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EQUATIONS
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ABSTRACT. In this paper, certain class of second-order vector
delay differential equation of the form

Ẍ + AẊ +H(X(t− r(t))) = P (t,X, Ẋ)

is considered where X ∈ R
n, 0 ≤ r(t) ≤ γ and A is a real

constant, symmetric positive definite n×n matrix. By using the
second method of Lyapunov and Lyapunov-Krasovskii’s funtion
we established sufficient conditions for the asymptotic stability
of the zero solution when P (t,X, Ẋ) = 0 and boundedness of all

solutions when P (t,X, Ẋ) �= 0. The results obtained here are
generalizations of some of the results obtained for R1.
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1. INTRODUCTION

We consider the differential equation of the form:

Ẍ + AẊ +H(X(t− r(t))) = P (t, X, Ẋ) (1.1)

or its equivalent system

Ẋ = Y

Ẏ = −AY −H(X) +

∫ t

t−r(t)

Jh(X)Y ds+ P (t, X, Y ), (1.2)

where X, Y ∈ R
n, H : Rn → R

n, P : R+ × R
n × R

n → R
n. A

is a real constant, symmetric positive definite n× n matrix, Jh(X)
is a continuous, symmetric positive definite Jacobian matrix of H ,
0 ≤ r(t) ≤ γ, γ is a positive constant whose value will be deter-
mined later and the dots denote differentiation with respect to t.
We assume that the nonlinear functions H and P be continuous
and so constructed such that the uniqueness theorem is valid and
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solutions are continuously dependent on the initial conditions.

Equation (1.1) above represents a system of real second-order dif-
ferential equations of the form

ẍ+

n∑
k=1

aikẋk + hi(x1(t− r(t)), . . . , xn(t− r(t))

= pi(t, x1, . . . , xn, ẋ1, . . . , ẋn)

(i = 1, 2, . . . , n). We shall assume as basic throughout what fol-
lows, that the partial derivatives ∂hi

∂xj
exist and are continuous,

(i = 1, 2, . . . , n).
The problem of interest here is to determine conditions under which
all solutions of (1.1) are stable when P (t, X, Ẋ) = 0 and bounded

when P (t, X, Ẋ) �= 0. For over four decades, many authors have
dealt with scalar, vector and matrix differential equations, and
scalar delay differential equations and obtained many interesting
results. For instance, Ogundare et.al [1] studied the boundedness
and stability properties of solutions of

ẍ+ f(x)ẋ+ g(x) = p(t, x, ẋ),

where f , g and p are continuous in their respective arguments
t, x,and ẋ.
Ademola [2] considered the stability, boundedness and existence

of unique periodic solutions to the following second order ordinary
differential equation

[φ(x)x′]′ + g(t, x, x′)x′ + ϕ(t)h(x) = p(t, x, x′),

where φ, g, ϕ, h and p are continuous functions in their respective
argument. However, Ademola et.al [3] established stability, bound-
edness and existence of a unique periodic solution to certain second
order delay differential equations of the form

[φ(x(t)x′(t))]′ + g(t, x(t− τ(t)), x′(t− τ(t)))x′(t)

+h(x(t− τ(t))) = p(t, x(t− τ(t)), x′(t− τ(t))),

where φ, g, h, p and τ are continuous functions in their respective
arguments.
Wiandt [4] in the article published in 1998, considered the vector

Lienard differential equation

Ẍ + F (X)Ẋ +G(X) = 0
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and proved two theorems concerning the boundedness of all solu-
tions of this equation. While Tunc [5] considered a class of second-
order nonlinear differential equations of the form

Ẍ +G(X, Ẋ)Ẋ + F (X) = P (t, X, Ẋ)

and established the result on ultimately boundedness of solutions.
Beside, see also Afuwape and Omeike [6], Omeike [7], Tunc ([8],[9]),
Zhu [10].

The object of this paper is to obtain sufficient conditions for the
stability and for the boundedness of solutions of equation (1.1) as
P (t, X, Ẋ) = 0 and P (t, X, Ẋ) �= 0 respectively. We make use of
Lyapunov second method to establish our results.

