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ON A QUASILINEAR WAVE EQUATION WITH
MEMORY AND NONLINEAR SOURCE TERMS

PAUL A. OGBIYELE
ABSTRACT. In this paper, we consider a quasilinear wave equa-
tion with memory and nonlinear source terms

n t
Ut — Aug — Z B%UZ(UTL) -‘r/ m(t — S)Auds = g(u).
i=1 " 0

In the absence of the nonlinear damping term, and under certain
polynomial growth conditions on the nonlinear functions oy, (i =
1,2,...,n) and g, we obtain existence and uniqueness of solution,
using Galerkin approach and monotonicity method. The finite
time blow up result was obtained using the concavity method.
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1. INTRODUCTION

In this paper, we are concerned with existence and blow up of
solutions to quasilinear wave equations of the form

(

n ¢
gy — Auy — Z %ai(uu) + / m(t — s)Auds
— Ox; 0

= g(u) x € ), t>0 (1.1)
u(x,t)’39 =0, t>0
\ u(z,0) = uy, up(z,0) =uy, x€§

where 2 is a bounded domain in R™ with a smooth boundary 462,
A = Z;‘:la‘a—; is a Laplace operator in R" and u = wu(z,t) is an
unknown real valued function on € x [0, 00).

Equation of the type (1.1) was first introduced in [9] noting the
fact that viscoelastic materials exhibit natural damping due to the

special property of the materials for retaining a memory of their
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past. They studied the following one dimensional wave equation
Ut — Ugat — J(ux)x =0 (12)

under certain monotonicity condition on the function o(s) and ob-
tained global existence of classical solutions for the initial boundary
value problem (1.2). Equations of the type (1.1) are wave equations
describing the motion of a viscoelastic solid made up of materials
of the rate type. In one dimension, they apply to an infinite slab
of materials with faces normal to the x-axis, and are useful approx-
imate model for purely longitudinal motion of homogeneous thin
bar having uniform cross section and unit length. For results on
the IBVP of the type (1.1) in one dimension see [1, 2, 3, 4, 5, 13].

In two and three dimensions, they describe antiplane shear mo-
tions of viscoelastic solids. Clement in [6] was the first to extend the
study to the multidimensional case (2 C R™), He studied equations
of the form

Uy — Auy — Z %ai(;ﬂ, tyug,) = f(z,t) (1.3)

i=1

and obtained global existence of weak solutions for the initial value
problem (1.3), exploiting the monotone operator method under cer-
tain restriction on the function o;(i = 1,2, ...,n). For other results
on the multidimensional case see [14, 16, 15, 17, 18]

Levin [10, 11] was the first to study the interaction between the
damping and the source term, where he studied a nonlinear wave
equation of the form

ugr — A+ |ug|*2up = JulPu xe, t>0 (1.4)
U(JL',O) = Uo, ut(x>0) =uy, z € u(:v,t)|39 =0, t>0 .

He considered existence and asymptotic behaviour of solutions to
(1.4) for the case @ = 2, and using the concavity method, He showed
that the solution blow up when the energy is sufficiently negative,

His result was extended by Georgiev and Todorova [8], where they
considered global existence and blow up results of (1.4) for a > 2,
using a different method (the method is based on the perturbation
of the total energy). In considering the relationship between « and
p, they showed that for a > p with negative energy, the solution
is global in time and for p > « the solution cannot be global when
the initial energy is sufficiently negative.
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More recently, there has been extensive literature on global exis-
tence, nonexistence and other properties of the IBVP

uy — Auy — Z (%ia(uxi) + fu) = g(u) reQ, t>0 (15)
i=1 :

u(z,t)on =0, t >0 u(z,0) = ug, u(z,0) =us, x €

having a nonlinear damping and source term, see [15, 17, 18].

