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ABSTRACT. In this paper, we investigate a hybrid-
extragradient iterative method to approximate a common
element of the set of solutions of split monotone variational
inclusion, mixed equilibrium problem and fixed-point problem
for a nonexpansive mapping. Further, we establish a strong
convergence theorem for the sequences generated by the pro-
posed iterative algorithm. We also derive some consequences
from our main result. A numerical example is given to support
our main result. The method and results presented in this
paper are the extension and generalization of the previously
known iterative methods and results in this area.
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1. INTRODUCTION

Let H1 and H2 be two real Hilbert spaces with inner product 〈·, ·〉
and induced norm ‖ · ‖. Let C and Q are nonempty, closed and
convex subsets of H1 and H2 respectively, let F : C × C → R be a
bifunction, where R is a set of real numbers, such that F (x, x) =
0, ∀x ∈ C and let A : C → H1 be a nonlinear mapping. Then, we
consider the following mixed equilibrium problem (in short, MEP):
Find x ∈ C such that

F (x, y) + 〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1)
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MEP(1) was introduced and studied by Moudafi and Théra [1].
The solution set of MEP(1) is denoted by Sol(MEP(1)). If F = 0,
MEP(1) reduces to the classical variational inequality problem (in
short, VIP): Find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C, (2)

which is introduced by Hartmann and Stampacchia [2]. If A = 0,
MEP(1) reduces to the equilibrium problem (in short, EP): Find
x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C, (3)

which is introduced by Blum and Oettli [3]. The set of solutions of
EP(3) is denoted by Sol(EP(3)).

Recall that a mapping S : H1 → H1 is nonexpansive if ‖Sx −
Sy‖ ≤ ‖x−y‖, ∀x, y ∈ H1. Further, we consider the following fixed
point problem (in short FPP) for a nonexpansive mapping S: Find
x ∈ H1 such that

Sx = x. (4)

The solution set of FPP(4) is denoted by Fix(S). We note that if
Fix(S) �= ∅ then Fix(S) is closed and convex.

In 2007, Takahashi and Takahashi [4] proposed an iterative method
based on viscosity approximation method for approximating a com-
mon solution of EP(3) and FPP for a nonexpansive mapping S in
Hilbert space. Since then the common solution of these type of
problems have been studied using different iterative methods, see
for instance [5, 6, 7] and references therein.

Recently, Censor et al. [8] introduced and studied the following
split variational inequality problem (in short, SPVIP): Let f : H1 →
H1 and g : H2 → H2 be nonlinear single-valued mappings and let
B : H1 → H2 be a bounded linear operator with its adjoint operator
B∗. Then SPVIP is to find x∗ ∈ C satisfying

〈fx∗, x− x∗〉 ≥ 0, ∀x ∈ C, (5)

and such that

y∗ = Bx∗ ∈ Q solves 〈gy∗, x− y∗〉 ≥ 0, ∀y ∈ Q. (6)

The solution set of SPVIP(5)-(6) is denoted by Sol(SPVIP(5)-(6)) =
{x∗ ∈ C : x∗ ∈ Sol(VIP(5)) and Bx∗ ∈ Sol(VIP(6))}. They in-
troduced and studied the following iterative method for solving
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SPVIP(5)-(6): For a given x0 ∈ H1, compute iterative sequence
{xn} generated by the iterative algorithm:

xn+1 = U(xn + γB∗(T − I)Bxn), (7)

where γ ∈ (0, 1
L
) with L being the spectral radius of the operator

B∗B, U := PC(I − λf) and T := PQ(I − λg), for λ > 0, PC is a
metric projection onto C.

Further, Moudafi [9] introduced the following split monotone
variational inclusion problem (in short, SPMVIP): Find x∗ ∈ H1

such that

0 ∈ f(x∗) +M1(x
∗), (8)

and such that

y∗ = Bx∗ ∈ H2 solves 0 ∈ g(y∗) +M2(y
∗), (9)

where M1 : H1 → 2H1 and M2 : H2 → 2H2 are multi-valued maxi-
mal monotone mappings.

Moudafi [9] introduced and studied the following iterative method
for solving SPMVIP(8)-(9), which can be seen an important gener-
alization of an iterative method (7) given in [8] for SPVIP(5)-(6):
For a given x0 ∈ H1, compute iterative sequence {xn} generated by
the iterative algorithm:

xn+1 = U(xn + γB∗(T − I)Bxn),

where γ ∈ (0, 1
L
) with L being the spectral radius of the operator

B∗B, U := JM1
λ (I − λf) and T := JM2

λ (I − λg), JM1
λ is defined in

Definition 2.4 below for λ > 0.

When looked separately, (8) is the monotone variational inclu-
sion problem (in short, MVIP) and we denoted its solution set by
Sol(MVIP(8)). The SPMVIP(8)-(9) constitutes a pair of monotone
variational inclusion problems which have to be solved so that the
image y∗ = Bx∗ under a given bounded linear operator B, of the
solution x∗ of MVIP(8) in H1 is the solution of another MVIP(9)
in another space H2. We denote the solution set of MVIP(9) by
Sol(MVIP(9)).

The solution set of SPMVIP(8)-(9) is denoted by Sol(SPMVIP(8)-
(9)) = {x∗ ∈ H1 : x

∗ ∈ Sol(MVIP(8)) and Bx∗ ∈ Sol(MVIP(9))}.
If f1 ≡ 0 and f2 ≡ 0 then SPMVIP(8)-(9) reduces to the following

split null point problem (in short, SPNPP): Find x∗ ∈ H1 such that

0 ∈ M1(x
∗), (10)
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and such that

y∗ = Bx∗ ∈ H2 solves 0 ∈ M2(y
∗). (11)

In 2012, Byrne et al. [10] introduced an iterative method and
studied the weak and strong convergence theorems for SPNPP(10)-
(11). For a given x0 ∈ H1, compute iterative sequence {xn} gener-
ated by the following scheme:

xn+1 = JM1
λ (xn + γB∗(JM2

λ − I)Bxn), forλ > 0.

Recently, Kazmi and Rizvi [11] introduced and studied an itera-
tive method, based on viscosity approximation method to approxi-
mate a common solution of SPNPP(10)-(11) and fixed point prob-
lem of a nonexpansive mapping in the framework of real Hilbert
spaces.

{
un = JM1

λ (xn + γB∗(JM2

λ − I)Bxn),
xn+1 = αnh(xn) + (1− αn)Sun,

where h : H1 → H1 is a contraction mapping and λ > 0.