Notations and definitions
Given any X, Y in R

n the symbol 〈X, Y 〉 will be used to denote
the usual scalar product in R

n, that is 〈X, Y 〉 =
∑n

i=1 xiyi; thus
‖ X ‖2= 〈X,X〉. The matrix A is said to be positive definite when
〈AX,X〉 > 0 for all non-zero X in R

n.

The paper has four sections in all. The first section contains the
introduction and literature review, section two contains some pre-
liminary results, the two main results of the paper are in section
three and last section, section four is the concluding remark.

2. SOME PRELIMINARY RESULTS

In this section, we state the algebraic results required in the proofs
of our main results. The proofs of the results will not be given since
they are found in [11,12,13,14,15].

Lemma 2.1 [11,12,13,14,15] Let A be any real symmetric positive
definite n× n matrix, then for any X in R

n, we have

δa ‖ X ‖2≤ 〈AX,X〉 ≤ Δa ‖ X ‖2
where δa and Δa are the least and the greatest eigenvalues of A,
respectively.
Lemma 2.2 [11,12,13,14,15] Let A, B be any two real symmetric
positive definite n× n matrix. Then,
(i) the eigenvalues λi(AB), (i = 1, 2, . . . , n), of the product matrix
AB are real and satisfy

min
1≤j,k≤n

λj(A)λk(B) ≤ λi(AB) ≤ max
1≤j,k≤n

λj(A)λk(B);
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(ii) the eigenvalues λi(A + B), (i = 1, 2, . . . , n), of the sum of
matrices A and B are real and satisfy

{ min
1≤j≤n

λj(A) + min
1≤k≤n

λk(B)} ≤ λi(A+B)

≤ {max
1≤j≤n

λj(A) + max
1≤j≤n

λk(B)}

Lemma 2.3 [9,11,12,13,14] Let H(X) be a continuous vector
function and that H(0) = 0, then

d

dt

∫ 1

0

〈H(σX), Y 〉dσ = 〈H(X), Y 〉.

Lemma 2.4 [9,11,12,13,14,15] Let H(X) be a continuous vector
function and that H(0) = 0, then

δh ‖ X ‖2≤
∫ 1

0

〈H(σX), X〉dσ ≤ Δh ‖ X ‖2,

where δh, Δh are the least and the greatest eigenvalues of Jh(σX),
respectively.

Proof of Lemma 2.4: Let H(X) be a continuous vector func-
tion and that H(0) = 0 then,

H(X) =

∫ 1

0

Jh(σX)Xdσ

for arbitrary vector X in R
n. This follows from integrating

d

dσ
H(σX) = Jh(σX)X

with respect to σ and then using the fact that H(0) = 0.
Thus, ∫ 1

0

〈H(σX), X〉dσ =

∫ 1

0

∫ 1

0

σ〈Jh(στX)X,X〉dσdτ.

Then, following inequality of Lemma 2.1, we have

δh ‖ X ‖2≤
∫ 1

0

∫ 1

0

σ〈Jh(στX)X,X〉dσdτ ≤ Δh ‖ X ‖2 .
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3. MAIN RESULTS

3.1 Stability Result
First, we will give the stability criteria for the general autonomous
delay differential system. We consider

x′ = f(xt), xt = x(t + θ), −r ≤ θ ≤ 0, t ≥ 0, (3.1.1)

where f : CH → R
n is a continuous mapping, f(0) = 0, CH := {φ ∈

(C[−r, 0],Rn) :‖ φ ‖≤ H} and for H1 < H , there exists L(H1) > 0,
with |f(φ)| ≤ L(H1) when ‖ φ ‖≤ H1.

Definition 3.1.1. [8,16,17,18] An element ψ ∈ C is in the ω-
limit set of φ, if x(t, 0, φ) is defined on [0,∞) and there is a sequence
{tn}, tn → ∞, as n→ ∞, with ‖ xtn(φ)−ψ ‖→ 0 as n→ ∞ where
xtn = x(tn + θ, 0, φ) for −r ≤ θ ≤ 0.

