum_{u e \in E_{2}} \frac{2}{m+n-2} \\
& =\frac{2 m}{2 m}+\frac{2 m(n-2)}{m+n-2}=1+\frac{2 m(n-2)}{m+n-2} .
\end{aligned}
$$

Theorem 2.3: Let G be a graph with n vertices and m edges. Then

$$
H\left(G^{-+}\right)=\frac{n}{2}+\frac{3 m n-5 m}{n^{2}-1}
$$

Proof: Partition the edge set $E\left(G^{-+}\right)$into subsets E_{1} and E_{2}, where $E_{1}=\{u v \mid u v \notin E(G)\}$ and $E_{2}=\{u e \mid$ the vertex u is incident to the edge e in $G\}$. It is easy to check that $\left|E_{1}\right|=\binom{n}{2}-m$ and $\left|E_{2}\right|=2 m$. By Proposition 1.1, if $u \in V(G)$ then $d_{G^{-+}}(u)=n-1$ and if $e \in E(G)$ then $d_{G^{-+}}(e)=2$. Therefore

$$
\begin{aligned}
H\left(G^{-+}\right) & =\sum_{u v \in E\left(G^{-+}\right)} \frac{2}{d_{G^{-+}}(u)+d_{G^{-+}}(v)} \\
& =\sum_{u v \in E_{1}} \frac{2}{d_{G^{-+}}(u)+d_{G^{-+}}(v)}+\sum_{u e \in E_{2}} \frac{2}{d_{G^{-+}}(u)+d_{G^{-+}}(e)} \\
& =\sum_{u v \notin E(G)} \frac{2}{n-1+n-1}+\sum_{u e \in E_{2}} \frac{2}{n-1+2} \\
& =\left[\binom{n}{2}-m\right]\left(\frac{2}{2 n-2}\right)+2 m\left(\frac{2}{n+1}\right) \\
& =\frac{n}{2}+\frac{3 m n-5 m}{n^{2}-1} .
\end{aligned}
$$

Theorem 2.4: Let G be a graph with n vertices and m edges. Then

$$
\begin{aligned}
H\left(G^{--}\right)= & \sum_{u v \notin E(G)} \frac{1}{n+m-1-\left(d_{G}(u)+d_{G}(v)\right)} \\
& +\sum_{u \in V(G)} \frac{2\left(m-d_{G}(u)\right)}{2 n+m-3-2 d_{G}(u)} .
\end{aligned}
$$

Proof: Partition the edge set $E\left(G^{--}\right)$into subsets E_{1} and E_{2}, where $E_{1}=\{u v \mid u v \notin E(G)\}$ and
$E_{2}=\{u e \mid$ the vertex u is not incident to the edge e in $G\}$. It is easy to check that $\left|E_{1}\right|=\binom{n}{2}-m$ and $\left|E_{2}\right|=m(n-2)$. By Proposition 1.1, if $u \in V(G)$ then $d_{G^{--}}(u)=n+m-1-2 d_{G}(u)$ and if $e \in E(G)$ then $d_{G^{--}}(e)=n-2$. Therefore

$$
\begin{aligned}
H\left(G^{--}\right)= & \sum_{u v \in E\left(G^{--}\right)} \frac{2}{d_{G^{--}}(u)+d_{G^{--}}(v)} \\
= & \sum_{u v \in E_{1}} \frac{2}{d_{G^{--}}(u)+d_{G^{--}}(v)}+\sum_{u e \in E_{2}} \frac{2}{d_{G^{--}}(u)+d_{G^{--}}(e)} \\
= & \sum_{u v \notin E(G)} \frac{2}{n+m-1-2 d_{G}(u)+n+m-1-2 d_{G}(v)} \\
& +\sum_{u e \in E_{2}} \frac{2}{n+m-1-2 d_{G}(u)+n-2} \\
= & \sum_{u v \notin E(G)} \frac{1}{n+m-1-\left(d_{G}(u)+d_{G}(v)\right)} \\
& +\sum_{u \in \in E_{2}} \frac{2}{2 n+m-3-2 d_{G}(u)} \\
= & \sum_{u v \notin E(G)} \frac{1}{n+m-1-\left(d_{G}(u)+d_{G}(v)\right)} \\
& +\sum_{u \in V(G)} \frac{2\left(m-d_{G}(u)\right)}{2 n+m-3-2 d_{G}(u)} .
\end{aligned}
$$

