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ON BOUNDS OF RADIO NUMBER OF CERTAIN

PRODUCT GRAPHS

DEBORAH OLAYIDE AJAYI1 AND TAYO CHARLES ADEFOKUN

ABSTRACT. Given a graph G, whose vertex set is V (G), the
radio labelling of G is a variation of vertex labelling of G which
satisfy the condition that given any v1, v2 ∈ V (G), and some
positive integer function f(v) on V (G), then |f(v1) − f(v2)| ≥
diam(G) + 1 − d(v1, v2). Radio labelling guarantees a better
reduction in interference in signal-dependent networks since no
two vertex have the same label. The radio number rn(G) of
G is the smallest possible value of f(v) such that for any other
vk ∈ V (G), f(vk) < f(v). In this work, we consider a Cartesian
product graph obtained from a star and a path and determined
upper and lower bounds of the radio number for the family of
these graphs.
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1. INTRODUCTION

Let G represent a simple and undirected graph with vertex set
V (G) and edge set, E(G), e = uv ∈ E(G) if e connects two vertices
u, v ∈ G. Furthermore, let d(u, v) and diam(G) be the distance
between vertices u, v and the diameter of G respectively. Radio la-
belling, otherwise known as multilevel distance labeling is a channel
assignment problem with the aim of reducing frequency interfer-
ence. This was introduced by Hale in 1980 [3] and it involves the
mapping f : V (G) → Z+, such that the radio condition as follows
is met:

|f(u)− f(v)| ≥ diamG + 1− d(u, v)

for any distinct pair u, v ∈ V (G).
The least possible value of f(v) in the range of f for which given

any vertex u ∈ V (G), f(u) < f(v) is known as the radio num-
ber rn(G) of G. Determining the radio number of many graphs
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is tedious, partly due to the diamG + 1 condition, which ensures
that radio labelling is unique for every vertex in G. However, radio
numbers for some graphs have been completely determined. Pre-
viously, Liu and Zhu [5] built on upper and lower bounds obtained
by Chatrand, et. al. [1], [2], and determined the radio numbers
for path and cycles. Marinescue-Ghemeci [6] obtained the numbers
for a number of graphs including the thorn stars while Saha and
Panigrahi [7] worked on the radio numbers of toroidal grid, which
is the Cartesian product of two cycles.
In this paper, we determine upper and lower bounds of a Carte-

sian product graph G = Sn�Pm, where Sn and Pm are stars and
paths of orders n and m respectively. The lower bound obtained
is tight, as illustrated in an example where the exact radio num-
ber of S4�P2 obtained by manual labeling coincides with the lower
bound. Essentially, the radio number of Sn�P2, for all n ∈ Z

coincides with the lower bound. However, there is a considerable
difference between the two bounds in this work, implying that the
upper bound can be significantly improved. It should be noted also
that S3�Pm is a G3,m grid, a cartesian product of two paths. The
complete radio numbers for grids have been obtained by Jiang [4].
Our lower bound for S3�Pm, compares favourably with the results.

2. PRELIMINARIES AND DEFINITIONS

We define [1, k] as the set {1, 2, · · · , k} of positive integers from 1
to k. The star graph Sn in this work is a complete bipartite graph
K1,n−1 containing n vertices, one of which, say v1, is the center
vertex and for each vr for the remaining n − 1 vertices, v1vr is a
leaf. The path Pm contains m vertices. Let Sn(i), be a class of
Sn stars, i ∈ [1, m]. A cartesian product graph Sn�Pm primarily
consists of Sn(1), Sn(2), · · · , Sn(m) such that for each 1 ≤ i < m,
each of the n vertices on Sn(i) is uniquely adjacent to and only to
its corresponding vertex on Sn(i+ 1).
Let P1, P2, · · · , Ps be the set of path between vertices va and vb,

let α1, α2, · · ·αs be a set of positive integers, where αi, i ∈ [1, s], is
the number of edges on Pi. The min {α1, α2, · · · , αs} is the distance
d(va, vb) between va and vb, the longest distance in G is the diameter
diam(G) of a graph G.

Lemma 1: [2] For path Pn and any positive integer n,

rn(Pn) ≤
{

2k2 + k if n = 2k + 1;
2(k2 − k) + 1 if n = 2k
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Lemma 2: [5] For path Pn and any integer n ≥ 4,

rn(Pn) =

{
2k2 + 2 if n = 2k + 1;
2(k2 − 1) + 1 if n = 2k

Remark 1: It should be noted that for Sn�Pm, diam(G) = m+1.

Definition 1: Let for a star St ⊂ Sn�Pm, t > n, V ′(St) =
{v3, v4, · · · , vt} = V (St)\ {v1, v2}, where v1 is the center of St and
v2 is some other vertex on St.

3. BOUNDS OF THE RADIO NUMBER OF G = Sn�Pm

Here we present our results. We determine the lower bound and
an upper bound of the radio number of G = Sn�Pm.

Theorem 1: Let G = Sn�Pm and suppose that St is some star in
G with t ≥ n + 1 and v1 the center of St. Suppose that f(v1) is
the smallest radio label on St. Then for any vk ∈ V ′(St), f(vk) ≥
f(v1) +m(k − 1) + 1.