Definition 3.1.2.[8,16,17,18] A set Q ⊂ CH is an invariant set
if for any φ ∈ Q, the solutions of (3.1.1), x(t, 0, φ), is defined on
[0,∞), and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 3.1.1.[8,16,17,18] If φ ∈ CH is such that the solution
xt(θ) of (3.1.1) with x0(φ) = φ is defined on [0,∞) and ‖ xt(φ) ‖≤
H1 < H for t ∈ [0,∞), then Ω(φ) is a nonempty, compact, invari-
ant set and

dist(xt(φ),Ω(φ)) → 0, as t→ ∞.

Lemma 3.1.2.[8,16,17,18] Let V (φ) : CH → R be a continuous
functional satisfying a local Lipschitz condition. V (0) = 0 and such
that
(i) W1(‖φ‖) ≤ V (φ) ≤ W2(‖ φ ‖) where W1(r), W2(r) are wedges.
(ii) V ′

(3.1.1)(φ) ≤ 0, for φ ≤ CH .

Then the zero solution of (3.1.1) is uniformly stable. If we define
Z = {φ ∈ CH : V ′

(3.1.1)(φ) = 0}, then the zero solution of (3.1.1) is
asymptotically stable, provided that the largest invariant set in Z is
Q = {0}.

Before we state our main results in this section, we write (1.1)
with P (t, X, Ẋ) = 0 as

Ẋ = Y

Ẏ = −AY −H(X) +

∫ t

t−r(t)

Jh(X)Y ds (3.1.2)
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We now state our stability result for (3.1.2) as follows.
Theorem 3.1.1. Consider (3.1.2), let H(0) = 0 and suppose that:
(i) 0 ≤ r(t) ≤ γ (γ > 0), r′(t) ≤ ξ and 0 < ξ < 1;
(ii) the matrices A and Jh(X) (Jacobian matrix of H(X)) are sym-
metric and positive definite, and furthermore that the eigenvalues
λi(A) and λi(Jh(X))(i = 1, 2, . . . , n) of A and Jh(X), respectively
satisfy

0 < δa ≤ λi(A) ≤ Δa (3.1.3)

0 < δh ≤ λi(Jh(X)) ≤ Δh, for X ∈ R
n, (3.1.4)

where δa, δh,Δa,Δh are finite constants;
(iii) the matrices A and Jh(X) commute. Then the zero solutions
of (3.1.2) is asymptotically stable, provided

γ < min

(
2δaδh
ΔaΔh

,
δa

μ+Δh

)
. (3.1.5)

Proof of Theorem 3.1.1. Using the equivalent system form
(3.1.2), our main tool is the following Lyapunov functional, V (Xt, Yt)
defined as

2V (Xt, Yt) = 〈AX + Y,AX + Y 〉+ 〈Y, Y 〉 + 4

∫ 1

0

〈H(σX), X〉dσ

+μ

∫ 0

−r(t)

∫ t

t+s

〈Y (θ), Y (θ)〉dθds. (3.1.6)

But since

μ

∫ 0

−r(t)

∫ t

t+s

〈Y (θ), Y (θ)〉dθds

is non-negative and by Lemma 2.4, it follows that

2V (Xt, Yt) ≥ 〈AX + Y,AX + Y 〉+ 〈Y, Y 〉 + 4δh ‖ X ‖2

V (Xt, Yt) ≥ 1

2
‖ AX + Y ‖2 + 1

2
‖ Y ‖2 + 2δh ‖ X ‖2

≥ 1

2
‖ Y ‖2 + 2δh ‖ X ‖2 .

Hence, we can find a constant K = min 1
2
{1, 4δh} > 0 (small

enough) such that

2V (Xt, Yt) ≥ K(‖ Y ‖2 + ‖ X ‖2). (3.1.7)

Next, we show that V (Xt, Yt) satisfy the second condition of Lemma
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3.1.2. First, by the system (3.1.2), equation (3.1.6) and Lemma 2.3,
we get

d

dt
V(3.1.2)(Xt, Yt) = −〈AX(t), H(X(t))〉 − 〈AY (t), Y (t)〉

−μ(1−r′(t))
∫ t

t−r(t)

〈Y (θ), Y (θ)〉dθ+2

∫ t

t−r(t)

〈Y (t), Jh(X(s))Y (s)〉ds

+μr(t)〈Y (t), Y (t)〉+
∫ t

t−r(t)