Remarks 2.5:

(1) By Theorem 2.2, for all graphs G having same number of vertices and same number of edges, $H\left(G^{+-}\right)$is same.
(2) By Theorem 2.3, for all graphs G having same number of vertices and same number of edges, $H\left(G^{-+}\right)$is same.
(3) Among all graphs with n vertices, the complete graph K_{n} has maximum $H\left(G^{-+}\right)$.

3. HARMONIC INDEX OF $\overline{G^{x y}}$

Theorem 3.1: Let G be a graph with n vertices and m edges. Then

$$
\begin{aligned}
H\left(\overline{G^{++}}\right)= & \sum_{u v \notin E(G)} \frac{1}{n+m-1-\left(d_{G}(u)+d_{G}(v)\right)} \\
& +\sum_{u \in V(G)} \frac{m-d_{G}(u)}{n+m-2-d_{G}(u)}+\frac{m(m-1)}{2(n+m-3)} .
\end{aligned}
$$

Proof: Partition the edge set $E\left(\overline{G^{++}}\right)$into subsets E_{1}, E_{2} and E_{3}, where $E_{1}=\{u v \mid u v \notin E(G)\}$,
$E_{2}=\{u e \mid$ the vertex u is not incident to the edge e in $G\}$ and $E_{3}=$ $\{e f \mid e, f \in E(G)\}$. It is easy to check that $\left|E_{1}\right|=\binom{n}{2}-m$, $\left|E_{2}\right|=m(n-2)$ and $E_{3}=\binom{m}{2}$. By Proposition 1.2, if $u \in V(G)$ then $d_{\overline{G^{++}}}(u)=n+m-1-2 d_{G}(u)$ and if $e \in E(G)$ then $d_{\overline{G^{++}}}(e)=$ $n+m-3$. Therefore

$$
\begin{aligned}
H\left(\overline{G^{++}}\right)= & \sum_{u v \in E\left(\overline{G^{++}}\right)} \frac{2}{d_{\overline{G^{++}}}(u)+d_{\overline{G^{++}}}(v)} \\
= & \sum_{u v \in E_{1}} \frac{2}{d_{\overline{G^{++}}}(u)+d_{\overline{G^{++}}}(v)}+\sum_{u e \in E_{2}} \frac{2}{d_{\overline{G^{++}}}(u)+d_{\overline{G^{++}}}(e)} \\
& +\sum_{e f \in E_{3}} \frac{2}{d_{\overline{G^{++}}}(e)+d_{\overline{G^{++}}}(f)} \\
= & \sum_{u v \notin E(G)} \frac{2}{n+m-1-2 d_{G}(u)+n+m-1-2 d_{G}(v)} \\
& +\sum_{u e \in E_{2}} \frac{2}{n+m-1-2 d_{G}(u)+n+m-3} \\
& +\sum_{e f \in E_{3}} \frac{2}{n+m-3+n+m-3} \\
= & \sum_{u v \notin E(G)} \frac{1}{n+m-1-\left(d_{G}(u)+d_{G}(v)\right)} \\
& +\sum_{u e \in E_{2}} \frac{1}{n+m-2-d_{G}(u)}+\sum_{e f \in E_{3}} \frac{1}{n+m-3}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{u v \notin E(G)} \frac{1}{n+m-1-\left(d_{G}(u)+d_{G}(v)\right)} \\
& +\sum_{u \in V(G)} \frac{m-d_{G}(u)}{n+m-2-d_{G}(u)}+\binom{m}{2}\left(\frac{1}{n+m-3}\right) \\
= & \sum_{u v \notin E(G)} \frac{1}{n+m-1-\left(d_{G}(u)+d_{G}(v)\right)} \\
& +\sum_{u \in V(G)} \frac{m-d_{G}(u)}{n+m-2-d_{G}(u)}+\frac{m(m-1)}{2(n+m-3)} .
\end{aligned}
$$