In this paper, under mild assumption on the nonlinear function
o; (i=1,...,n) and g and in the absence of the nonlinear damping
term, we prove existence and nonexistence of solutions to the IBVP
(1.1), having a memory term m

2. PRELIMINARIES

In this section, we state some basic assumptions that will be used
throughout the paper. For simplicity, we introduce the following
notations

P’ Holder conjugate of p where p’ = ﬁ.

|- ll, the usual LP(§2) norm for 1 < p < co.

WHFP(Q)  Banach space of functions in L? with k(k € N)
generalized derivatives .

H%(Q) Banach space W*2(0Q).

C([a,b]; X)  space of strongly continuous functions from
[a,b] to X.

(-,-)  the inner product in L*(Q) or duality product be-
tween H1(Q) and H}(Q).

Consider the Hilbert space
Hy () = {u € H(Q) : ulpq = 0} (2.1)

Lemma 2.1. (Sobolev-Poincare inequality): Suppose that 0 < p <

2

= ifn >3 andp >0 if n=1,2. Then there exist a constant

k (optimal constant of Sobolev immersion) such that
[ullapary < E[IVulla,  fullpre < Ellullap (2.2)
for all uw € HY(Q), where we have the following embedding
Hy(Q) = L*P(Q) — LPH(Q) (2.3)

Lemma 2.2. Let ¢(t) be a nonnegative function on [0, 00| satisfying

¢@g&+&£&@w (2.4)
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where By, By are positive constants, then ¢(t) satisfy the inequality
$(t) < B[l — (6 — 1)ByBS M5 1 for §> 1. (2.5)

We state the following assumptions on the nonlinear functions g
and o; (1 =1, ...,n). The nonlinear function g satisfies
(A}) g€ C(R) and |g(s)] < Als]PT!, seR
(A2) [g(u) = g(W)] < Al(ul” + |v[")|u — o] Vu,v e R
and the function o;(s) satisfies
(By) 0, € CY(R), dl(s) > ay and
(B2) Yoy Jo Jo ™ osy)dyde = anlulfy?, YL, ou(us,)
as|lull{y", for ¢ > 0
where A\, A, ag, @1 and ay are positive constants.
We also assume here that m € C'[0,00) is a nonnegative and
non increasing function satisfying

95 <

m(0) > 0, m/(s) <0, /OO m(s)ds <~y < 1. (2.6)

and through out this paper, we will make use of Young’s inequality
of the form
XY < eX™ +c(e)Y™

where X, Y, mg ,ng, €, c(€) are positive constants and m%)"" nio =1

2.1. Local existence. In this section, we consider local existence
of weak solutions to (1.1) in the maximal interval (0, 77,0 < ¢, < T.

We use the Faedo- Galerkin approximation procedure [12], see also
[7].

Definition 2.1. By a weak solution of (1.1) over [0, T], we mean
a function

u e C°([0,T], Hy(NH?*(Q))NC* ([0, T]; L*(2))NC* ([0, T], H ()
with uy € L*([0,T]; Hy(Q)) such that uw(0) = uo € Hy () N H*(Q),
u(0) = uy € L*(Q) and for a.et € [0,T]

(ul(t), w) + Z@(unmi (1)), Vs, ) + (Vul, (1), Vw)

—|—</0 m(t — s)Au,(s)ds, w) = {(g(u,(t)), w), for w € Hy(2) (2.7)

Lemma 2.3. Suppose that the assumptions (Ay), (As), (B1) and
(By) hold for 0 < p < ﬁ ifn>3andp >0, ifn=1,2. Then

the problem (1.1) with uy € H}(Q) N H?(Q), uy € L*(), admits a
unique solution w on [0,T") such that
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ue L>([0,T]; Hy(Q) N H*(Q))
up € L2°([0,T7; L2(2) N L2([0, T], Hy(2)))
uy € L2([0,T); H1(9)),

Proof: Let the sequence of functions (w, ),y be a basis in Hg ()N
H?(Q2) which is orthogonal in L?. We look for a weak solution of
the form

U (t) = Z bin () w; (2.8)

satisfying the approximate problem corresponding to (1.1)

