ON BOUNDS OF RADIO NUMBER OF CERTAIN PRODUCT GRAPHS

DEBORAH OLAYIDE AJAYI¹ AND TAYO CHARLES ADEFOKUN

ABSTRACT. Given a graph G, whose vertex set is V(G), the radio labelling of G is a variation of vertex labelling of G which satisfy the condition that given any $v_1, v_2 \in V(G)$, and some positive integer function f(v) on V(G), then $|f(v_1) - f(v_2)| \ge$ diam $(G) + 1 - d(v_1, v_2)$. Radio labelling guarantees a better reduction in interference in signal-dependent networks since no two vertex have the same label. The radio number rn(G) of G is the smallest possible value of f(v) such that for any other $v_k \in V(G), f(v_k) < f(v)$. In this work, we consider a Cartesian product graph obtained from a star and a path and determined upper and lower bounds of the radio number for the family of these graphs.

Keywords and phrases: Radio labeling, Cartesian Product, Star, Path

2010 Mathematical Subject Classification: 05C78, 05C15

1. INTRODUCTION

Let G represent a simple and undirected graph with vertex set V(G) and edge set, E(G), $e = uv \in E(G)$ if e connects two vertices $u, v \in G$. Furthermore, let d(u, v) and diam(G) be the distance between vertices u, v and the diameter of G respectively. Radio labelling, otherwise known as multilevel distance labeling is a channel assignment problem with the aim of reducing frequency interference. This was introduced by Hale in 1980 [3] and it involves the mapping $f : V(G) \to \mathbb{Z}_+$, such that the radio condition as follows is met:

$$|f(u) - f(v)| \ge \operatorname{diam} G + 1 - d(u, v)$$

for any distinct pair $u, v \in V(G)$.

The least possible value of f(v) in the range of f for which given any vertex $u \in V(G)$, f(u) < f(v) is known as the radio number rn(G) of G. Determining the radio number of many graphs

Received by the editors February 23, 2017; Revised: July 04, 2018; Accepted: July 10, 2018

www.nigerian mathematicalsociety.org; Journal available online at www.ojs.ictp.it $^{1}\mathrm{Corresponding}$ author

is tedious, partly due to the diamG + 1 condition, which ensures that radio labelling is unique for every vertex in G. However, radio numbers for some graphs have been completely determined. Previously, Liu and Zhu [5] built on upper and lower bounds obtained by Chatrand, et. al. [1], [2], and determined the radio numbers for path and cycles. Marinescue-Ghemeci [6] obtained the numbers for a number of graphs including the thorn stars while Saha and Panigrahi [7] worked on the radio numbers of toroidal grid, which is the Cartesian product of two cycles.

In this paper, we determine upper and lower bounds of a Cartesian product graph $G = S_n \Box P_m$, where S_n and P_m are stars and paths of orders n and m respectively. The lower bound obtained is tight, as illustrated in an example where the exact radio number of $S_4 \Box P_2$ obtained by manual labeling coincides with the lower bound. Essentially, the radio number of $S_n \Box P_2$, for all $n \in \mathbb{Z}$ coincides with the lower bound. However, there is a considerable difference between the two bounds in this work, implying that the upper bound can be significantly improved. It should be noted also that $S_3 \Box P_m$ is a $G_{3,m}$ grid, a cartesian product of two paths. The complete radio numbers for grids have been obtained by Jiang [4]. Our lower bound for $S_3 \Box P_m$, compares favourably with the results.

2. PRELIMINARIES AND DEFINITIONS

We define [1, k] as the set $\{1, 2, \dots, k\}$ of positive integers from 1 to k. The star graph S_n in this work is a complete bipartite graph $K_{1,n-1}$ containing n vertices, one of which, say v_1 , is the center vertex and for each v_r for the remaining n-1 vertices, v_1v_r is a leaf. The path P_m contains m vertices. Let $S_n(i)$, be a class of S_n stars, $i \in [1, m]$. A cartesian product graph $S_n \Box P_m$ primarily consists of $S_n(1), S_n(2), \dots, S_n(m)$ such that for each $1 \leq i < m$, each of the n vertices on $S_n(i)$ is uniquely adjacent to and only to its corresponding vertex on $S_n(i+1)$.

Let P_1, P_2, \dots, P_s be the set of path between vertices v_a and v_b , let $\alpha_1, \alpha_2, \dots, \alpha_s$ be a set of positive integers, where $\alpha_i, i \in [1, s]$, is the number of edges on P_i . The min $\{\alpha_1, \alpha_2, \dots, \alpha_s\}$ is the distance $d(v_a, v_b)$ between v_a and v_b , the longest distance in G is the diameter diam(G) of a graph G.