Theorem 3.2: Let G be a graph with n vertices and m edges. Then

$$
H\left(\overline{G^{+-}}\right)=\frac{n}{2}-\frac{m}{n-1}+\frac{4 m}{m+n}+\frac{m(m-1)}{2(m+1)} .
$$

Proof: Partition the edge set $E\left(\overline{G^{+-}}\right)$into subsets E_{1}, E_{2} and E_{3}, where $E_{1}=\{u v \mid u v \notin E(G)\}$,
$E_{2}=\{u e \mid$ the vertex u is incident to the edge e in $G\}$ and $E_{3}=$ $\{e f \mid e, f \in E(G)\}$. It is easy to check that $\left|E_{1}\right|=\binom{n}{2}-m,\left|E_{2}\right|=$ $2 m$ and $E_{3}=\binom{m}{2}$. By Proposition 1.2, if $u \in V(G)$ then $d_{\overline{G^{+}}}(u)=$ $n-1$ and if $e \in E(G)$ then $d_{\overline{G^{+}}}(e)=m+1$. Therefore

$$
\begin{aligned}
H\left(\overline{G^{+-}}\right)= & \sum_{u v \in E\left(\overline{G^{+-}}\right)} \frac{2}{d_{\overline{G^{+}}}(u)+d_{\overline{G^{+}}}(v)} \\
= & \sum_{u v \in E_{1}} \frac{2}{d_{\overline{G^{+-}}}(u)+d_{\overline{G^{+-}}}(v)}+\sum_{u e \in E_{2}} \frac{2}{d_{\overline{G^{+-}}}(u)+d_{\overline{G^{+-}}}(e)} \\
& +\sum_{e f \in E_{3}} \frac{2}{d_{\overline{G^{+-}}}(e)+d_{\overline{G^{+--}}}(f)} \\
= & \sum_{u v \notin E(G)} \frac{2}{n-1+n-1}+\sum_{u e \in E_{2}} \frac{2}{n-1+m+1} \\
& +\sum_{e f \in E_{3}} \frac{2}{m+1+m+1} \\
= & \sum_{u v \notin E(G)} \frac{1}{n-1}+\sum_{u e \in E_{2}} \frac{2}{n+m}+\sum_{e f \in E_{3}} \frac{1}{m+1}
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[\binom{n}{2}-m\right]\left(\frac{1}{n-1}\right)+2 m\left(\frac{2}{n+m}\right) } \\
& +\binom{m}{2}\left(\frac{1}{m+1}\right) \\
= & \frac{n}{2}-\frac{m}{n-1}+\frac{4 m}{m+n}+\frac{m(m-1)}{2(m+1)} .
\end{aligned}
$$

Theorem 3.3: Let G be a graph with n vertices and m edges. Then

$$
H\left(\overline{G^{-+}}\right)=1+\frac{2 m(n-2)}{n+2 m-3}+\frac{m(m-1)}{2(n+m-3)}
$$

Proof: Partition the edge set $E\left(\overline{G^{-+}}\right)$into subsets E_{1}, E_{2} and E_{3}, where $E_{1}=\{u v \mid u v \in E(G)\}$,
$E_{2}=\{u e \mid$ the vertex u is not incident to the edge e in $G\}$ and $E_{3}=$ $\{e f \mid e, f \in E(G)\}$. It is easy to check that $\left|E_{1}\right|=m,\left|E_{2}\right|=$ $m(n-2)$ and $E_{3}=\binom{m}{2}$. By Proposition 1.2, if $u \in V(G)$ then $d_{\overline{G^{-+}}}(u)=m$ and if $e \in E(G)$ then $d_{\overline{G^{-+}}}(e)=n+m-3$. Therefore