〈AX(t), Jh(X(s))Y (s)〉ds. (3.1.8)

Following Lemma 2.1, Lemma 2.2, inequalities (3.1.3), (3.1.4) and
also the identity 2|〈X, Y 〉| ≤‖ X ‖2 + ‖ Y ‖2, we obtain

d

dt
V(3.1.2)(Xt, Yt) ≤ −δaδh ‖ X(t) ‖2 −δa ‖ Y (t) ‖2

+
1

2
ΔaΔhγ ‖ X(t) ‖2 +1

2
ΔaΔh

∫ t

t−r(t)

‖ Y (s) ‖2 ds

−μ(1− ξ)

∫ t

t−r(t)

〈Y (θ), Y (θ)〉dθ + μγ ‖ Y (t) ‖2

+Δhγ ‖ Y (t) ‖2 +Δh

∫ t

t−r(t)

‖ Y (s) ‖2 ds (3.1.9)

By simplifying further, we obtain

d

dt
V(3.1.2)(Xt, Yt) ≤ −

(
δaδh − 1

2
ΔaΔhγ

)
‖ X(t) ‖2

−
(
δa − μγ −Δhγ

)
‖ Y (t) ‖2

+
(1
2
ΔaΔh +Δh − μ(1− ξ)

)∫ t

t−r(t)

〈Y (θ), Y (θ)〉dθ. (3.1.10)

If we now choose μ = (Δa+2)Δh

2(1−ξ)
,

d

dt
V(3.1.2)(Xt, Yt) ≤ −

(
δaδh − 1

2
ΔaΔhγ

)
‖ X(t) ‖2

−
(
δa − μγ −Δhγ

)
‖ Y (t) ‖2,

and now choosing

γ < min
( 2δaδh
ΔaΔh

,
2δa(1− ξ)

Δh[Δa + 2(2− ξ)]

)
,

then there is a constant K1 > 0 such that

d

dt
V(3.1.2)(Xt, Yt) ≤ −K1(‖ X ‖2 + ‖ Y ‖2). (3.1.11)
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Hence the result follows from inequalities (3.1.7), (3.1.11) and Lem-
mas 3.1.1 and 3.1.2.

3.2 Boundedness Result

First, consider a system of delay differential equations

x′ = F (t, xt), xt = x(t + θ), −r ≤ θ ≤ 0, (3.2.1)

where F : R×C → R
n is a continuous mapping and takes bounded

set into bounded sets.
The following Lemma is a well-known results obtained by Burton[6].
Lemma 3.2.1 [8,16,17,18] Let V (t, φ) : R× C → R be continu-
ous and locally Lipschitz in φ. If:
(i) W (|x(t)|) ≤ V (t, xt) ≤W1(|x(t)|) +W2

( ∫ t

t−r(t)
W3(|x(s)|)ds

)
and
(ii)V̇(3.2.1) ≤ −W3(|x(s)|) +M, for some M > 0,
where Wi (i = 1, 2, 3) are wedges, then the solutions of (3.2.1) are
uniformly bounded and uniformly ultimately bounded for bound B.

Theorem 3.2.1 If the conditions of Theorem 3.1.1 hold, and

‖ P (t, X, Y ) ‖≤ m+ δ(‖ X ‖ + ‖ Y ‖) (3.2.2)

(m, δ are positive constants) then the solutions of Equation (1.2)

(for which ‖ P (t, X, Ẋ) ‖�= 0) are uniformly bounded and uniformly
ultimately bounded provided γ satisfies

γ < min
( 2δaδh
ΔaΔh

,
2δa(1− ξ)

Δh[Δa + 2(2− ξ)]

)
.