Very recently, Sitthithakerngkiet et. al [12] extended the work of
Kazmi and Rizvi [11] and Byrne et al. [10] for SPVIP(10)-(11).

It is stressed in [12] that it is worth to study the strong con-
vergence theorems for the sequences generated by iterative algo-
rithms for the SPVIP(5)-(6) and SPMVIP(8)-(9). As Moudafi notes
in [9] that SPMVIP(8)-(9) includes as special cases, SPVIP(5)-(6),
SPNPP(10)-(11), the split common fixed point problem and split
feasibility problem [8, 13, 14] which have already been studied
and used in practice as a model in intensity-modulated radiation
therapy treatment, see [13, 14]. This formulation is also at the
core of modeling of many inverse problems arising from phase re-
trieval and other real-world problems; for instance, in sensor net-
works in computerized tomography and data compression; see e.g.
[10, 15, 16, 17, 18, 19]. Therefore, it is worth to study the iterative
methods for SPVIP(5)-(6) and SPMVIP(8)-(9).

In 1976, Korpelevich [20] proposed an iterative method with it-
erative scheme for VIP in Euclidean space:⎧⎨

⎩
x1 = x ∈ C
yn = PC(xn − λAxn),
xn+1 = PC(xn − λAyn),

(12)

where λ > 0 is a number. This iterative method is called extra-
gradient iterative method. Since then the extragradient iterative



316 K. R. KAZMI, S. H. RIZVI AND REHAN ALI

method has been generalized and extended by many authors. In
2006, by combining a hybrid iterative method with an extragra-
dient iterative method, Nadezhkina and Takahashi [21] introduced
the following hybrid-extragradient iterative method in infinite di-
mensional Hilbert space H1:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 = x ∈ C,
yn = PC(xn − λnAxn),
zn = βnxn + (1− βn)SPC(xn − λnAyn),
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx,

(13)

for every n = 1, 2, ... . They proved that under certain appropriate
conditions imposed on {βn} and {λn}, the sequences {xn}, {yn}
and {zn} generated by (13) converge strongly to z ∈ Fix(S) ∩
Sol(VIP(2)). A lot of efficient generalizations and modifications
exist at this moment, for instance, see [22, 23, 24, 25].

In this paper, we investigate an iterative method based on hybrid
iterative method and extragradient iterative method to approxi-
mate a common element of the set of solutions of SPMVIP(8)-(9),
MEP(1) and FPP for a nonexpansive mapping. Further, we es-
tablish a strong convergence theorem for the sequences generated
by the proposed iterative algorithm. Furthermore, we derive some
consequences from our main result. Finally, we justify our main re-
sult through a numerical example. The iterative method and result
presented in this paper extend and unify the iterative methods and
results due to Nadezhkina and Takahashi [21] and Djafari-Rouhani,
Kazmi and Rizvi [7].

2. PRELIMINARY

We recall some concepts and results needed in the sequel. Let the
symbols → and ⇀ denote strong and weak convergence, respec-
tively.

It is well known that a real Hilbert space H1 satisfies

(i) the identity

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2, (14)

for all x, y ∈ H1 and λ ∈ [0, 1].
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(ii) the Opial’s condition [26], i.e., for any sequence {xn} with
xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ (15)

holds for every y ∈ H1 with y �= x;
(iii) the Kadec-Klee property [27], i.e., if {xn} be a sequence in

H1 which satisfies xn ⇀ x and ‖xn‖ → ‖x‖ as n → ∞ then
‖xn − x‖ → 0.

For every point x ∈ H1, there exists a unique nearest point in C
denoted by PCx such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

The mapping PC is called the metric projection of H1 onto C.

It is well known that PC is nonexpansive and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x ∈ H1. (16)

Moreover, PCx is characterized by the fact PCx ∈ C and

〈x− PCx, y − PCx〉 ≤ 0, ∀y ∈ C, (17)

which implies that

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H1, y ∈ C. (18)

It is well known that every nonexpansive operator T : H1 → H1

satisfies, for all (x, y) ∈ H1 ×H1, the inequality

〈(x−T (x))−(y−T (y)), T (y)−T (x)〉 ≤ (1/2)‖(T (x)−x)−(T (y)−y‖2
(19)

and therefore, we get, for all (x, y) ∈ H1 × Fix(T ),

〈x− T (x), y − T (x)〉 ≤ (1/2)‖T (x)− x‖2, (20)

see e.g., [[28], Theorem 3.1].
Definition 2.1: A mapping T : H1 → H1 is said to be

(i) monotone, if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H1;

(ii) α-inverse strongly monotone, if there exists a constant α > 0
such that

〈Tx− Ty, x− y〉 ≥ α‖Tx− Ty‖2, ∀x, y ∈ H1;

(iii) β-Lipschitz continuous, if there exists a constant β > 0 such
that

‖Tx− Ty‖ ≤ β‖x− y‖, ∀x, y ∈ H1.
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We note that if T is α-inverse strongly monotone mapping, then T
is monotone and 1

α
-Lipschitz continuous.

Definition 2.2: A multi-valued mapping M1 : H1 → 2H1 is called
monotone if for all x, y ∈ H1, u ∈ M1x and v ∈ M1y such that

〈x− y, u− v〉 ≥ 0.

Definition 2.3: A monotone mapping M1 : H1 → 2H1 is maximal
if the Graph(M1) is not properly contained in the graph of any
other monotone mapping.
It is known that a monotone mapping M1 is maximal if and only if
for (x, u) ∈ H1×H1, 〈x−y, u−v〉 ≥ 0, for every (y, v) ∈ Graph(M1)
implies that u ∈ M1x.
Definition 2.4: Let M1 : H1 → 2H1 be a multi-valued maximal
monotone mapping. Then, the resolvent mapping JM1

λ : H1 → H1

associated with M1, is defined by

JM1
λ (x) := (I + λM1)

−1(x), ∀x ∈ H1.

Remark 2.1:

(i) For all λ > 0, the resolvent operator JM1

λ is single-valued,
nonexpansive and firmly nonexpansive.

(ii) If we take M1 = ∂IC , the subdifferential of the indicator
function IC of C, where IC is defined by

IC(x) =

{
0, x ∈ C
+∞, x /∈ C,

then

y = J∂IC
λ (x) = (I + λ∂IC)

−1x ⇔ y = PCx.

