
Journal of the Vol. 37, Issue 2, pp. 57-69, 2018

Nigerian Mathematical Society c©Nigerian Mathematical Society

HARMONIC INDEX AND RANDIĆ INDEX OF

GENERALIZED TRANSFORMATION GRAPHS

H. S. RAMANE1, B. BASAVANAGOUD AND R. B. JUMMANNAVER

ABSTRACT. The harmonic index of a graph G is defined as the
sum of weights 2

dG(u)+dG(v)
of all edges uv of G and the Randić

index of a graph G is defined as the sum of weights 1√
dG(u)dG(v)

of all edges uv of G, where dG(u) is the degree of a vertex u
in G. In this paper, the expressions for the harmonic index
and Randić index of the generalized transformation graphs Gxy

and for their complement graphs are obtained in terms of the
parameters of underline graphs.
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1. INTRODUCTION

Let G be a simple, undirected graph with n vertices and m edges.
Let V (G) and E(G) be the vertex set and edge set of G respectively.
If u and v are adjacent vertices of G, then the edge connecting them
will be denoted by uv. The degree of a vertex u in G is the number
of edges incident to it and is denoted by dG(u).
The Randić index [20] R(G) is one of the most successful molec-

ular descriptors in the studies of structure-property and structure-
activity relationships [6, 10, 11, 19] and is defined as

R(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

.

For mathematical properties of this graph invariant, see [7, 12].
The harmonic index [4] is defined as

H(G) =
∑

uv∈E(G)

2

dG(u) + dG(v)
.

Received by the editors August 29, 2017; Revised: February 21, 2018; Accepted:
June 15, 2018

www.nigerianmathematicalsociety.org; Journal available online at www.ojs.ictp.it
1Corresponding author

57



58 H. S. RAMANE, B. BASAVANAGOUD & R. B. JUMMANNAVER

The harmonic index and Randić index are well correlated [12].
Bounds for the harmonic index have been reported in [13, 23].
Favaron et al. [5] considered the relationship between the harmonic
index and the eigenvalues of graphs. Deng at al. [3] studied the
relationship between the harmonic index and chromatic number of
a graph. Harmonic index of trees was considered in [2, 17]. Har-
monic index of unicyclic graphs and bicyclic graphs was obtained
in [8, 18, 26, 27, 28]. Bounds for the harmonic index of graph op-
erations were obtained by Shwetha Shetty et al. [22]. For other
results on harmonic index one can refer [2, 14, 15, 24, 25].
The generalized transformation graphGxy, introduced recently by

Basavanagoud et al. [1], is a graph whose vertex set is V (G)∪E(G),
and α, β ∈ V (Gxy). The vertices α and β are adjacent in Gxy if
and only if (a) and (b) holds:
(a) α, β ∈ V (G), α, β are adjacent in G if x = + and α, β are

not adjacent in G if x = −.
(b) α ∈ V (G) and β ∈ E(G), α, β are incident in G if y = + and

α, β are not incident in G if y = −.

One can obtain the four graphical transformations of graphs as
G++, G+−, G−+ and G−−. An example of generalized transforma-
tion graphs and their complements are depicted in the Fig. 1. Note
that G++ is just the semitotal-point graph of G, which was intro-
duced by Sampathkumar and Chikkodimath [21]. The vertex v of
Gxy corresponding to a vertex v of G is referred to as a point vertex.
The vertex e of Gxy corresponding to an edge e of G is referred to
as a line vertex.

Proposition 1.1: [1] Let G be a graph with n vertices and m
edges. Let u ∈ V (G) and e ∈ E(G). Then the degrees of point and
line vertices in Gxy are
(i) dG++(u) = 2dG(u) and dG++(e) = 2.
(ii) dG+−(u) = m and dG+−(e) = n− 2.
(iii) dG−+(u) = n− 1 and dG−+(e) = 2.
(iv) dG−−(u) = n +m− 1− 2dG(u) and dG−−(e) = n− 2.