$$
\begin{aligned}
H\left(\overline{G^{-+}}\right)= & \sum_{u v \in E\left(\overline{G^{-+}}\right)} \frac{2}{d_{\overline{G^{-+}}}(u)+d_{\overline{G^{-+}}}(v)} \\
= & \sum_{u v \in E_{1}} \frac{2}{d_{\overline{G^{-+}}}(u)+d_{\overline{G^{-+}}}(v)}+\sum_{u e \in E_{2}} \frac{2}{d_{\overline{G^{-+}}}(u)+d_{\overline{G^{-+}}}(e)} \\
& +\sum_{e f \in E_{3}} \frac{2}{d_{\overline{G^{-+}}}(e)+d_{\overline{G^{-+}}}(f)} \\
= & \sum_{u v \in E(G)} \frac{2}{m+m}+\sum_{u e \in E_{2}} \frac{2}{m+n+m-3} \\
& +\sum_{e f \in E_{3}} \frac{2}{n+m-3+n+m-3} \\
= & \sum_{u v \in E(G)} \frac{1}{m}+\sum_{u e \in E_{2}} \frac{2}{n+2 m-3}+\sum_{e f \in E_{3}} \frac{1}{n+m-3} \\
= & \frac{m}{m}+m(n-2)\left(\frac{2}{n+2 m-3}\right)+\binom{m}{2}\left(\frac{1}{n+m-3}\right) \\
= & 1+\frac{2 m(n-2)}{n+2 m-3}+\frac{m(m-1)}{2(n+m-3)} .
\end{aligned}
$$

Theorem 3.4: Let G be a graph with n vertices and m edges. Then

$$
H\left(\overline{G^{--}}\right)=\frac{1}{2} H(G)+\frac{m(m-1)}{2(m+1)}+\sum_{u \in V(G)} \frac{2 d_{G}(u)}{m+1+2 d_{G}(u)} .
$$

Proof: Partition the edge set $E\left(\overline{G^{--}}\right)$into subsets E_{1}, E_{2} and E_{3}, where $E_{1}=\{u v \mid u v \in E(G)\}$,
$E_{2}=\{u e \mid$ the vertex u is incident to the edge e in $G\}$ and $E_{3}=$ $\{e f \mid e, f \in E(G)\}$. It is easy to check that $\left|E_{1}\right|=m,\left|E_{2}\right|=2 m$ and $E_{3}=\binom{m}{2}$. By Proposition 1.2, if $u \in V(G)$ then $d_{\overline{G^{-}}}(u)=$ $2 d_{G}(u)$ and if $e \in E(G)$ then $d_{\overline{G^{--}}}(e)=m+1$. Therefore

$$
\begin{aligned}
H\left(\overline{G^{--}}\right)= & \sum_{u v \in E\left(\overline{G^{--}}\right)} \frac{2}{d_{\overline{G^{-}}-}(u)+d_{\overline{G^{-}}}(v)} \\
= & \sum_{u v \in E_{1}} \frac{2}{d_{\overline{G^{--}}}(u)+d_{\overline{G^{--}}}(v)}+\sum_{u e \in E_{2}} \frac{2}{d_{\overline{G^{-}}}(u)+d_{\overline{G^{--}}}(e)} \\
& +\sum_{e f \in E_{3}} \frac{2}{d_{\overline{G^{--}}}(e)+d_{\overline{G^{--}}}(f)} \\
= & \sum_{u v \in E(G)} \frac{2}{2 d_{G}(u)+2 d_{G}(v)}+\sum_{u e \in E_{2}} \frac{2}{2 d_{G}(u)+m+1} \\
& +\sum_{e f \in E_{3}} \frac{2}{m+1+m+1} \\
= & \frac{1}{2} \sum_{u v \in E(G)} \frac{2}{d_{G}(u)+d_{G}(v)}+\sum_{u e \in E_{2}} \frac{2}{m+1+2 d_{G}(u)} \\
& +\sum_{e f \in E_{3}} \frac{1}{m+1}= \\
= & \frac{1}{2} H(G)+\sum_{u \in V(G)}^{m+1+2 d_{G}(u)}+\binom{m}{2}\left(\frac{1}{m+1}\right) \\
= & \frac{1}{2} H(G)+\frac{m(m-1)}{2(m+1)}+\sum_{u \in V(G)} \frac{2 d_{G}(u)}{m+1+2 d_{G}(u)} .
\end{aligned}
$$

Remarks 3.5:

(1) By Theorem 3.2, for all graphs G having same number of vertices and same number of edges, $H\left(\overline{G^{+-}}\right)$is same.
(2) By Theorem 3.3, for all graphs G having same number of vertices and same number of edges, $H\left(\overline{G^{-+}}\right)$is same.