Definition 2.5: A mapping T : H1 → H1 is said to be averaged if
and only if it can be written as the average of the identity mapping
and a nonexpansive mapping, i.e.,

T := (1− α)I + αS

where α ∈ (0, 1) and S : H1 → H1 is nonexpansive and I is the
identity operator on H1.
We note that the firmly nonexpansive mappings (in particular, pro-
jection on nonempty closed and convex subset and resolvent oper-
ator of maximal monotone operator) are averaged.
The following are some key properties of averaged operators, see
for instance [9, 10].
Proposition 2.1:
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(i) If T = (1 − α)S + αV , where S : H1 → H1 is averaged,
V : H1 → H1 is nonexpansive and α ∈ (0, 1), then T is
averaged;

(ii) The composite of finitely many averaged mappings is aver-
aged;

(iii) If the mappings {Ti}Ni=1 are averaged and have a nonempty
common fixed point set, then

N⋂
i=1

Fix(Ti) = Fix(T1T2...TN );

(iv) If T is τ -ism, then for γ > 0, γT is τ
γ
-ism;

(v) T is averaged if and only if, its complement I − T is τ -ism
for some τ > 1

2
.

Lemma 2.1: [27] Assume that T is nonexpansive self mapping of
a closed convex subset C of a Hilbert space H1. If T has a fixed
point, then I−T is demiclosed, i.e., whenever {xn} is a sequence in
C converging weakly to some x ∈ C and the sequence {(I − T )xn}
converges strongly to some y, it follows that (I − T )x = y.
Assumption 2.1: The bifunction F : C × C −→ R satisfies the
following assumptions:

(i) F (x, x) = 0, ∀x ∈ C;
(ii) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x ∈ C;
(iii) For each x, y, z ∈ C, lim sup

t→0
F (tz + (1− t)x, y) ≤ F (x, y);

(iv) For each x ∈ C, y → F (x, y) is convex and lower semicon-
tinuous;

Assumption 2.2: The bifunction F : C × C → R satisfies

F (x, y) + F (y, z) + F (z, x) ≤ 0, ∀x, y, z ∈ C. (21)

We easily observe that, for y = z, Assumption 2.1 (i) and Assump-
tion 2.2 implies Assumption 2.1 (ii).
Lemma 2.2: [15] Let C be a nonempty closed convex subset of
H1. Assume that F : C × C −→ R satisfying Assumption . For
r > 0 and for all x ∈ H1, define a mapping Tr : H1 → C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}. (22)

Then the following results hold:

(i) For each x ∈ H1, Tr(x) �= ∅;
(ii) Tr is single-valued;
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(iii) Tr is firmly nonexpansive, i.e.,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉, ∀x, y ∈ H1; (23)

(iv) Fix(Tr) = Sol(EP(3));
(v) Sol(EP(3)) is closed and convex.

Remark 2.2: It follows from Lemma 2.2 (i)-(ii) that

rF (Trx, y) + 〈Trx− x, y − Trx〉 ≥ 0, ∀y ∈ C, x ∈ H1. (24)

Further, Lemma 2.2 (iii) implies the nonexpansivity of Tr, i.e.,

‖Trx− Try ≤ ‖x− y‖, ∀x, y ∈ H1. (25)

Furthermore, (24) implies the following inequality

‖Trx− y‖2 ≤ ‖x− y‖2−‖Trx−x‖2+2rF (Trx, y), ∀y ∈ C, x ∈ H1.
(26)

3. Hybrid-extragradient iterative method

We establish a strong convergence theorem for the sequences gen-
erated by an iterative algorithm based on hybrid-extragradient it-
erative method which finds the approximate common element of
the set of solution of split monotone variational inclusion problem
(SPMVIP(8)-(9)), mixed equilibrium problem (MEP(1)) and FPP
for a nonexpansive mapping S.

Theorem 3.1: Let H1 and H2 are real Hilbert spaces and B :
H1 → H2 be a bounded linear operator with its adjoint operator
B∗. Let F : C × C → R be a bifunction satisfying Assumption
2.1 ((i),(iii) and (iv)), and Assumption 2.2; let M1 : H1 → 2H1,
M2 : H2 → 2H2 be the multi-valued maximal monotone mappings;
let the mappings A : C → H1, f : H1 → H1 and g : H2 → H2 be,
respectively, σ, θ1, θ2-inverse strongly monotone and let S : C → C
be a nonexpansive mapping such that Ω = Sol(SPMVIP(8)-(9)) ∩
Sol(MEP(1))∩Fix(S) �= ∅. Let the iterative sequences {xn}, {yn},
{ln}, {zn}, {wn} and {un} be generated by the following iterative
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algorithm:

x0 = x ∈ H1,

yn = JM1
λ (I − λf)xn, (27)

ln = JM2
λ (I − λg)Byn, (28)

zn = PC [yn + γB∗(ln − Byn)], (29)

wn = Trn(I − rnA)zn, (30)

un = αnxn + (1− αn)STrn(zn − rnAwn), (31)

Cn = {z ∈ H1 : ‖un − z‖2 ≤ ‖xn − z‖2}, (32)

Qn = {z ∈ H1 : 〈xn − z, x− xn〉 ≥ 0}, (33)

xn+1 = PCn∩Qnx, (34)

for n = 1, 2, ..., where {rn} ⊂ [a, b] for some a, b ∈ (0, σ), λ ⊂ [a′, b′]
for some a′, b′ ∈ (0, θ), where θ := min{θ1, θ2} and {αn} ⊂ [0, c]

for some c ∈ [0, 1) and γ ∈
(
0,

1

‖B∗‖2
)
. Then the sequences {xn},

{yn} and {zn} converge strongly to z = PΩx.

Proof. We divide the proof of Theorem 3.1 into the following steps.

Step I. PΩ(x) and {xn} are well defined. Further, the sequences
{xn}, {yn}, {ln}, {zn}, {wn}, {tn} and {un} are bounded, where
tn := Trn(zn − rnAwn).

Proof of Step I. First, we show that PΩ(x) is well defined. Since
f , g are inverse strongly monotone then JM1

λ (I − λf) and JM2
λ (I −

λg) are nonexpansive and hence Sol(MVIP(8))=Fix(JM1
λ (I − λf))

and Sol(MVIP(9))=Fix(JM2

λ (I − λg)) are closed and convex sets.
Further, it is easy to observe that Sol(SPMVIP(8)-(9)) is closed and
convex set. Since A is inverse strongly monotone then Trn(I−rnA)
is nonexpansive and hence Sol(MEP(1))=Fix(Jrn(I−rnA)) is closed
and convex. Since Ω �= ∅, Ω is closed and convex set in H1 and thus
PΩ(x) is well defined.