The complement of G will be denoted by G. If G has n vertices
andm edges then the number of vertices of Gxy is n+m. By Propo-
sition 1.1 and taking into account that dG(u) = n − 1 − dG(u), we
have following proposition:
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Proposition 1.2: Let G be a graph with n vertices and m edges.
Let u ∈ V (G) and e ∈ E(G). Then the degrees of point and line
vertices in Gxy are
(i) dG++(u) = n+m− 1− 2dG(u) and dG++(e) = n+m− 3.
(ii) dG+−(u) = n− 1 and dG+−(e) = m+ 1.
(iii) dG−+(u) = m and dG−+(e) = n+m− 3.
(iv) dG−−(u) = 2dG(u) and dG−−(e) = m+ 1.
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Figure 1: Graph G, its generalized transformations Gxy and
their complements Gxy

In this paper we obtain the expressions for the harmonic index
and Randić index of generalized transformation graphs Gxy and
of their complements Gxy in terms of the parameters of underline
graphs.
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2. HARMONIC INDEX OF Gxy

Theorem 2.1: Let G be a graph with n vertices and m edges.
Then

H(G++) =
1

2
H(G) +

∑
u∈V (G)

dG(u)

1 + dG(u)
.

Proof: Partition the edge set E(G++) into subsets E1 and E2,
where E1 = {uv | uv ∈ E(G)} and
E2 = {ue | the vertex u is incident to the edge e in G}. It is easy
to check that |E1| = m and |E2| = 2m. By Proposition 1.1, if u ∈
V (G) then dG++(u) = 2dG(u) and if e ∈ E(G) then dG++(e) = 2.
Therefore

H(G++) =
∑

uv∈E(G++)

2

dG++(u) + dG++(v)

=
∑

uv∈E1

2

dG++(u) + dG++(v)
+

∑
ue∈E2

2

dG++(u) + dG++(e)

=
∑

uv∈E(G)

2

2dG(u) + 2dG(v)
+

∑
ue∈E2

2

2dG(u) + 2

=
1

2

∑
uv∈E(G)

2

dG(u) + dG(v)
+

∑
ue∈E2

1

dG(u) + 1

=
1

2
H(G) +

∑
ue∈E2

1

1 + dG(u)
.

In the second part of above equation, the quantity 1
1+dG(u)

ap-

pears dG(u) times. Hence above expression can be written as

H(G++) =
1

2
H(G) +

∑
u∈V (G)

dG(u)

1 + dG(u)
.

Theorem 2.2: Let G be a graph with n vertices and m edges.
Then

H(G+−) = 1 +
2m(n− 2)

m+ n− 2
.

Proof: Partition the edge set E(G+−) into subsets E1 and E2,
where E1 = {uv | uv ∈ E(G)} and
E2 = {ue | the vertex u is not incident to the edge e in G}. It is
easy to check that |E1| = m and |E2| = m(n− 2). By Proposition
1.1, if u ∈ V (G) then dG+−(u) = m and if e ∈ E(G) then dG+−(e) =
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n− 2. Therefore

H(G+−) =
∑

uv∈E(G+−)

2

dG+−(u) + dG+−(v)

=
∑
uv∈E1

2

dG+−(u) + dG+−(v)
+

∑
ue∈E2

2

dG+−(u) + dG+−(e)

=
∑

uv∈E(G)

2

m+m
+

∑
ue∈E2

2

m+ n− 2

=
2m

2m
+

2m(n− 2)

m+ n− 2
= 1 +

2m(n− 2)

m+ n− 2
.

Theorem 2.3: Let G be a graph with n vertices and m edges.
Then

H(G−+) =
n

2
+

3mn− 5m

n2 − 1
.

Proof: Partition the edge set E(G−+) into subsets E1 and E2,
where E1 = {uv | uv /∈ E(G)} and
E2 = {ue | the vertex u is incident to the edge e in G}. It is easy
to check that |E1| =

(
n
2

)−m and |E2| = 2m. By Proposition 1.1, if
u ∈ V (G) then dG−+(u) = n− 1 and if e ∈ E(G) then dG−+(e) = 2.
Therefore

H(G−+) =
∑

uv∈E(G−+)

2

dG−+(u) + dG−+(v)

=
∑
uv∈E1

2

dG−+(u) + dG−+(v)
+

∑
ue∈E2

2

dG−+(u) + dG−+(e)

=
∑

uv/∈E(G)

2

n− 1 + n− 1
+

∑
ue∈E2

2

n− 1 + 2

=

[(
n

2

)
−m

](
2

2n− 2

)
+ 2m

(
2

n+ 1

)

=
n

2
+

3mn− 5m

n2 − 1
.