(ul(t),wi) + > (0i(tn, (1), Viwg,) + (Vi (t), Va;)
i=1 (2.9)

[ e Ty, T = a0, )

for w; € Hy () with initial conditions

un(0) = upp, = Zcmwi — ug strongly in H(Q) N H*(Q) (2.10)

i=1

as n — oo and

n
ul (0) = uy, = Z dinw; — uy strongly in L*(Q) asn — oo (2.11)

i=1
where by, (1) = (un(t),w;), ¢ = (uo,w;), diy = {ur,w;) and
u, = dn ol = dzt“g". By the continuity assumption on o;(i =

1,2,...,n) and g, there exist a solution w,(f) to the system (2.9)
- (2.11) on the interval (0,¢,). Hence, using standard methods in
differential equations, we prove the existence of solutions to (1.1)
on some interval [0,¢,), for 0 < ¢, < T. We will need the a-
priori estimates below to show that the local solution is uniformly
bounded on the whole interval [0 , T] for all n.

A-priori energy estimates. Setting w; = u/ (t) in (2.9), we ob-
tain

(a0 0)) + 3 (030, () + (Vi (01, T 1))
i=1 t (2.12)
_ <g(un(t)),u;(t)> + </0 m(t — 8)Vun(s), vu;(t)>ds
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which gives

<[5l H2+Z L[ ety < o -

< [ lotua o)l o) de -+ /0 mit =) [ V(o) Vil () dods

We estimate the terms on the right hand side using Holder and
Young’s inequality

/Q 9 Cun ()t (1)l < Al (155 ey ()]

2 1
< een)llun (B30 1) + Aealur, (1)]13 (2.14)

< Aelen) k2P ([[un (6)]2.) T+ Aeafu, (6)]12

and for [} m(t — s) [;, Vu,(s)Vul,(t)dzds, we have

t
/m(t—s)/Vun(s)Vu;Z(t)dxdt

0 . . (2.15)
< efer) / m(t — 8)||Vun(s)|3ds + 2 / m(s)ds|[ Vil (1)

Using (2.6), (2.14) and (2.15), we obtain

gl H2+Z [ e + (0 et 01

< e[y (8)]12 + Ae(e)R2PHD (g (8)]12,5) 7

(1) / m(t — 8)|un(s)|2 pds (2.16)

Integrating (2.16) over ¢ for ¢t € [0,T], we get

Una, (t
St H2+Z / / y)dyde + / (1= 1) [l ()] ods

t
< Co+ A / ()35 + Ac(er) k2D / (lun(s)|12.2)" " ds
0 0

Feler) / lun()I s (2.17)

where
= Sl (0 r|2+2// y)dyda
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and we can choose €; such that 0 < ¢; < 1. From assumption (By),

we have . "
3 / / oi(y)dyde > anllun(®)F,  (2.18)
i=1 /20

hence, we can choose a positive constant Cf such that (2.17) be-
comes

t
lur, ()13 + ||un(t)\|i2+/ lur, ()17 2l
0 (2.19)

e 2 2 S 2 Pt
< Co+ G [ (@I + ln(o)la+ | () atr] s

Therefore, setting

t
hn(8) = [, (B)]15 + Hun(t)Hinr/O a5, (5)113 ol (2.20)

for t € [0, T, hence from (2.19) and (2.20), we obtain
t
h(t) < Co + C / B2 (s)ds (2.21)
0

where Cf is independent of n € N. Hence from Lemma 2.2, since
p > 0, we have
ha(t) < Co[1 — pCiChE] ™ (2.22)
thus from (2.22), there exist a small time T € [0, T satisfying
Ty < [pCiCl]™

such that the right hand side exist. Hence we can choose a constant
Ky > 0 independent of n € N such that