Lemma 1: [2] For path P_n and any positive integer n,

$$rn(P_n) \le \begin{cases} 2k^2 + k & \text{if } n = 2k + 1; \\ 2(k^2 - k) + 1 & \text{if } n = 2k \end{cases}$$

Lemma 2: [5] For path P_n and any integer $n \ge 4$,

$$rn(P_n) = \begin{cases} 2k^2 + 2 & \text{if } n = 2k + 1; \\ 2(k^2 - 1) + 1 & \text{if } n = 2k \end{cases}$$

Remark 1: It should be noted that for $S_n \Box P_m$, diam(G) = m + 1.

Definition 1: Let for a star $S_t \subset S_n \Box P_m$, t > n, $V'(S_t) = \{v_3, v_4, \cdots, v_t\} = V(S_t) \setminus \{v_1, v_2\}$, where v_1 is the center of S_t and v_2 is some other vertex on S_t .

3. BOUNDS OF THE RADIO NUMBER OF $G = S_n \Box P_m$

Here we present our results. We determine the lower bound and an upper bound of the radio number of $G = S_n \Box P_m$.

Theorem 1: Let $G = S_n \Box P_m$ and suppose that S_t is some star in G with $t \ge n + 1$ and v_1 the center of S_t . Suppose that $f(v_1)$ is the smallest radio label on S_t . Then for any $v_k \in V'(S_t)$, $f(v_k) \ge f(v_1) + m(k-1) + 1$.

Proof: For v_1 , the center of S_t , let $f(v_1) = q$ and let $v_2 \in V(S_t)$ such that $v_1v_2 \in E(S_t)$. By the definition of radio labelling, let v_2 be the vertex such that

$$f(v_2) \ge f(v_1) + diam(G) + 1 - d(v_1, v_2).$$

Since $f(v_1)$ is the minimum label on S_t , then

$$f(v_2) \ge q + m + 2 - 1$$
$$\ge q + m + 1.$$

Now, let $v_3 \in V'(S_t)$. Clearly, $d(v_2, v_3) = 2$. Likewise, $d(v_2, v_k) = 2$ for all $k \in [3, t]$. By definition, suppose that $f(v_3) > f(v_2)$,

$$f(v_3) - f(v_2) \ge diam(G) - d(v_2, v_3) + 1.$$

Thus

$$f(v_3) \ge f(v_2) + m$$
$$\ge q + 2m + 1.$$

Iteratively, for k > 3,

$$f(v_k) \ge q + (k-1)m + 1.$$

Therefore, for any v_k , $k \ge 3$, $f(v_k) \ge f(v_1) + (k-1)m + 1$, where $f(v_1)$ is the minimum radio label on S_t .

Remark 2: For $G = S_n \Box P_m$, it should be observed that G contains two S_{n+1} stars (namely $S_{n+1}(1)$, $S_{n+1}(2)$) at its ends. It also contains m-2 number of S_{n+2} stars, namely $S_{n+2}(1)$, $S_{n+2}(2)$, \cdots , $S_{n+2}(m-2)$. It is clear therefore that for each S_{n+1} stars there exists some vertex v_k , say in $S_{n+1}(i)$, $i \in \{1, 2\} v_k$ not a center vertex of $S_{n+1}(i)$, but v_k is a center vertex of some S_{n+2} star. Likewise, there exist two vertices on each of the S_{n+2} stars, which are centers of two other S_t stars, $t \in \{n+1, n+2\}$.

Next, we give a result on the lower bound of the radio number of $G = S_n \Box P_m$.

Corollary 1: Let $G = S_n \Box P_m$, with $m \ge 3$. Then, $rn(S_n \Box P_m) \ge m(n+1) + 2$, where $f(v_1) = 1$, for v_1 , the center of some $S_t \in G$, t = n + 2.

Proof: Since $m \geq 3$, by definition of $S_n \Box P_m$, there exists at least some star $S_{n+2}(i)$, $1 \leq i \leq m-2$, such that v_1 is the center vertex of $S_{n+2}(i)$, and $v_1v_f, v_1v_g \in E(S_{n+2}(i))$, where by earlier remark, v_f, v_g are center vertices for other stars $S_t, t \geq n+1$.

Without loss of generality, set v_g as the last vertex v_{n+2} . Then, by Theorem 1,

$$f(v_{n+2}) \ge f(v_1) + m(n+2-1) + 1$$

$$\ge 1 + m(n+1) + 1$$

$$\ge m(n+1) + 2.$$

Thus $rn(S_n \Box P_m) \ge m(n+1) + 2$.