Theorem 2.4: Let G be a graph with n vertices and m edges.
Then

H(G−−) =
∑

uv/∈E(G)

1

n +m− 1− (dG(u) + dG(v))

+
∑

u∈V (G)

2(m− dG(u))

2n+m− 3− 2dG(u)
.
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Proof: Partition the edge set E(G−−) into subsets E1 and E2,
where E1 = {uv | uv /∈ E(G)} and
E2 = {ue | the vertex u is not incident to the edge e in G}. It is
easy to check that |E1| =

(
n
2

) − m and |E2| = m(n − 2). By
Proposition 1.1, if u ∈ V (G) then dG−−(u) = n + m − 1 − 2dG(u)
and if e ∈ E(G) then dG−−(e) = n− 2. Therefore

H(G−−) =
∑

uv∈E(G−−)

2

dG−−(u) + dG−−(v)

=
∑
uv∈E1

2

dG−−(u) + dG−−(v)
+

∑
ue∈E2

2

dG−−(u) + dG−−(e)

=
∑

uv/∈E(G)

2

n +m− 1− 2dG(u) + n+m− 1− 2dG(v)

+
∑
ue∈E2

2

n+m− 1− 2dG(u) + n− 2

=
∑

uv/∈E(G)

1

n +m− 1− (dG(u) + dG(v))

+
∑
ue∈E2

2

2n+m− 3− 2dG(u)

=
∑

uv/∈E(G)

1

n +m− 1− (dG(u) + dG(v))

+
∑

u∈V (G)

2(m− dG(u))

2n+m− 3− 2dG(u)
.

Remarks 2.5:

(1) By Theorem 2.2, for all graphs G having same number of
vertices and same number of edges, H(G+−) is same.

(2) By Theorem 2.3, for all graphs G having same number of
vertices and same number of edges, H(G−+) is same.

(3) Among all graphs with n vertices, the complete graph Kn

has maximum H(G−+).
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3. HARMONIC INDEX OF Gxy

Theorem 3.1: Let G be a graph with n vertices and m edges.
Then

H
(
G++

)
=

∑
uv/∈E(G)

1

n+m− 1− (dG(u) + dG(v))

+
∑

u∈V (G)

m− dG(u)

n+m− 2− dG(u)
+

m(m− 1)

2(n+m− 3)
.

Proof: Partition the edge set E(G++) into subsets E1, E2 and E3,
where E1 = {uv | uv /∈ E(G)},
E2 = {ue | the vertex u is not incident to the edge e in G} and E3 =
{ef | e, f ∈ E(G)}. It is easy to check that |E1| =

(
n
2

) − m,

|E2| = m(n − 2) and E3 =
(
m
2

)
. By Proposition 1.2, if u ∈ V (G)

then dG++(u) = n+m−1−2dG(u) and if e ∈ E(G) then dG++(e) =
n+m− 3. Therefore

H
(
G++

)
=

∑
uv∈E(G++)

2

dG++(u) + dG++(v)

=
∑
uv∈E1

2

dG++(u) + dG++(v)
+

∑
ue∈E2

2

dG++(u) + dG++(e)

+
∑
ef∈E3

2

dG++(e) + dG++(f)

=
∑

uv/∈E(G)

2

n+m− 1− 2dG(u) + n +m− 1− 2dG(v)

+
∑
ue∈E2

2

n+m− 1− 2dG(u) + n+m− 3

+
∑
ef∈E3

2

n+m− 3 + n +m− 3

=
∑

uv/∈E(G)

1

n+m− 1− (dG(u) + dG(v))

+
∑
ue∈E2

1

n+m− 2− dG(u)
+

∑
ef∈E3

1

n+m− 3
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=
∑

uv/∈E(G)

1

n+m− 1− (dG(u) + dG(v))

+
∑

u∈V (G)

m− dG(u)

n +m− 2− dG(u)
+

(
m

2

)(
1

n +m− 3

)

=
∑

uv/∈E(G)

1

n+m− 1− (dG(u) + dG(v))

+
∑

u∈V (G)

m− dG(u)

n +m− 2− dG(u)
+

m(m− 1)

2(n+m− 3)
.