Next, we show that {xn} is well defined. Indeed, let x̄ ∈ Ω
then x̄ ∈ Sol(SPMVIP(8)-(9)) and hence x̄ = JM1

λ (I − λf)x and
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Bx̄ = JM2

λ (I − λg)Bx̄. We estimates

‖yn − x̄‖2 = ‖JM1
λ (xn − λfxn)− JM1

λ (x̄− λfx̄)‖2
≤ ‖(xn − x̄)− λ(fxn − fx̄)‖2
= ‖xn − x̄‖2 + λ2‖fxn − fx̄‖2 + 2λ〈xn − x̄, fxn − fx̄〉
≤ ‖xn − x̄‖2 − λ(2θ1 − λ)‖fxn − fx̄‖2 (35)

≤ ‖xn − x̄‖2; (36)

‖ln −Bx̄‖2 = ‖JM2
λ (I − λg)Byn − JM2

λ (I − λg)Bx̄‖2
≤ ‖Byn − Bx̄‖2 − λ(2θ2 − λ)‖gByn − gBx̄‖2(37)
≤ ‖Byn − Bx̄‖2; (38)

‖zn − x̄‖2 = ‖PC[yn + γB∗(ln − Byn)]− x̄‖2
≤ ‖yn + γB∗(ln −Byn)− x̄)‖2
= ‖yn − x̄‖2 + ‖γB∗(ln − Byn)‖2

+2γ〈yn − x̄, B∗(ln − Byn)〉
≤ ‖yn − x̄‖2 + γ2‖B∗‖2‖ln −Byn‖2

+2γ〈B(yn − x̄) + (ln − Byn)− (ln − Byn), ln − Byn〉
= ‖yn − x̄‖2 + γ2‖B∗‖2‖ln −Byn‖2 + 2γ

[1
2
‖ln − Bx̄‖2

+
1

2
‖ln − Byn‖2 − 1

2
‖Byn −Bx̄‖2 − 1

2
‖ln −Byn‖2

]
= ‖yn − x̄‖2 − γ(1− γ‖B∗‖2)‖ln − Byn‖2 (39)

≤ ‖yn − x̄‖2 ≤ ‖xn − x̄‖2; (40)

and

‖wn − x̄‖2 = ‖Trn(zn − rnAzn)− Trn(x̄− rnAx̄)‖2
≤ ‖(zn − x̄)− rn(Azn −Ax̄)‖2
= ‖zn − x̄‖2 + r2n‖Azn − Ax̄‖2

−2rn〈zn − x̄, Azn −Ax̄〉
≤ ‖zn − x̄‖2 − rn(2σ − rn)‖Azn − Ax̄‖2 (41)

≤ ‖zn − x̄‖2 ≤ ‖xn − x̄‖2. (42)

Now, evidently Qn is closed and convex for every n = 0, 1, 2, ... .
Further, since

Cn := {z ∈ H1 : ‖un − xn‖2 + 2〈un − xn, xn − z〉 ≤ 0}, (43)

then we observe that Cn is closed and convex for every n = 0, 1, 2, ... .
Hence Cn ∩ Qn are closed and convex for all n. Further, we claim
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that Cn ∩ Qn is nonempty for all n. For this, it is enough to show
that Ω ⊂ Cn ∩ Qn for every n = 0, 1, 2, ... . Let x̄ ∈ Ω then x̄ is a
solution of MEP(1) and hence

F (x̄, wn) + 〈Ax̄, wn − x̄〉 ≥ 0, ∀wn ∈ C. (44)

Applying (26) with zn − rnAwn and x̄, we have

‖tn − x̄‖2
≤ ‖zn − rnAwn − x̄‖2 − ‖tn − (zn − rnAwn)‖2 + 2rnF (tn, x̄)

= ‖zn − x̄‖2 − ‖tn − zn‖2 + 2rn〈Awn, x̄− tn〉+ 2rnF (tn, x̄)

= ‖zn − x̄‖2 − ‖tn − zn‖2 + 2rn
[〈Awn − Ax̄, x̄− wn〉

+〈Ax̄, x̄− wn〉 − 〈Awn, tn − wn〉
]
+ 2rnF (tn, x̄). (45)

Since A is σ-inverse strongly monotone, then A is monotone and
1
σ
-Lipschitz continuous. Using (24), (44) and monotonicity of A in

(45), we have

‖tn − x̄‖2 ≤ ‖zn − x̄‖2 − ‖tn − zn‖2 + 2rn〈Awn, wn − tn〉
+2rn

[
F (x̄, wn) + F (tn, x̄)

]
≤ ‖zn − x̄‖2 − ‖zn − wn‖2 − ‖wn − tn‖2

−2〈zn − wn, wn − tn〉+ 2rn〈Awn, wn − tn〉
+2rn

[
F (x̄, wn) + F (tn, x̄)

]
= ‖zn − x̄‖2 − ‖zn − wn‖2 − ‖wn − tn‖2

−2〈wn − (zn − rnAzn), tn − wn〉
+2rn〈Azn −Awn, tn − wn〉+ 2rn

[
F (x̄, wn) + F (tn, x̄)

]
= ‖zn − x̄‖2 − ‖zn − wn‖2 − ‖wn − tn‖2

+2rn〈Azn −Awn, tn − wn〉
+2rn

[
F (x̄, wn) + F (wn, tn) + F (tn, x̄)

]
.

Now, using Assumption 2.2 in the above inequality, we have

‖tn − x̄‖2 ≤ ‖zn − x̄‖2 − ‖zn − wn‖2 − ‖wn − tn‖2

+2rn
1

σ
‖zn − wn‖‖tn − wn‖ (46)

≤ ‖zn − x̄‖2 − ‖zn − wn‖2 − ‖wn − tn‖2

+‖wn − tn‖2 +
(rn
σ

)2

‖zn − wn‖2

≤ ‖zn − x̄‖2 −
(
1−

(rn
σ

)2
)
‖zn − wn‖2. (47)
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Since rn ∈ [a, b], we obtain

‖tn − x̄‖2 ≤ ‖zn − x̄‖2 ≤ ‖yn − x̄‖2 ≤ ‖xn − x̄‖2. (48)

Since x̄ ∈ Ω then x̄ = Sx̄ and we have the following

‖un − x̄‖2 = ‖αnxn + (1− αn)Stn − x̄‖2
= ‖αn(xn − x̄) + (1− αn)(Stn − x̄)‖2
= αn‖xn − x̄‖2 + (1− αn)‖Stn − x̄‖2

−αn(1− αn)‖Stn − xn‖2
≤ αn‖xn − x̄‖2 + (1− αn)‖Stn − x̄‖2
≤ αn‖xn − x̄‖2 + (1− αn)‖tn − x̄‖2 (49)