¢
O+ a0+ [ IVl <Ko 229
for ¢t € [0,7]. Now (2.23) implies that
lur, (D)1 < Ko (2.24)
lun ()72 < Ko (2.25)
and .
/ |V, (s)]l5ds < Ko (2.26)
furthermore, from (2.25(; and (2.26), it follows that
[un(t)3 < Ko (2.27)
and

t
| o) as < 6 228
0
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Setting w; = —Au,(t) in (2.9), we have
—< "(t), Auy(t) / m(t — s)Auy,(s)ds, Au,(t )>
<Z o i (U, (1)), Ay, (t )> — <Au;(t), Aun(t)> (2.29)
- <g<un<t>>, Au (1)),

which yields

d n

8w O =2 [ )80, (0)d0) + 23 [ ollune (1) s (O da
=1

< 2| Vaul, (113 + 2/0 m(t —s) /Q Auy(s)Auy,(t)dzds

2 / 19t (0) | At ()] (2.30)

for the second term on the left hand side, using Holder inequality
and Young’s inequality, we obtain the following estimate

2/Q | A (8)] |ty ()] < 2] At (8) |20, (£) ]2

< 2ea]| Auy (£)|5 + 2c(e2) s, (113

and for the second and third term on the right hand side, by using
assumption (A;) together with Holder and Young'’s inequality, we
obtain

2/9\9(un(t))\lﬁun(t)\dw < 2\ (D] g1y | Aun (D) 12

2 1
< 2e(ea) un (D21 + 20el| Au (1)3

< e(e2) KXY (|| Auy (1))

(2.31)

+2Xé || Au, ()13 (2.32)
and the term 2 [J m(t — s)Au,(s)Au, (t)ds yields

2 /0 m(t — s) /Q Ay (8) Ay (t)dzds

. . (2.33)
< 26(62)/0 m(t — s)||Au,(s)||3ds + 262/0 m(s)ds| Auy(t)]|3
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using assumption (B;) and substituting (2.6) and (2.31) - (2.33)
into (2.30), we obtain

d

(1= 20)[un(®)[13,2 — 2¢(e2) [, (B)113) + 2a0]|un (D)3,

1
< 20, (DI 2 + 2e2 (A + ) [lun (D32 + 22c(e2) K P (|fun (1)[3,2)"

+2¢(e) /0 m(t — )l|un(s) |20 (2.34)

integrating over ¢ for ¢t € [0, 7], we have

t
(1= 26) (Ol + 200 | un (9B s
0

t
<Cy+ 2@, O +2 [ ()]s
0 (2.35)

t
+2Xc(eg) kP / (lua()II3)""ds
0

t t
+%AA+vy/\WA@%¢3+2w@ﬁ/MWA@M¢m
0 0
where

Cr = (1= 2e) [un(0)]l5, = 2c(e2) u (O)5

Using (2.24) and (2.26), we can choose positive constants Cy and
C3 independent of n € N and e, < £ such that (2.35) yields

t
|wam@fg/n%@m%m
0 (2.36)

t s
<Oyt O /0 (lun(®)]3, + /0 (7|2 )" ds

using the same approach as before, we can show using Lemma 2.2
that there exist a time ¢ € [0,7] and a positive constant K such
that

t
[l (8113, +/0 [l (s) 12205 < K3 (2.37)

Hence, we have that
Jun(t) |52 < Ki (2.38)

and

t
[ it Bads < 1y (2.30)
0
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Now for the nonlinear terms, we adopt the ideas used in [14, 16,
18]. Here, we define the operator A : Hy — H ' by

(Aup,v) = Z(az(um (t)),vs,) for any u,v € Hy (2.40)
i=1

hence from (2.25), assumption (By) and the Hélder inequality we
obtain

2

(Aun(t),v) < Z s (una; (1)) l|2]vz;

< Csllua®)113 0ll.2 < Kolvllr,2

(2.41)

thus we have
||Aun(t)||_1,2 S K2 for t c [0, T] (242)

Likewise for the nonlinear function g, we have from (2.27) and as-
sumption (A;)

lg(ua(®)ll2 < Cullua(@)[I5™ < Ky for t € [0,T] (2.43)

where the constant K3 is independent of n. Therefore for any T" > 0,
we have that the nonlinear terms are bounded on [0, 7.
Now, setting w; = v in (2.9), for v € H}, we have

[{urn(8), v)] <Os (| Aun(t) |12 + Vs, ()l2 + [[g(un(t))[l2

+/O m(t — 8| Vu(s)||ds) 0] 1.