Proof: For v1, the center of St, let f(v1) = q and let v2 ∈ V (St)
such that v1v2 ∈ E(St). By the definition of radio labelling, let v2
be the vertex such that

f(v2) ≥ f(v1) + diam(G) + 1− d(v1, v2).

Since f(v1) is the minimum label on St, then

f(v2) ≥ q +m+ 2− 1
≥ q +m+ 1.



74 D. O. AJAYI AND T. C. ADEFOKUN

Now, let v3 ∈ V ′(St). Clearly, d(v2, v3) = 2. Likewise, d(v2, vk) =
2 for all k ∈ [3, t]. By definition, suppose that f(v3) > f(v2),

f(v3)− f(v2) ≥ diam(G)− d(v2, v3) + 1.

Thus

f(v3) ≥ f(v2) +m

≥ q + 2m+ 1.

Iteratively, for k > 3,

f(vk) ≥ q + (k − 1)m+ 1.

Therefore, for any vk, k ≥ 3, f(vk) ≥ f(v1) + (k − 1)m+ 1, where
f(v1) is the minimum radio label on St.

Remark 2: ForG = Sn�Pm, it should be observed that G contains
two Sn+1 stars (namely Sn+1(1), Sn+1(2)) at its ends. It also con-
tainsm−2 number of Sn+2 stars, namely Sn+2(1), Sn+2(2), · · · , Sn+2

(m − 2). It is clear therefore that for each Sn+1 stars there exists
some vertex vk, say in Sn+1(i), i ∈ {1, 2} vk not a center vertex of
Sn+1(i), but vk is a center vertex of some Sn+2 star. Likewise, there
exist two vertices on each of the Sn+2 stars, which are centers of
two other St stars, t ∈ {n+ 1, n+ 2}.
Next, we give a result on the lower bound of the radio number of
G = Sn�Pm.

Corollary 1: Let G = Sn�Pm, with m ≥ 3. Then, rn(Sn�Pm) ≥
m(n + 1) + 2, where f(v1) = 1, for v1, the center of some St ∈ G,
t = n + 2.

Proof: Since m ≥ 3, by definition of Sn�Pm, there exists at least
some star Sn+2(i), 1 ≤ i ≤ m− 2, such that v1 is the center vertex
of Sn+2(i), and v1vf , v1vg ∈ E(Sn+2(i)), where by earlier remark,
vf , vg are center vertices for other stars St, t ≥ n + 1.
Without loss of generality, set vg as the last vertex vn+2. Then,

by Theorem 1,

f(vn+2) ≥ f(v1) +m(n + 2− 1) + 1
≥ 1 +m(n+ 1) + 1
≥ m(n+ 1) + 2.

Thus rn(Sn�Pm) ≥ m(n + 1) + 2.

Corollary 2: For m = 2, rn(Sn�Pm) ≥ 2n + 2.

Proof: Let f(v1) = 1, v1 being a central vertex of one of the major
stars on Sn�P2 and let Δ(G) be the highest degree of a graph G.
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For Sn�P2, Δ(Sn�P2) = n+1. By applying the result in Theorem
1, f(vn+1) ≥ f(v1) + (n + 1− 1)2 + 1 = 2n+ 2.

Definitions 2:

I. We describe Sn(i), i ∈ [1, m] as primary star, obtained by
deleting vertices which are centers of neighbouring Sn+1 and
Sn+2 stars. Obviously, the number of Sn(i) stars in any
Sn�Pm graph is m.

II. For a Sn(i) star, {v1(sn(i)), v2(sn(i)), · · · , vn(sn(i))} are the
members of V (Sn(i)), where v1(sn(i)) is the center vertex.

Theorem 2: For m ≥ 2 and G = Sn�Pm, rn(G) ≤ nm2+1, where
the least label on G is f(vk) = 1, for some vk ∈ V (G).

Proof: Let vk = v1(sn(i)) and set f(v1(sn(i))) = 1. By the result
in Theorem 1 let f(vn(sn(1))) = 1 + (n− 1)m+ 1 = (n− 1)m+ 2.
There exists v1(sn(2)) ∈ Sn+1(1) such that v1(sn(2)) is the center
of Sn(2). Therefore, without loss of generality, set

f(v1(sn(2))) = f(vn(sn(1))) +m
= (n− 1)m+ 2 +m
= mn + 2.

Still by Theorem 1,

f(vn(sn(2))) = mn+ 2 + (n− 1)m+ 1
= 2mn−m+ 3.

Using similar technique as employed earlier, we have that

f(v1(sn(3))) = f(vn(sn(2))) +m
= 2mn + 3,

while

f(vn)(sn(3)) = f(v1(sn(3))) + (n− 1)m+ 1
= 3mn−m+ 4.

By continuing the iteration, it will be seen that for v1(sn(m)),

f(v1(sn(m))) = m2n−mn+m.

And thus,

f(vn(sn(m))) = m2n−mn +m+ (n− 1)m+ 1
= nm2 + 1.

Thus we conclude that rn(G) ≤ m2n + 1.

Remark 3: From the result in Corollary 2, the lower bound of
rn(S4�P2) is 10. In Figure 3, we see that the the highest value
of f on V (S4�P2) is also 10 after manual radio labelling, thereby
confirming the radio number of that graph as 10. Applying our
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result on upper bound for the same graph, the highest is at most
17. Our upper bound can be improved significantly.
Note that from our results, trivially rn(Sn�P2) = 2n+ 2.
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