Corollary 2: For m = 2, $rn(S_n \Box P_m) \ge 2n + 2$.

Proof: Let $f(v_1) = 1$, v_1 being a central vertex of one of the major stars on $S_n \Box P_2$ and let $\Delta(G)$ be the highest degree of a graph G.

For $S_n \Box P_2$, $\Delta(S_n \Box P_2) = n + 1$. By applying the result in Theorem 1, $f(v_{n+1}) \ge f(v_1) + (n+1-1)2 + 1 = 2n+2$.

Definitions 2:

- I. We describe $S_n(i)$, $i \in [1, m]$ as primary star, obtained by deleting vertices which are centers of neighbouring S_{n+1} and S_{n+2} stars. Obviously, the number of $S_n(i)$ stars in any $S_n \Box P_m$ graph is m.
- II. For a $S_n(i)$ star, $\{v_1(s_n(i)), v_2(s_n(i)), \cdots, v_n(s_n(i))\}$ are the members of $V(S_n(i))$, where $v_1(s_n(i))$ is the center vertex.

Theorem 2: For $m \ge 2$ and $G = S_n \Box P_m$, $rn(G) \le nm^2 + 1$, where the least label on G is $f(v_k) = 1$, for some $v_k \in V(G)$.

Proof: Let $v_k = v_1(s_n(i))$ and set $f(v_1(s_n(i))) = 1$. By the result in Theorem 1 let $f(v_n(s_n(1))) = 1 + (n-1)m + 1 = (n-1)m + 2$. There exists $v_1(s_n(2)) \in S_{n+1}(1)$ such that $v_1(s_n(2))$ is the center of $S_n(2)$. Therefore, without loss of generality, set

$$f(v_1(s_n(2))) = f(v_n(s_n(1))) + m$$

= (n-1)m + 2 + m
= mn + 2

Still by Theorem 1,

$$f(v_n(s_n(2))) = mn + 2 + (n-1)m + 1$$

= 2mn - m + 3.

Using similar technique as employed earlier, we have that

$$f(v_1(s_n(3))) = f(v_n(s_n(2))) + m$$

= 2mn + 3,

while

$$f(v_n)(s_n(3)) = f(v_1(s_n(3))) + (n-1)m + 1$$

= 3mn - m + 4.

By continuing the iteration, it will be seen that for $v_1(s_n(m))$, $f(v_1(s_n(m))) = m^2n - mn + m.$

And thus,

$$f(v_n(s_n(m))) = m^2 n - mn + m + (n-1)m + 1$$

= $nm^2 + 1$.

Thus we conclude that $rn(G) \leq m^2 n + 1$.

Remark 3: From the result in Corollary 2, the lower bound of $rn(S_4 \Box P_2)$ is 10. In Figure 3, we see that the highest value of f on $V(S_4 \Box P_2)$ is also 10 after manual radio labelling, thereby confirming the radio number of that graph as 10. Applying our

Fig. 3. Radio labeling for $S_4 \Box P_2$

result on upper bound for the same graph, the highest is at most 17. Our upper bound can be improved significantly.

Note that from our results, trivially $rn(S_n \Box P_2) = 2n + 2$.

REFERENCES

- G. Chartrand, D. Erwin, F Harary and P. Zhang, *Radio Labelings of Graphs*, Bull. Inst. Combin. Appl. 33 (2001) 77-85.
- [2] G. chartrand, D. Erwin and P. Zhang, A Graph Labeling Problem Suggested by FM Channel Restrictions, Bull. Inst. Combin. Appl. 43 (2005) 43-57.
- [3] W. K. Hale, Frequency Assignment Theory and Applications, Proc. IEEE, 68 (1980) 1497 - 1514
- [4] T-S Jiang, The Radio Number of Grid Graphs, arXiv:1401.658v1. 2014.
- [5] D. Liu and X. Zhu, Multilevel Distance Labelings for Paths and Cycles, SIAM J. Discrete Math. 19 (2005) 610-621.
- [6] R. Marinescu-Ghemeci, Radio Numberfor some Thorn Graphs, Discussiones Mathematicae Graph Theory 30 (2010) 201-222.
- [7] L. Saha and P. Panigrahi, On the Radio Numbers of Toroidal Grid, Aust. Jour. Combin. 55 (2013) 273-288.

 $\label{eq:construction} DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IBADAN, IBADAN, NIGERIA $E-mail addresses: adelaideajayiQyahoo.com, olayide.ajayiQui.edu.ng$

DEPARTMENT OF COMPUTER AND MATHEMATICAL SCIENCES, CRAWFORD UNIVERSITY, NIGERIA

E-mail address: tayoadefokun@crawforduniversity.edu.ng