Proof of Theorem 3.2.1 Consider the function V defined in
(3.1.6). We only concentrate on the hypothesis (ii) of Lemma 3.2.1
since hypothesis (i) of Lemma 3.2.1 was taken care of in the pre-
ceding section.
Thus,

d

dt
V(1.2)(Xt, Yt) = −〈AX(t), H(X(t))〉 − 〈AY (t), Y (t)〉

−μ(1−r′(t))
∫ t

t−r(t)

〈Y (θ), Y (θ)〉dθ+2

∫ t

t−r(t)

〈Y (t), Jh(X(s))Y (s)〉ds

+μr(t)〈Y (t), Y (t)〉+
∫ t

t−r(t)

〈AX(t), Jh(X(s))Y (s)〉ds

+〈P (t, X, Y ), AX + 2Y 〉



STABILITY AND BOUNDEDNESS OF SOLUTIONS . . . 85

= −
∫ 1

0

〈AX(t), Jh((t))X(t)〉dσ − 〈AY (t), Y (t)〉

−μ(1−r′(t))
∫ t

t−r(t)

〈Y (θ), Y (θ)〉dθ+2

∫ t

t−r(t)

〈Y (t), Jh(X(s))Y (s)〉ds

+μr(t)〈Y (t), Y (t)〉+
∫ t

t−r(t)

〈AX(t), Jh(X(s))Y (s)〉ds

+〈P (t, X, Y ), AX + 2Y 〉
Following Lemma 2.1 -2.3, inequalities (3.1.3), (3.1.4) and identity

2|〈X, Y 〉| ≤‖ X ‖2 + ‖ Y ‖2,
we obtain

d

dt
V(1.2)(Xt, Yt) ≤ −

(
δaδh − 1

2
ΔaΔhγ

)
‖ X(t) ‖2

−
(
δa − μγ −Δhγ

)
‖ Y (t) ‖2

+
(1
2
ΔaΔh +Δh − μ(1− ξ)

)∫ t

t−r(t)

〈Y (θ), Y (θ)〉dθ

+ ‖ P (t, X, Y ) ‖
(
Δa ‖ X ‖ +2 ‖ Y ‖

)
.

Now, using ‖ P (t, X, Y ) ‖≤ m + δ(‖ X ‖ + ‖ Y ‖), and choosing

μ = (Δa+2)Δh

2(1−ξ)
> 0 and γ < min

(
2δaδh
ΔaΔh

, 2δa(1−ξ)
Δh[Δa+2(2−ξ)]

)
, we have

d

dt
V(1.2)(Xt, Yt) ≤ −K1(‖ X ‖2 + ‖ Y ‖2)

+ (m+ δ(‖ X ‖ + ‖ Y ‖))(Δa ‖ X ‖ +2 ‖ Y ‖)
= −K1(‖ X ‖2 + ‖ Y ‖2) +m(Δa ‖ X ‖ +2 ‖ Y ‖)
+ δΔa ‖ X ‖2 +2δ ‖ X ‖‖ Y ‖ +δΔa ‖ X ‖‖ Y ‖ +2δ ‖ Y ‖2 .

Using the identity 2|〈X, Y 〉| ≤‖ X ‖2 + ‖ Y ‖2 and simplify, we
obtain

d

dt
V(1.2)(Xt, Yt) ≤ −K1(‖ X ‖2 + ‖ Y ‖2)

+ m(Δa ‖ X ‖ +2 ‖ Y ‖) + δ(
3

2
Δa + 1) ‖ X ‖2

+ δ(
1

2
Δa + 3) ‖ Y ‖2

= −(K1 − δK2)(‖ X ‖2 + ‖ Y ‖2)
+ m(Δa ‖ X ‖ +2 ‖ Y ‖).
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where K2 = max(3
2
Δa + 1, 1

2
Δa + 3). If we take δ < K1

K2
then there

exist some constant θ > 0 such that
d

dt
V (Xt, Yt) ≤ −θ(‖ X ‖2 + ‖ Y ‖2) + kθ(Δa ‖ X ‖ +2 ‖ Y ‖)

= −θ
2
(‖ X ‖2 + ‖ Y ‖2)− θ

2
{(‖ X ‖ −k)2 + (‖ Y ‖ −k)2}+ θk2

≤ −θ
2
(‖ X ‖2 + ‖ Y ‖2) + θk2, for some k, θ > 0.

This completes the proof.

4. CONCLUDING REMARKS

In the study of qualitative properties of solutions of both linear and
non-linear differential equations, Lyapunov direct method remains
one of the most powerful methods. Therefore, we have employed
this method to prove the stability and boundedness of solutions of
second order delay differential equations.
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