≤ αn‖xn − x̄‖2 + (1− αn)‖xn − x̄‖2
= ‖xn − x̄‖2. (50)

This implies that x̄ ∈ Cn and hence Ω ⊆ Cn for every n = 0, 1, 2, ... .
Further, since Ω ⊆ C0 and Ω ⊆ Q0 = H1. It follows that Ω ⊂ C0 ∩
Q0 and hence C0∩Q0 is nonempty closed and convex set. Therefore
x1 = PC0∩Q0x is well defined. Now suppose that Ω ⊆ Cn−1 ∩ Qn−1

for some n > 1. Let xn = PCn−1∩Qn−1x. Again, since Ω ⊆ Cn and
for any x̄ ∈ Ω, it follows from (17) that 〈x − xn, xn − x̄〉 = 〈x −
PCn−1∩Qn−1x, PCn−1∩Qn−1x − x̄〉 ≥ 0, and hence x̄ ∈ Qn. Therefore
Ω ⊆ Cn ∩ Qn for every n = 0, 1, 2, ... and hence xn+1 = PCn∩Qnx
is well defined for every n = 0, 1, 2, ... . Thus the sequence {xn} is
well defined.

Let l = PΩx. From xn+1 = PCn∩Qnx and l ∈ Ω ⊂ Cn ∩ Qn, we
have

‖xn+1 − x‖ ≤ ‖l − x‖, (51)

for every n = 0, 1, 2, ... . Therefore {xn} is bounded. Further, it
follows from (36), (38), (40), (42), (48) and (50) that the sequences
{yn}, {ln}, {zn}, {wn}, {tn} and {un} are bounded.

Step II. lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖zn − xn‖ = lim
n→∞

‖un − xn‖ =

lim
n→∞

‖xn − yn‖ = lim
n→∞

‖xn − tn‖ = lim
n→∞

‖Stn − tn‖ = 0.

Proof of Step II. It follows from (33) and (34) that xn = PQnx,
and xn+1 ∈ Cn ∩Qn. Hence, we have

‖xn − x‖ ≤ ‖xn+1 − x‖, (52)

for every n = 0, 1, 2, ... . Further, it follows from (51) and (52) that
the sequence {‖xn − x‖} is monotonically increasing and bounded,
and hence convergent. Therefore lim

n→∞
‖xn − x‖ exists.
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Now, applying (18) with xn = PQnx and xn+1 ∈ Qn, we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2,
for every n = 0, 1, 2, ... . This implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (53)

Since xn+1 ∈ Cn, it follows from (43) that

‖un − xn‖2 ≤ 2〈un − xn, xn+1 − xn〉
≤ 2‖un − xn‖‖xn+1 − xn‖.

Therefore
‖un − xn‖ ≤ 2‖xn+1 − xn‖,

and hence, using (53), we have

lim
n→∞

‖un − xn‖ = 0. (54)

It follows from (47) and (49) that

‖zn − wn‖2

≤
[
(1− αn)(1− (

rn
σ
)2)

]−1

(‖xn − x̄‖2 − ‖un − x̄‖2)

=
[
(1− αn)(1− (

rn
σ
)2)

]−1

(‖xn − x̄‖ − ‖un − x̄‖)
×(‖xn − x̄‖+ ‖un − x̄‖)

≤
[
(1− αn)(1− (

rn
σ
)2)

]−1

‖xn − un‖(‖xn − x̄‖+ ‖un − x̄‖).
Since {xn} and {un} are bounded and lim

n→∞
‖un−xn‖ = 0, therefore

above inequality implies that

lim
n→∞

‖zn − wn‖ = 0. (55)

By the same arguments used as in (46), we have

‖tn − x̄‖2 ≤ ‖zn − x̄‖2 − ‖zn − wn‖2 − ‖wn − tn‖2

+
2rn
σ

‖zn − wn‖‖tn − wn‖
≤ ‖zn − x̄‖2 − ‖zn − wn‖2 − ‖wn − tn‖2 + ‖zn − wn‖2

+
(rn
σ

)2

‖tn − wn‖2

= ‖zn − x̄‖2 −
[
1−

(rn
σ

)2
]
‖wn − tn‖2.

≤ ‖xn − x̄‖2 −
[
1−

(rn
σ

)2
]
‖wn − tn‖2. (56)
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Further, using (56) in (49), we have

‖un − x̄‖2 ≤ ‖xn − x̄‖2 − (1− αn)

(
1−

(rn
σ

)2
)
‖wn − tn‖2,

which implies that

‖tn − wn‖2

≤
[
(1− αn)(1− (

rn
σ
)2)

]−1

(‖xn − x̄‖2 − ‖un − x̄‖2)

=
[
(1− αn)(1− (

rn
σ
)2)

]−1

(‖xn − x̄‖ − ‖un − x̄‖)
×(‖xn − x̄‖+ ‖un − x̄‖)

≤ [(1− αn)(1− (
rn
σ
)2)]−1(‖xn − x̄‖+ ‖un − x̄‖)

×‖xn − un‖. (57)

Again, since {xn} and {un} are bounded and lim
n→∞

‖un − xn‖ = 0,

therefore (57) implies that

lim
n→∞

‖tn − wn‖ = 0. (58)

Next, it follows from (35), (48) and (49) that

‖un − x̄‖2 ≤ ‖xn − x̄‖2 − (1− αn)λ(2θ1 − λ)‖fxn − fx̄‖2,
which implies that

‖fxn − fx̄‖2
≤ [(1− αn)λ(2θ1 − λ)]−1(‖xn − x̄‖2 − ‖un − x̄‖2)
= [(1− αn)λ(2θ1 − λ)]−1(‖xn − x̄‖ − ‖un − x̄‖)

×(‖xn − x̄‖+ ‖un − x̄‖)
≤ [(1− αn)λ(2θ1 − λ)]−1(‖xn − x̄‖

+‖un − x̄‖)‖xn − un‖. (59)

Since {xn} and {un} are bounded and lim
n→∞

‖un−xn‖ = 0, therefore

(59) implies that

lim
n→∞

‖fxn − fx̄‖ = 0. (60)

Further, it follows from (39), (48) and (49) that

‖un − x̄‖2 ≤ ‖xn − x̄‖2 − (1− αn)γ(1− γ‖B∗‖2)‖ln − Byn‖2,
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which implies that

‖ln − Byn‖2
≤ [

(1− αn)γ(1− γ‖B∗‖2)]−1 (‖xn − x̄‖2 − ‖un − x̄‖2)
=

[
(1− αn)γ(1− γ‖B∗‖2)]−1

(‖xn − x̄‖ − ‖un − x̄‖)
× (‖xn − x̄‖+ ‖un − x̄‖)