4. RANDIĆ INDEX OF $G^{x y}$ AND $\overline{G^{x y}}$

In fully analogous manner, applying the proof techniques of the Sections 2 and 3 and by the definition of the Randić index, we arrive at:

Theorem 4.1: Let G be a graph with n vertices and m edges. Then

$$
\begin{aligned}
R\left(G^{++}\right)= & \frac{1}{2}\left[R(G)+\sum_{u \in V(G)} \sqrt{d_{G}(u)}\right] ; \\
R\left(G^{+-}\right)= & 1+\sqrt{m(n-2)} ; \\
R\left(G^{-+}\right)= & \frac{n}{2}-m\left[\frac{1}{n-1}-\sqrt{\frac{2}{n-1}}\right] ; \\
R\left(G^{--}\right)= & \sum_{u v \notin E(G)} \frac{1}{\sqrt{\left(n+m-1-2 d_{G}(u)\right)\left(n+m-1-2 d_{G}(v)\right)}} \\
& +\sum_{u \in V(G)} \frac{m-d_{G}(u)}{\sqrt{(n-2)\left(n+m-1-2 d_{G}(u)\right)}} ; \\
R\left(\overline{G^{++}}\right)= & \sum_{u v \notin E(G)} \frac{1}{\sqrt{\left(n+m-1-2 d_{G}(u)\right)\left(n+m-1-2 d_{G}(v)\right)}} \\
& +\sum_{u \in V(G)} \frac{m-d_{G}(u)}{\sqrt{(n+m-3)\left(n+m-1-2 d_{G}(u)\right)}} \\
& +\frac{m(m-1)}{2(n+m-3)} ; \\
R\left(\overline{G^{+-}}\right)= & \frac{n}{2}-\frac{m}{n-1}+\frac{2 m}{\sqrt{(n-1)(m+1)}}+\frac{m(m-1)}{2(m+1)} ; \\
R\left(\overline{G^{-+}}\right)= & 1+\frac{m(n-2)}{\sqrt{m(n+m-3)}+\frac{m(m-1)}{2(n+m-3)} ;} \\
R\left(\overline{G^{--}}\right)= & \frac{1}{2} R(G)+\frac{m(m-1)}{2(m+1)}+\sum_{u \in V(G)} \sqrt{\frac{d_{G}(u)}{2(m+1)} .}
\end{aligned}
$$

Remarks 4.2:

(1) If G_{1} and G_{2} are two different graphs having same number of vertices and same number of edges, then

$$
\begin{aligned}
R\left(G_{1}^{+-}\right) & =R\left(G_{2}^{+-}\right) \\
R\left(G_{1}^{-+}\right) & =R\left(G_{2}^{-+}\right) \\
R\left(\overline{G_{1}^{+-}}\right) & =R\left(\overline{G_{2}^{+-}}\right) \\
R\left(\overline{G_{1}^{-+}}\right) & =R\left(\overline{G_{2}^{-+}}\right)
\end{aligned}
$$

(2) Among all graphs with n vertices, the complete graph K_{n} has maximum $R\left(G^{+-}\right)$.
(3) Among all graphs with n vertices, the complete graph K_{n} has minimum $R\left(G^{-+}\right)$.

ACKNOWLEDGEMENTS

The authors H. S. Ramane and R. B. Jummannaver are thankful to the University Grants Commission (UGC), New Delhi for support through research grant under UPE FAR-II grant No. F 14-3/2012 (NS/PE).