Hence, from (2.42), (2.43) and (2.44), we have that

(2.44)

[ (D)l -12 < 06(||Vu;(t)||2+/0 m(t—s)[[Vu(s)||l2ds +1) (2.45)

Applying Cauchy-Schwartz inequality and Poincaré’s inequality, we
see that

t
w22 < Ce IV @13 + [ mie =) Vu)[Bas+1] - (246)
0
integrating over ¢ for t € [0, 7], we get
t t
[ )P s < € [ (19601 + IVa(s) [ + 1)ds (247
0 0

Hence using (2.28) and (2.39), we obtain

t
| Il s < £ 218
0
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for t € [0,7] and K4 > 0

The estimates above permit us to obtain a subsequence u; of wu,
and to pass the limit in the approximate problem to obtain a weak
solution satisfying
(I1) wi(t) — u(t) weakly-star in L>°([0, T]; Hj (2) N H(2))
(1) (1) = w/(t) weakly-star in L0, T); LA(2))L? (0, T]; H}()
(I3) u(t) = u"(t) weakly-star in L?([0,T]; H*(2))

(14) Auz( ) — x(t) weakly-star in L>([0,T]; H 1(Q))
(I5) g(ui(t)) — &(t)  weakly-star in L>([0, T; L*(2))

Using Aubin-Lion’s theorem, we deduce that as n — co
(I) wi(t) = u(t) strongly in LOO([O T); H(Q))

(I7) ul(t) = u/(t)  strongly in L>=([0,T7]; L*(2))
Letting n — oo in (2.9), we deduce from (l;)-(I5) that

/OT [(u",v) 4+ (Vu/, Vv) + (x,v) — ({,v)] dt =0 (2.49)

forall v € L?([0,T]; H3(©2)). Hence we are left to prove that x = Au
and £ = g(u)

By the Sobolev embedding theorem, the continuity of g and as-
sumption (As,), we have that for any ¢ € [0, T

l9(un(t)) = g(u(®))[l2
< Co|ltn(®) 81y + IOy ln(®) = w®llapny  (2.50)
< Cg | lun (O 1511) + Hu(t)HQD(pH)] [Vun(t) = V()]s

hence from (2.25) (I1) and (2.50) when n — oo, we have

g(u,) — g(u) strongly in L*(2) and

. ) (2.51)
§(t) =g(u(t)) n  L3(Q), tel0,T],

Now for the nonlinear function o;, using monotonicity method, we
show that x = Au(t). From (2.49) and (2.51), we obtain

/ (6 )ds — / [0 — (vur, )

‘ (2.52)
+</O m(s — 7)Vu(r)dr, Vo) + (g(u), v>] ds

for t € [0,7]. Now, owing to the continuity of o; and the fact
that it is a non decreasing monotone function, we have that for any
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v e LA([0,T); H(Q)) and t € [0, 7]
0 < xu(t /<Aun ~ Au(s), wn(s) — v(s))ds
/ (Aup(s), up(s))ds — / (Auy(s),v(s))ds (2.53)
—/O<Avs un(s) — v(s))ds

setting w; = u,(t) in (2.9) and integrating from 0 to t, we get
t
/ <Aun(5),un(5)>ds
0
t
:/0 [—(ux(s),un(s» — <Vuil(s),Vun(s)>]ds (2.54)
t s
+ /0 [{(gun(s)),n(s)) + ¢ /O m(s = 7)Vuy(7)d7, Vun(s)) | ds