≤ [
(1− αn)γ(1− γ‖B∗‖2)]−1

(‖xn − x̄‖
+‖un − x̄‖)‖xn − un‖. (61)

Since {xn} and {un} are bounded and lim
n→∞

‖un−xn‖ = 0, therefore

(61) implies that

lim
n→∞

‖ln − Byn‖ = 0. (62)

Next, the inequality (37), i.e.,

‖ln −Bx̄‖2 ≤ ‖Byn −Bx̄‖2 − λ(2θ2 − λ)‖gByn − gBx̄‖2,

implies that

‖gByn − gBx̄‖2
≤ [λ(2θ2 − λ)]−1 (‖Byn − Bx̄‖2 − ‖ln − Bx̄‖2)
= [λ(2θ2 − λ)]−1 (‖Byn − Bx̄‖ − ‖ln − Bx̄‖)

× (‖Byn − Bx̄‖2 + ‖ln −Bx̄‖)
≤ [λ(2θ2 − λ)]−1 (‖Byn − x̄‖+ ‖ln − Bx̄‖)

×‖Byn − ln‖. (63)

Since {yn} and {ln} are bounded and lim
n→∞

‖ln−Byn‖ = 0, therefore

(63) implies that

lim
n→∞

‖gByn − gBx̄‖ = 0. (64)
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Next, by using the firmly nonexpansivity of JM1

λ and arguments
used in (36), we estimate

‖yn − x̄‖2 = ‖JM1
λ (I − λf)xn − JM1

λ (I − λf)x̄)‖2
≤ 〈(I − λf)xn − (I − λf)x̄, yn − x̄〉
=

1

2

[
‖(I − λf)xn − (I − λf)x̄‖2 + ‖yn − x̄‖2

−‖xn − yn − λ(fxn − fx̄)‖2
]

≤ 1

2

[
‖xn − x̄‖2 + ‖yn − x̄‖2 − ‖xn − yn‖2

+2λ〈xn − yn, fxn − fx̄〉 − λ2‖fxn − fx̄‖2
]

≤ 1

2

[‖xn − x̄‖2 + ‖yn − x̄‖2 − ‖xn − yn‖2

+2λ‖xn − yn‖‖fxn − fx̄‖],
which in turns yields

‖yn− x̄‖2 ≤ ‖xn− x̄‖2−‖xn−yn‖2+2λ‖xn−yn‖‖fxn−fx̄‖. (65)

It follows from (48), (49) and (65) that

‖un − x̄‖2 ≤ ‖xn − x̄‖2 − (1− αn)‖xn − yn‖2
+2λ(1− αn)‖xn − yn‖‖fxn − fx̄‖,

which implies that

‖xn − yn‖2

≤ (1− αn)
−1

[
‖xn − x̄‖2 − ‖un − x̄‖2

+2λ(1− αn)‖xn − yn‖‖fxn − fx̄‖
]

= (1− αn)
−1
[
(‖xn − x̄‖ − ‖un − x̄‖) (‖xn − x̄‖+ ‖un − x̄‖)

+2λ(1− αn)‖xn − yn‖‖fxn − fx̄‖]
≤ (1− αn)

−1
[
(‖xn − x̄‖+ ‖un − x̄‖) ‖xn − un‖

+2λ(1− αn)‖xn − yn‖‖fxn − fx̄‖]. (66)

Since {xn} and {un} are bounded and lim
n→∞

‖un − xn‖ = 0 and

lim
n→∞

‖fxn − fx̄‖ = 0, therefore (66) implies that

lim
n→∞

‖xn − yn‖ = 0. (67)
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Further, using the firmly nonexpansivity of PC , we estimate

‖zn − x̄‖2 = ‖PC [yn + γB∗(ln − Byn)]− x̄‖2
≤ 〈yn + γB∗(ln −Byn)− x̄, zn − x̄〉
=

1

2

[
‖(yn − x̄) + γB∗(ln −Byn)‖2 + ‖zn − x̄‖2

−‖yn + γB∗(ln − Byn)− x̄− zn + x̄‖2
]

=
1

2

[
‖yn − x̄‖2 + ‖zn − x̄‖2 + ‖γB∗(ln −Byn)‖2

+2γ〈Byn − Bx̄, ln − Byn〉
−‖(yn − zn) + γB∗(ln − Byn)‖2

]

≤ 1

2

[
‖yn − x̄‖2 + ‖zn − x̄‖2 + ‖γB∗(ln −Byn)‖2

+2γ‖Byn − Bx̄‖‖ln − Byn‖ − ‖yn − zn‖2

−‖γB∗(ln −Byn)‖2 − 2γ〈yn − zn, B
∗(ln − Byn)〉

]
,

which in turns yields

‖zn − x̄‖2 ≤ ‖yn − x̄‖2 − ‖yn − zn‖2 + 2γ‖Byn −Bx̄‖‖ln −Byn‖
+2γ‖yn − zn‖‖B∗‖‖ln − Byn‖

≤ ‖yn − x̄‖2 − ‖yn − zn‖2
+2γ‖ln −Byn‖(‖Byn − Bx̄‖+ ‖B∗‖‖yn − zn‖) (68)

It follows from (48), (49) and (68) that

‖un − x̄‖2 ≤ ‖xn − x̄‖2 − (1− αn)‖yn − zn‖2
+2γ(1− αn)[‖ln −Byn‖(‖Byn − Bx̄‖
+‖B∗‖‖yn − zn‖)],

which implies that

‖yn − zn‖2
≤ (1− αn)

−1
[‖xn − x̄‖2 − ‖un − x̄‖2

+2γ(1− αn)‖ln −Byn‖(‖Byn − Bx̄‖+ ‖B∗‖‖yn − zn‖)
]

= (1− αn)
−1
[
(‖xn − x̄‖ − ‖un − x̄‖) (‖xn − x̄‖+ ‖un − x̄‖)

+2γ(1− αn)‖ln −Byn‖(‖Byn − Bx̄‖+ ‖B∗‖‖yn − zn‖)
]

≤ (1− αn)
−1
[
(‖xn − x̄‖+ ‖un − x̄‖) ‖xn − un‖

+2γ(1− αn)‖ln −Byn‖(‖Byn − Bx̄‖
+‖B∗‖‖yn − zn‖)

]
. (69)
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Since {xn}, {yn}, {zn} and {un} are bounded and lim
n→∞

‖un−xn‖ =

0 and lim
n→∞

‖ln − Byn‖ = 0, therefore (69) implies that

lim
n→∞

‖yn − zn‖ = 0. (70)