Theorem 3.2: Let G be a graph with n vertices and m edges.
Then

H
(
G+−) = n

2
− m

n− 1
+

4m

m+ n
+

m(m− 1)

2(m+ 1)
.

Proof: Partition the edge set E(G+−) into subsets E1, E2 and E3,
where E1 = {uv | uv /∈ E(G)},
E2 = {ue | the vertex u is incident to the edge e in G} and E3 =
{ef | e, f ∈ E(G)}. It is easy to check that |E1| =

(
n
2

)−m, |E2| =
2m and E3 =

(
m
2

)
. By Proposition 1.2, if u ∈ V (G) then dG+−(u) =

n− 1 and if e ∈ E(G) then dG+−(e) = m+ 1. Therefore

H
(
G+−) =

∑
uv∈E(G+−)

2

dG+−(u) + dG+−(v)

=
∑
uv∈E1

2

dG+−(u) + dG+−(v)
+

∑
ue∈E2

2

dG+−(u) + dG+−(e)

+
∑
ef∈E3

2

dG+−(e) + dG+−(f)

=
∑

uv/∈E(G)

2

n− 1 + n− 1
+

∑
ue∈E2

2

n− 1 +m+ 1

+
∑
ef∈E3

2

m+ 1 +m+ 1

=
∑

uv/∈E(G)

1

n− 1
+

∑
ue∈E2

2

n+m
+

∑
ef∈E3

1

m+ 1
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=

[(
n

2

)
−m

](
1

n− 1

)
+ 2m

(
2

n+m

)

+

(
m

2

)(
1

m+ 1

)

=
n

2
− m

n− 1
+

4m

m+ n
+

m(m− 1)

2(m+ 1)
.

Theorem 3.3: Let G be a graph with n vertices and m edges.
Then

H
(
G−+

)
= 1 +

2m(n− 2)

n + 2m− 3
+

m(m− 1)

2(n +m− 3)
.

Proof: Partition the edge set E(G−+) into subsets E1, E2 and E3,
where E1 = {uv | uv ∈ E(G)},
E2 = {ue | the vertex u is not incident to the edge e in G} and E3 =
{ef | e, f ∈ E(G)}. It is easy to check that |E1| = m, |E2| =
m(n − 2) and E3 =

(
m
2

)
. By Proposition 1.2, if u ∈ V (G) then

dG−+(u) = m and if e ∈ E(G) then dG−+(e) = n+m−3. Therefore

H
(
G−+

)
=

∑
uv∈E(G−+)

2

dG−+(u) + dG−+(v)

=
∑

uv∈E1

2

dG−+(u) + dG−+(v)
+

∑
ue∈E2

2

dG−+(u) + dG−+(e)

+
∑
ef∈E3

2

dG−+(e) + dG−+(f)

=
∑

uv∈E(G)

2

m+m
+

∑
ue∈E2

2

m+ n+m− 3

+
∑
ef∈E3

2

n +m− 3 + n+m− 3

=
∑

uv∈E(G)

1

m
+

∑
ue∈E2

2

n+ 2m− 3
+

∑
ef∈E3

1

n+m− 3

=
m

m
+m(n− 2)

(
2

n + 2m− 3

)
+

(
m

2

)(
1

n+m− 3

)

= 1 +
2m(n− 2)

n+ 2m− 3
+

m(m− 1)

2(n+m− 3)
.
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Theorem 3.4: Let G be a graph with n vertices and m edges.
Then

H
(
G−−) = 1

2
H(G) +

m(m− 1)

2(m+ 1)
+

∑
u∈V (G)

2dG(u)

m+ 1 + 2dG(u)
.