Hence from (2.54), passing limits and using (2.52) for ¢ € [0, 7], we
have

0 < limsup x,(¢)

n—oo

<—/t< '(s), ds—/(Vu ), Vu(s))ds
/ / m(s — 7)Vu(r)dr, Vu(s ds-l—/ <g u(s >d8 (2.55)
— [ tshvtsias = [ (Auts)ats) — ols))is

= [ (o) = Al(s))uts) =)
Now we set v = u— Aw for any v, w € L*([0,T]; H}(2)), A >0,u €

L=([0,T7; Hy () € L*([0,T]; Hy(2)), x, A(v) € L*([0,T}; H~(%)),
and letting A — 0, then from (2.55) the inequality yields

t
/ {(x — A(u — dw),w) >0 (2.56)
0
and from the semicontinuty of the operator A(u), we obtain
t
/ (x — A(u),w) >0 Vw e L*[0,T]; Hy) (2.57)
0

Hence we conclude that x = A(u)
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Uniqueness. Let u; and us be two solutions of (2.9) and let z =
u1 — uo then, this satisfies the equation

<Z”(t)> wz> + Z<O—Z(ulxz) - Ui(UQIi)> w1x1> + <Vz’(t), sz>
=1 (2.58)
¢
= (g(u1) — g(uz), wi) + </0 m(t — s)Vz(s)ds, Vw;)
for w € H(Q)
2(z,0) =0 x €
z(x,t) =0 rei, t>0

setting w; = 2/(t) in (2.58), we obtain
li / 2 ! 2
5= (I17®13) +1IV=" 013

n

= (g(w) = g(u2), 2’ (1)) = > ([oi(u1s,) = oiluzz,)], 72, (1)) (2.59)

i=1
¢
-1-/0 m(t — s)(Vz(s), Vz'(t))ds

From Holder and Young’s inequality, estimating the first term on
the right hand side, we have

/Otm(t —3) /Q V2z(s)VZ (t)dxds

< c(es) / m(t — 5)[|Va(s) [3ds + e / m(s)ds|[ V(1)

and for the second term on the right hand side, using (2.25), as-
sumption (A;) and Holder’s inequality we have

(9(ur(t)) — g(ua(1)), 7 (1))

< Cro (I (15512 + a2 (B)1[5,12) 12(E) 12p2]l2 ()12

(2.60)

. i : , (2.61)
< Co(IVur ()5 + (Va2 (&) 5) V() [[2]12 (1) ]2
< Cucles)|Z' 3 + Cues|| V2(1)]3
Also, from the continuity property of o;, we obtain,
> [ lov(usa) = ou(ua)) 2 (t)de
i=1 /9
(2.62)

< Cral|[ V(1) |2 V2 (1) ]2
< Chhe(es)[V2(1)[|5 + Chaes| V2 ()13
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Adding the term (Vz(t), VZ/(t)) to both sides of (2.59), and using
the estimates (2.6), (2.60), (2.61) and (2.62), we get

S (I @I+ 12(0)132) + (1= ves + Chaclea)) 12 (D)

< Crieles) |12/ ()13 + cle) /O m(t — 5)||2(s)|3 ods (2.63)
+(Cres + Chyeles))|2(1) 11 2

then integrating both sides and using Gronwall’s lemma , we get

t
12" ()15 + |l 2(8)17 +/0 12 (5)]|17 94t < Kg (2.64)
Hence we have that

12Oz = llz®li2 =0 (2.65)
for all ¢ € [0, T], which gives the desired result.

3. BLow UP RESULT

In this section we consider the blow up property of the solution
o (1.1), we use the concavity method of Levin [10, 11] in obtaining
blow up results for negative initial energy. For the proof of this
result, we will need the following lemma

Lemma 3.1. Let u(x,t) be a solution of the problem (1.1). Then
the energy equation of the problem (1.1) is defined by

()Hmh+2// @mn/m )ds|[ V() 2

1
+§ (m o Vu)/( / / y)dydx (3.1)
In addition, E(t) is non increasing and satisfies