REFERENCES

[1] B. Basavanagoud, I. Gutman, V. R. Desai, Zagreb indices of generalized transformation graphs and their complements, Kragujevac J. Sci. 37 99-112, 2015.
[2] R. Chang, Y. Zhu, On the harmonic index and the minimum degree of a graph, Romanian J. Inf. Sci. Tech. 15 335-343, 2012.
[3] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161 2740-2744, 2013.
[4] S. Fajtlowicz, On conjectures of Graffiti - II, Congr. Numer. 60 187-197, 1987.
[5] O. Favaron, M. Maheó, J. F. Saclé, Some eigenvalue properties in graphs (conjectures of Graffiti - II), Discrete Math. 111 197-220, 1993.
[6] R. García-Domenech, J. Gálvez, J. V. de Julián-Ortiz, L. Pogliani, Some new trends in chemical graph theory, Chem. Rev. 105 1127-1169, 2008.
[7] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Uni. Kragujevac, Kragujevac, 2008.
[8] Y. Hu, X. Zhou, On the harmonic index of the unicyclic and bicyclic graphs, Wseas Tran. Math. 12 716-726, 2013.
[9] A. Ilić, Note on the harmonic index of a graph, arXiv:1204.3313, 2012.
[10] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[11] L. B. Kier, L. H. Hall, Molecular Connectivity in Structure Activity Analysis, Wiley, New York, 1986.
[12] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 127-156, 2008.
[13] J. Li, W. C. Shiu, The harmonic index of a graph, Rocky Mountain J. Math. 44 1607-1620, 2014.
[14] J. Liu, On the harmonic index of triangle free graphs, Appl. Math. 4 1204-1206, 2013.
[15] J. Liu, On the harmonic index and diameter of graphs, J. Appl. Math. Phy. 1 5-6, 2013.
[16] S. Liu, J. Li, Some properties on the harmonic index of molecular trees, ISRN Appl. Math. 2014 ID: 7816488 pages, http://dx.doi.org/10.1155/2014/781648.
[17] J. Lv, J. Li, On the harmonic index and the matching number of a tree, Ars Combin. 116 407-416, 2014.
[18] J. Lv, J. Li, W. C. Shiu, The harmonic index of unicyclic graphs with given matching number, Kragujevac J. Math. 38 173-183, 2014.
[19] L. Pogliani, From molecular connectivity indices to semiemperical connectivity terms: recent trends in graph theoretical descriptors, Chem. Rev. 100 3827-3858, 2000.
[20] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 6609-6615, 1975.
[21] E. Sampathkumar, S. B. Chikkodimath, Semitotal graphs of a graph - I, J. Karnatak Univ. Sci. 18 274-280, 1973.
[22] B. Shwetha Shetty, V. Lokesha, P. S. Ranjini, On the harmonic index of graph operations, Trans. Combin. 45-14, 2015.
[23] R. Wu, Z. Tang, H. Deng, A lower bound for the harmonic index of a graph with minimum degree atleast two, Filomat 27 51-55, 2013.
[24] L. Yang, H. Hua, The harmonic index of general graphs, nanocones and triangular benzenoid graphs, Optoelectronics Adv. Materials - Rapid Commun. 6 660-663, 2012.
[25] L. Zhong, The harmonic index of graphs, Appl. Math. Lett. 25 561-566, 2012.
[26] L. Zhong, The harmonic index on unicyclic graphs, Ars Combin. 104 261-269, 2012.
[27] L. Zhong, K. Xu, The harmonic index for bicyclic graphs, Utilitas Math. 90 23-32, 2013.
[28] Y. Zhu, R. Chang, On the harmonic index of bicyclic conjugated molecular graphs, Filomat 28 421-428, 2014.
DEPARTMENT OF MATHEMATICS, KARNATAK UNIVERSITY, DHARWAD - 580003, INDIA
E-mail address: hsramane@yahoo.com
DEPARTMENT OF MATHEMATICS, KARNATAK UNIVERSITY, DHARWAD - 580003, INDIA
E-mail address: b.basavanagoud@gmail.com
DEPARTMENT OF MATHEMATICS, KARNATAK UNIVERSITY, DHARWAD - 580003, INDIA
E-mail address: rajesh.rbj065@gmail.com

[^0]: Received by the editors August 29, 2017; Revised: February 21, 2018; Accepted: June 15, 2018
 www.nigerianmathematicalsociety.org; Journal available online at www.ojs.ictp.it
 ${ }^{1}$ Corresponding author