Since

‖xn − zn‖ ≤ ‖xn − yn‖+ ‖yn − zn‖,
then using (67) and (70), we have

lim
n→∞

‖xn − zn‖ = 0. (71)

Since

‖wn − xn‖ ≤ ‖wn − zn‖+ ‖zn − xn‖,
then using (55) and (71), we have

lim
n→∞

‖wn − xn‖ = 0. (72)

Since

‖tn − xn‖ ≤ ‖tn − wn‖+ ‖wn − xn‖,
then using (58) and (72), we have

lim
n→∞

‖tn − xn‖ = 0. (73)

Next, we show that lim
n→∞

‖Stn − tn‖ = 0. Since

un = αnxn + (1− αn)Stn,

therefore

un − xn = αnxn + (1− αn)Stn − xn

= (1− αn)(Stn − xn),

which implies that

(1− αn)‖Stn − xn‖ = ‖un − xn‖.
Since αn ∈ [0, c] and c ∈ [0, 1), it follows from above equality that

(1− c)‖Stn − xn‖ ≤ (1− αn)‖Stn − xn‖
= ‖un − xn‖.

Since lim
n→∞

‖un − xn‖ = 0, we have

lim
n→∞

‖Stn − xn‖ = 0.

Further, it follows from

‖Stn − tn‖ ≤ ‖Stn − xn‖+ ‖xn − tn‖,
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lim
n→∞

‖Stn − xn‖ = 0 and lim
n→∞

‖xn − tn‖ = 0 that

lim
n→∞

‖Stn − tn‖ = 0. (74)

Step III. The weak limit of weakly convergent sequence of {xn}
belongs to Ω.

Proof of Step III. Since {xn} is bounded, there exists a subse-
quence {xnk

} of {xn} such that xnk
⇀ x̂, say. It follows from (67)

and (73) that the sequences {xn}, {yn} and {tn} have the same
asymptotic behavior, therefore, there exist subsequences {ynk

} of
{yn} and {tnk

} of {tn} such that ynk
⇀ x̂ and tnk

⇀ x̂.

Now, we show that x̂ ∈ Fix(S). On contrary, we assume that
x̂ /∈ Fix(S). Since Sx̂ �= x̂, then from Opial’s condition (15) and
(50), we have

lim inf
k→∞

‖tnk
− x̂‖ < lim inf

k→∞
‖tnk

− Sx̂‖
≤ lim inf

k→∞
{‖tnk

− Stnk
‖+ ‖Stnk

− Sx̂‖}
≤ lim inf

k→∞
‖tnk

− x̂‖,
which is a contradiction. Thus, x̂ ∈ Fix(S). On the other hand
ynk

= JM1
λ (xnk

− λf(xnk
)) can be rewritten as

(xnk
− ynk

)− λf(xnk
)

λ
∈ M1ynk

. (75)

By passing to the limit k → ∞ in (75) and by taking account (67)
and the fact that f is 1

θ1
-Lipschitz continuous and the graph of

maximal monotone operator is weakly-strongly closed, we obtain
0 ∈ M1(x̂) + f(x̂), i.e., x̂ ∈ Sol(MVIP(8)). Further, again since
{xn} and {yn} have the same asymptotical behavior, {Byn} weakly
converges to Bx̂. By (62) and the fact that the mapping JM2

λ (I−λg)
is nonexpansive and Lemma 2.1 that 0 ∈ M2(Bx̂) + g(Bx̂), i.e.,
Bx̂ ∈ Sol(MVIP(9)).

Next, we show x̂ ∈ Sol(MEP(1)). The relation wn = Trn(zn −
rnAzn) implies

F (wn, y) + 〈Azn, y − wn〉+ 1

rn
〈y − wn, wn − zn〉 ≥ 0, ∀y ∈ C.

Since F is monotone, the above inequality implies

〈Azn, y − wn〉+ 1

rn
〈y − wn, wn − zn〉 ≥ F (y, wn), ∀y ∈ C.
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Hence,

〈Aznk
, y−wnk

〉+
〈
y − wnk

,
wnk

− znk

rnk

〉
≥ F (y, wnk

), ∀y ∈ C. (76)

For t with 0 < t ≤ 1, let yt = ty + (1 − t)x̂ ∈ C. So, from (76),
we have

〈yt − wnk
, Ayt〉

≥ 〈yt − wnk
, Ayt〉 − 〈yt − wnk

, Aznk
〉

−
〈
yt − wnk

,
wnk

− znk

rnk

〉
+ F (yt, wnk

)

= 〈yt − wnk
, Ayt − Awnk

〉+ 〈yt − wnk
, Awnk

−Aznk
〉

−
〈
yt − wnk

,
wnk

− znk

rnk

〉
+ F (yt, wnk

).

Since lim
k→∞

‖wnk
− znk

‖ = 0 and A is Lipschitz continuous, we have

lim
k→∞

‖Awnk
−Aznk

‖ = 0. Further, from the monotonicity of A and

the convexity and lower semicontinuity of F ,
wnk

− znk

rnk

→ 0 and

wnk
⇀ x̂, we have

〈yt − x̂, Ayt〉 ≥ F (yt, x̂), (77)

as k → ∞. Furthermore, we have

0 ≤ F (yt, yt)

≤ tF (yt, y) + (1− t)F (yt, x̂)

≤ tF (yt, y) + (1− t)〈yt − x̂, Ayt〉
= tF (yt, y) + (1− t)t〈y − x̂, Ayt〉

and hence
0 ≤ F (yt, y) + (1− t)〈y − x̂, Ayt〉.

Letting t → 0+ then, for each y ∈ C, we have

F (x̂, y) + 〈y − x̂, Ax̂〉 ≥ 0.

This implies that x̂ ∈ Sol(MEP(1)). Hence x̂ ∈ Ω.

Step IV. {xn} strongly converges to x̂ = PΩx.
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Proof of Step IV: It follows from l = PΩx, x̂ ∈ Ω, (51) and (52)
we have

‖l−x‖ ≤ ‖x̂−x‖ ≤ lim inf
k→∞

‖xnk
−x‖ ≤ lim sup

k→∞
‖xnk

−x‖ ≤ ‖l−x‖.

Thus, we have

lim
k→∞

‖xnk
− x‖ = ‖x̂− x‖.

Since xnk
− x ⇀ x̂− x and from Kadec-Klee property of Hilbert

space, we have xnk
−x → x̂−x and hence xnk

→ x̂. Since xn = PQnx
and l ∈ Ω ⊂ Cn ∩Qn ⊂ Qn, on using (33), we have

−‖l− xnk
‖2 = 〈l− xnk

, xnk
− x〉+ 〈l− xnk

, x− l〉 ≥ 〈l− xnk
, x− l〉.