B(0) == Va0l + 5 [ m'(t =) Tu(s) = Tu(o)ias

— SO Tu(t)[3 <0

(3.2)

where (mov)(t) = f(f m(t — s)||v(t,-) —v(s,-)||3ds
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Proof: Multiplying (1.1) by w(t) and integrating over 2, we
obtain

dt[ || ae (t HQ+Z// dydx—// dydx

/ m(t — s) /Vu YWy (t)dzds = —||Vu(t)||3

(3.3)

Now for the term fo m(t —s) [ Vu(s)Vu(t)deds, we have the es-
timate

/ m(t — 3)/Vu( )V (t)dxds

:__/ m(t — s)( dt/\Vu u(t)|2dx) ds
+—/ﬁmg«3/wwm%@w -
:—5@ / mit — s) /yvu() u(t)Pdeds)
L / w(t— s) / Vu(s) — Vu(t)Pdeds
+2dt/ /\vu )[2dds) ——m /\vu 1) [2dz

Hence from (3.3) and (3.4), we have

1/t )
] |ut||2+2 / | estwdvds =5 [ msyas|vae
1

+§ mOVu // dyd$ (3.5)
= V@3 + / ! (1 — )| Vu(s) — Vu(t)|3ds
— 50| Vu(t)]3

which gives the desired result for any regular solution. This result
remains valid for weak solutions by a simple density argument.
Moreover this satisfies

+AWMW&%SE@ (3.6)
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where

E(0) r|u1||2+2 / / y)dydr — / / o)y

Definition 3.1. A solution u(xz,t) of (1.1) is said to blow-up in
finite time, if there exists a finite time T™ such that

lim ( /Q Vul?dr) " =0 (3.7)

t—T*

Theorem 3.1. Let u(x,t) be a solution of the problem (1.1), as-
sume that the conditions of Lemma 2.3 hold, in addition, suppose
that o;(s) satisfies

22 (0 +2) // dydx—/oi(uﬂ)uxid:v] > Mlul?, (38)
Q

where M > 0 is a constant and g(s) satisfies

/ug( Ve > (o +2) // y)dyda (3.9)

/000 m(s)ds < ﬁ <1 (3.10)

and that

then the solution u(x,t) of (1.1) blow up in finite time.

Proof: Let u be a solution of (1.1) and define the functional

t
aft) = |lull2 + / IVulldt + (T = )| Vuol2 + Bt + 77 (3.11)
0
where ¢ € [0, 7] and § > 0, then Differentiating (3.11), we obtain

o) = 2/ windz + Va2 — Vol + 28(t + 7)
“ (3.12)

t
= 2/ uudr + 2/ / VuVudzdt +26(t + 1)
Q 0 Jo

Differentiating again and using (1.1), we have,

a’(t) :QHutH§+2/uuttdx+2/Vu-Vutdx+2ﬁ
Q Q
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which yields

') 2wl =23 [ o )unde+2 [ ugtu)do+ 25
i1 /8 Q

t (3.13)
2 — Vu(s)Vu(t)dzd
+ /0 m(t s)/Q u(s)Vu(t)dzds
From (3.12), we have that
o (Da(t) — & I g
t 2
=a(t)a"(t) — (e +4) [/Quutda: + /0 VuVuds + Bt + T)] -—

= a(t) [a"(®) = (@ + ) (r(t) = {a(t) = (T = )] Vuo3}
t
<l + [ 1Vular+ 53]

for t < T, where

t t
rlt) =l + [ Ivulfat + 5+ 02 [Jual + [ 19w+

- /Q wuda + / t /Q Vu- Vudadt + B(t + 7)] (3.15)
0

Using Schwartz’s inequality, we have the following estimates

2
[ ] < fulB e,
Q

t 2 t t
[ vuvuas] < [C|valias [ [vulas
0 0 0
t
/ uudx / / VuVudxdt
Q 0 JQ

t 1 t 1
< e[ | 1vwlias] oo [ 190" 317

1 ! 1 !
< sl [ I19ulds + Sl [ 1valgds
0 0

hence from the estimate (3.16) and (3.27), we see that r(¢) > 0 for
t €10,7T]. Thus