Proof: Partition the edge set E(G−−) into subsets E1, E2 and E3,
where E1 = {uv | uv ∈ E(G)},
E2 = {ue | the vertex u is incident to the edge e in G} and E3 =
{ef | e, f ∈ E(G)}. It is easy to check that |E1| = m, |E2| = 2m
and E3 =

(
m
2

)
. By Proposition 1.2, if u ∈ V (G) then dG−−(u) =

2dG(u) and if e ∈ E(G) then dG−−(e) = m+ 1. Therefore

H
(
G−−) =

∑
uv∈E(G−−)

2

dG−−(u) + dG−−(v)

=
∑

uv∈E1

2

dG−−(u) + dG−−(v)
+

∑
ue∈E2

2

dG−−(u) + dG−−(e)

+
∑
ef∈E3

2

dG−−(e) + dG−−(f)

=
∑

uv∈E(G)

2

2dG(u) + 2dG(v)
+

∑
ue∈E2

2

2dG(u) +m+ 1

+
∑
ef∈E3

2

m+ 1 +m+ 1

=
1

2

∑
uv∈E(G)

2

dG(u) + dG(v)
+

∑
ue∈E2

2

m+ 1 + 2dG(u)

+
∑
ef∈E3

1

m+ 1

=
1

2
H(G) +

∑
u∈V (G)

2dG(u)

m+ 1 + 2dG(u)
+

(
m

2

)(
1

m+ 1

)

=
1

2
H(G) +

m(m− 1)

2(m+ 1)
+

∑
u∈V (G)

2dG(u)

m+ 1 + 2dG(u)
.

Remarks 3.5:

(1) By Theorem 3.2, for all graphs G having same number of
vertices and same number of edges, H

(
G+−) is same.

(2) By Theorem 3.3, for all graphs G having same number of
vertices and same number of edges, H

(
G−+

)
is same.
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4. RANDIĆ INDEX OF Gxy AND Gxy

In fully analogous manner, applying the proof techniques of the
Sections 2 and 3 and by the definition of the Randić index, we
arrive at:

Theorem 4.1: Let G be a graph with n vertices and m edges.
Then

R(G++) =
1

2

⎡
⎣R(G) +

∑
u∈V (G)

√
dG(u)

⎤
⎦ ;

R(G+−) = 1 +
√
m(n− 2);

R(G−+) =
n

2
−m

[
1

n− 1
−

√
2

n− 1

]
;

R(G−−) =
∑

uv/∈E(G)

1√
(n+m− 1− 2dG(u))(n+m− 1− 2dG(v))

+
∑

u∈V (G)

m− dG(u)√
(n− 2)(n+m− 1− 2dG(u))

;

R
(
G++

)
=

∑
uv/∈E(G)

1√
(n+m− 1− 2dG(u))(n+m− 1− 2dG(v))

+
∑

u∈V (G)

m− dG(u)√
(n+m− 3)(n+m− 1− 2dG(u))

+
m(m− 1)

2(n+m− 3)
;

R
(
G+−) =

n

2
− m

n− 1
+

2m√
(n− 1)(m+ 1)

+
m(m− 1)

2(m+ 1)
;

R
(
G−+

)
= 1 +

m(n− 2)√
m(n +m− 3)

+
m(m− 1)

2(n+m− 3)
;

R
(
G−−) =

1

2
R(G) +

m(m− 1)

2(m+ 1)
+

∑
u∈V (G)

√
dG(u)

2(m+ 1)
.
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Remarks 4.2:

(1) If G1 and G2 are two different graphs having same number
of vertices and same number of edges, then

R(G+−
1 ) = R(G+−

2 )

R(G−+
1 ) = R(G−+

2 )

R
(
G+−

1

)
= R

(
G+−

2

)
R
(
G−+

1

)
= R

(
G−+

2

)
.

(2) Among all graphs with n vertices, the complete graph Kn

has maximum R(G+−).
(3) Among all graphs with n vertices, the complete graph Kn

has minimum R(G−+).
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Chem. 59 127–156, 2008.

[13] J. Li, W. C. Shiu, The harmonic index of a graph, Rocky Mountain J. Math. 44
1607–1620, 2014.



HARMONIC INDEX AND RANDIĆ INDEX . . . 69
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