As k → ∞, we obtain −‖l− x̂‖2 ≥ 〈l− x̂, x− l〉 ≥ 0 by l = PΩx and
x̂ ∈ Ω. Hence we have x̂ = l. This implies that xn → l. Further, it
is easy to see un → l, yn → l, zn → l and tn → l.

This completes the proof Theorem 3.1.

Now, we derive some consequences from Theorem 3.1. First, we
derive the following strong convergence theorem for the sequences
generated by an iterative algorithm which finds the approximate
common element of the set of solution of split variational inequal-
ity problem (SPVIP(5)-(6)), mixed equilibrium problem (MEP(1))
and FPP for a nonexpansive mapping S.

Corollary 3.1: Let H1 and H2 are real Hilbert spaces and B :
H1 → H2 be a bounded linear operator with its adjoint operator
B∗. Let F : C × C → R be a bifunction satisfying Assumption
2.1((i),(iii) and (iv)), and Assumption 2.2; and let the mappings
A : C → H1, f : H1 → H1 and g : H2 → H2 be respectively,
σ, θ1, θ2-inverse strongly monotone and let S : C → C be a nonex-
pansive mapping such that Ω = Sol(SPVIP(5)-(6))∩Sol(MEP(1))∩
Fix(S) �= ∅. Let the iterative sequences {xn}, {yn}, {ln}, {zn},
{wn} and {un} be generated by the following iterative algorithm:

x0 = x ∈ H1,

yn = PC(I − λf)xn,

ln = PC(I − λg)Byn,

zn = PC [yn + γB∗(ln −Byn)],

wn = Trn(I − rnA)zn,

(78)
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un = αnxn + (1− αn)STrn(zn − rnAwn),

Cn = {z ∈ H1 : ‖un − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ H1 : 〈xn − z, x− xn〉 ≥ 0},

xn+1 = PCn∩Qnx,

for n = 1, 2, ..., where {rn} ⊂ [a, b] for some a, b ∈ (0, σ), λ ⊂ [a′, b′]
for some a′, b′ ∈ (0, θ), where θ := min{θ1, θ2} and {αn} ⊂ [0, c]

for some c ∈ [0, 1) and γ ∈
(
0,

1

‖B∗‖2
)
. Then the sequences {xn},

{yn} and {zn} converge strongly to z = PΩx.

Proof: Take M1 = ∂IC and M2 = ∂IQ in Theorem 3.1.

Finally, we derive the following strong convergence theorem for
the sequences generated by an iterative algorithm which finds the
approximate common element of the set of solution of split null
point problem (SPNPP(10)-(11)), mixed equilibrium problem (MEP(1))
and FPP for a nonexpansive mapping S.

Corollary 3.2: Let H1 and H2 are real Hilbert spaces and B :
H1 → H2 be a bounded linear operator with its adjoint operator
B∗. Let F : C × C → R be a bifunction satisfying Assumption
2.1((i),(iii) and (iv)), and Assumption 2.2; let M1 : H1 → 2H1,
M2 : H2 → 2H2 be the multi-valued maximal monotone mappings;
and let the mapping A : C → H1 be σ-inverse strongly monotone
and let S : C → C be a nonexpansive mapping such that Ω =
Sol(SPNPP(10)-(11))∩Sol(MEP(1))∩Fix(S) �= ∅. Let the iterative
sequences {xn}, {yn}, {ln}, {zn}, {wn} and {un} be generated by
the following iterative algorithm:

x0 = x ∈ H1,

yn = JM1

λ xn,

ln = JM2
λ Byn,

zn = PC [yn + γB∗(ln − Byn)],

wn = Trn(I − rnA)zn,

un = αnxn + (1− αn)STrn(zn − rnAwn),

(79)
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Cn = {z ∈ H1 : ‖un − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ H1 : 〈xn − z, x− xn〉 ≥ 0},

xn+1 = PCn∩Qnx,

for n = 1, 2, ..., where {rn} ⊂ [a, b] for some a, b ∈ (0, σ), λ ⊂ [a′, b′]
for some a′, b′ ∈ (0, θ), where θ := min{θ1, θ2} and {αn} ⊂ [0, c]

for some c ∈ [0, 1) and γ ∈
(
0,

1

‖B∗‖2
)
. Then the sequences {xn},

{yn} and {zn} converge strongly to z = PΩx.

Proof: Take f = 0 and g = 0 in Theorem 3.1.

4. Numerical Example

Now, we give a numerical example which justify Theorem 3.1.

Example 4.1: Let H1 = H2 = R with the inner product defined
by 〈x, y〉 = xy, ∀x, y ∈ R, and induced norm |.|. Let C = [0, 1]
and Q = (−∞, 0]; let F : C × C → R be a bifunction defined by
F (x, y) = x(y − x), ∀x, y ∈ C; let M1,M2 : R → R be defined by
M1(x) = 2x andM2(x) = 4x, ∀x ∈ R; let the mappings A : C → R,
B : R → R and S : C → C be defined by A(x) = 2x, B(x) = −2x
and S(x) = x, ∀x ∈ R and let f : R → R and g : R → R be
defined by f(x) = 0, ∀x ∈ R and g(y) = 0, ∀y ∈ H2. Then it
is easy to prove that F is a bifunction and satisfying Assumption
2.1 and Assumption 2.2; M1,M2 are maximal monotone; A is 1

2
-

inverse strongly monotone; S is nonexpansive and B is a bounded
linear operator with its adjoint B∗ such that ‖B‖ = ‖B∗‖ = 2. The
iterative sequences {xn}, {yn} {ln}, {zn}, {wn}, {un} generated by
(27)-(34) are then reduced to the following iterative schemes:

yn =

(
1

3

)
xn; ln =

(
1

4

)
yn;

zn =

⎧⎨
⎩

0, if x < 0,
1, if x > 1,
[yn − 0.4(ln + 2yn)] otherwise;

wn =

(−1

2

)
zn; un =

(
1

n+ 1

)
xn − 4

3

(
1− 1

n+ 1

)
wn

Cn =

[
un + xn

2
,∞

)
, Qn = [xn,∞);

xn+1 = PCn∩Qnx,
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where αn = 1
n+1

and rn = 1. Then {xn} converges strongly to
0 ∈ Ω = {0}.

Next, using the software Matlab 7.0, we have following figures
which shows that {xn} converges strongly to 0.
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