(3.16)

and

o+ 4
4

a”(t)a(t) — a'(t)* > a(t)n(t) (3.18)
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where

(t) = [20hu —Qi/ﬂai(uxi)uxidij2/ng(u)dx
+2 /t m(t —s) / Vu(s)Vu(t)dzds + 25 (3.19)
0 Q

~ (ot a) (el + [ IVl +5)]

From (3.6) and assumption (3.9), we have that

2/ o(u)

>2(a + 2) // y)dydzx
> (o + 2)||uell3 + 2(a + 2) Z// y)dydz (3.20)
~(@+2) [ mEdsIVuO13 + 2o+ 2 / V]2

+ (a+ 2)/0 m(t — s)||Vu(t) — Vu(s)||3ds — 2(a + 2)E(0)

hence substituting (3.20) in (3.19), we obtain

n(t a—l—2 // dydx—/az(u$i)u$idx

+(a+4)||ut||2—(a+2)/ m(s)ds|| Vu(t)||3
0
—1-2/0 m(t—s)/QVu(s)Vu(t)dfvds—2(a+2)E(0)
—I—(a—|—2)/ m(t — 8)[Vu(t) — Va(s)|2ds + 28
0

t t
+2(a+2)/ HVUtllgdS—(Oé+4)(HUt||§+/ [Vu|3dt + B)
0 0
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using assumption (3.8), we have

t) 2[M = (@-+2) [ mis)as] ) — 20+ 2)E0)
4 Q/tm(t _s) / Vu(s)Vult)deds — (a+2)8  (3.21)
+ (@ +2) / m(t — s)||Vu(t) — Vu(s)|/5ds

to estimate the term fo m(t—s) [, Vu(s)Vu(t)dzds, we use Young’s
inequality and Schwartz 1nequahty to get

/0 tm(t — ) /Q Vu(s)Vu(t)dzds

= tm -5 U u(s) — Vu xds tm s)ds||Vu(t)||2
= [t =) [ Vut)(Vus) = Vule))dads + [ m(s)ds V(o)
— |c 6)/0 m(t—s)”Vu(t)—Vu(s)H%ds—i—e/O m(s)dsHVu(t)Hg]

+/0 m(s)ds||Vu(t)|3 (3.22)

using the estimate (3.22) in (3.21), we have

n(t) > (M a+1+e/m Jds) ()2,

—(a+2)8 —2(a + 2)E(0) (3.23)
>—(a+2)—2(a+2)E0) >0

for £(0) < =2 and m(t) satisfying (3.10). Hence we obtain

(a(t) )" = =2a(t)"F (a(t)a"(t) — <2 (@(£)*) <0 (3.24)

setting y(t) = a(t)~7, then we have
8
y'(t) < —Sy(t) e (3.25)

Thus y(t) tends to zero in finite time , say 7™ where we assume
T* < T, since T is independent of the initial choice of T". Hence

lim a(t) = oo (3.26)

t—T*

which implies that
lim || Vu(t)||3 = oo
t—T*
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EXAMPLE

In this article, we consider quasilinear wave equations where the
nonlinearities take the form o;(s) = (1 + s)9™, and g(s) = |s|Ps.
Hence equation (1.1) becomes

n ¢
utt—Aut—Z %(H—un)qﬂﬁ-/ m(t—s)Au(s)ds = |ulPu (3.27)
i=1 0

It is easy to see that the assumptions of Lemma 2.3 and Theo-
rem 3.1 are satisfied, if we choose the initial data uy € Hj(2) N
H?(2), uy € L*(). Therefore, for u € C°([0,T]; Hf N H*(Q)) N
CH([0,T]; L*(Q)) N C*([0,T], H(2)) with w, € L*([0, T]; H3(Q),
we have from Lemma 2.3 that for T" > 0, the corresponding problem
(3.27) has a weak solution which according to Theorem 3.1 blow
up in finite time.
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