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AN EFFICIENT FAMILY OF SECOND DERIVATIVE
RUNGE-KUTTA COLLOCATION METHODS FOR

OSCILLATORY SYSTEMS

D. G. YAKUBU,1 M. AMINU, P. TUMBA AND M. ABDULHAMEED2

ABSTRACT. An efficient family of high-order second derivative
Runge-Kutta collocation methods is derived for the numerical
solution of oscillatory systems. The approach uses polynomial
interpolation and collocation techniques to construct continuous
schemes which were evaluated at both step and off-step points
to obtain hybrid formulae. The hybrid formulae can be applied
simultaneously as block methods for moving the integration pro-
cess forward at a time, if desired. The block methods based on
hybrid formulation can also be converted to second derivative
Runge-Kutta collocation methods. The stability properties and
order of accuracy of the methods are studied. They can also
be implemented easily since they are collocation methods and
provide a high order of accuracy. The methods were illustrated
by the applications to some test problems of oscillatory system
found in the literature and the numerical results obtained con-
firm the accuracy and efficiency of the methods.
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1. INTRODUCTION

Many of the most popular numerical integration methods for ordi-
nary differential equations showed up very well in integrating oscil-
latory system of initial value problems of the form{

y′(x) = f(x, y(x)), y(x0) = y0,
y : R → Rm, f : R× Rm → Rm.

(1)

Though, methods for solving oscillatory problems can be classified
into two: the first consists of methods with constant coefficients
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which can be applied to problems with periodic solutions. The sec-
ond having coefficients depending on the frequency of the problem,
when a good estimate of the frequency is known in advance, see[1,
2, 3]. In particular, implicit methods are suitable for the numerical
integration of oscillatory system of initial value problems in ordi-
nary differential equations, see for example [4, 5]. In this paper
we shall be interested in implicit Runge-Kutta methods, especially
implicit second derivative Runge-Kutta collocation(SDRKC) meth-
ods because they have high order of convergence and good stability
properties [6, 7, 8, 9, 10, 11, 12, 13]. However, on the other hand,
the computational cost of these methods is relatively high since
they are fully implicit. The second derivative implicit Runge-Kutta
collocation methods belong to the family of multi-derivative numer-
ical integration methods and are one-step multistage methods. The
stages and the final output of the SDRK collocation methods at the
end of step number n are defined respectively as

Yi = yn−1 + h
∑s

j=0 aijf(Yj) + h2
∑s

j=0 âijg(Yj),
i = 1, 2, ..., s,

(2)

yn = yn−1 + h
s∑
i=0

bif(Yi) + h2
s∑
i=0

b̂ig(Yi), (3)

where the quantities Y1, Y2, Y3, ..., Ys are called internal stage values
and yn is the update at the nth step, that is the numerical approx-
imation to the exact solution y(x) at x = xn. The integer s is

the number of stages of the method. Also aij, âij , bi and b̂i are the
constant coefficients which can be constructed so that yn is a good
approximation to the solution y(xn) = y(xn−1 + h) and h denotes
the step size xn − xn−1 which is sometimes constant or varied dur-
ing integration. In the second derivative Runge-Kutta methods, in
addition to the computation of the f -values at the internal stages in
the standard Runge-Kutta methods, the second derivative methods
involve computing g-values, where f and g are defined as

y′n+j = fn+j ≡ f(xn + jh, y(xn + jh)) (4)

and
y′′n+j = gn+j ≡ fx + fyy

′ = fx + ffy. (5)

According to [12] these methods can be practical if the costs of
evaluating g are comparable to those in evaluating f, and can be
more efficient than the standard Runge-Kutta methods if the num-
ber of function evaluations is fewer. It is convenient to rewrite the
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coefficients of the defining method (2) in block matrix form as,

Y = e⊕ yn + h(A⊕ IN)F (Y ) + h2(Â⊕ IN)G(Y ), (6)

yn+1 = yn + h(bT ⊕ IN)F (Y ) + h2(b̂T ⊕ IN)G(Y ),

where the matrices A = [aij ]s×s and Â = [âij ]s×s indicate the de-
pendence of the stages on the derivatives found at the other stages
and b = [bi]s×1, b̂ = [b̂i]s×1 are vectors of quadrature weights, show-
ing how the final result depends on the derivatives computed at the
various stages, I is the identity matrix of size equal to the differ-
ential equation system to be solved, and N is the dimension of the
system. Also ⊕ is the Kronecker product of two matrices and e is
the s×1 vector of units [14]. For simplicity, we rewrite the method
in (6) as follows

Y = yn + hAF (Y ) + h2ÂG(Y ), (7)

yn+1 = yn + hbTF (Y ) + h2b̂TG(Y ),

and the block vectors in RsN are defined by

Y =

⎡
⎢⎢⎣
Y1
Y2
...
Ys

⎤
⎥⎥⎦ , F (Y ) =

⎡
⎢⎢⎣
f(Y1)
f(Y2)

...
f(Ys)

⎤
⎥⎥⎦ , G(Y ) =

⎡
⎢⎢⎣
g(Y1)
g(Y2)
...

g(Ys)

⎤
⎥⎥⎦ .

The coefficients of the implicit second derivative Runge-Kutta col-
location methods can be conveniently represented in a compact
extended partitioned Butcher Tableau,

c A Â

bT b̂T
(8)

where c = [1]s×1 is the abscissae vectors which indicates the posi-
tions within the step of the stage values.

2. DERIVATION TECHNIQUE OF THE SDRKC METHODS

In this section we describe the derivation technique of the second
derivative Runge-Kutta collocation methods for direct integration
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of oscillatory system of initial value problems of the form (1). We
seek the approximant of the form

y(x) =

p−1∑
i=0

φix
i (9)

for the numerical approximation to the exact solution y(x) of equa-
tion (1). Following [15] we set the sum p = r+s+t, where r denotes
the number of interpolation points used and s > 0, t > 0 are distinct
collocation points. Interpolating y(x) in (9) at the points {xn+j}
and collocating y′(x) and y′′(x) at the same points {xn+j} we have
the following system of equations

y(xn+j) = yn+j, (j = 0, 1, 2, ..., r− 1), (10)

y′(xn+j) = fn+j, (j = 0, 1, 2, ..., s− 1), (11)

y′′(xn+j) = gn+j, (j = 0, 1, 2, ..., t− 1). (12)

Equations (10)-(12) can be expressed in the matrix form as:

V φ = y (13)

where the square matrix V, the vectors φ and y are defined as
follows:

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 xn x2
n x3

n x4
n · · · xp−1

n

1 xn+1 x2
n+1 x3

n+1 x4
n+1 · · · xp−1

n+1

...
...

...
...

...
. . .

...

1 xn+r−1 x2
n+r−1 x3

n+r−1 x4
n+r−1 · · · xp−1

n+r−1

0 1 2xn 3x2
n 4x3

n · · · D′xp−2
n

...
...

...
...

...
. . .

...

0 1 2xn+s−1 3x2
n+s−1 4x3

n+s−1 · · · D′xp−2
n+s−1

0 0 2 6xn 12x2
n · · · D′′xp−3

n

...
...

...
...

...
. . .

...

0 0 2 6xn+t−1 12x2
n+t−1 · · · D′′xp−3

n+t−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

φ = (φ0, φ1, φ2, · · · , φp−1)
T ,

y = (yn, · · · , yn+r−1, y
′
n, · · · , y′n+s−1, y

′′
n, · · · , y′′n+t−1)

T

where D′ = (p− 1) and D′′ = (p − 1)(p− 2) in (14) represent the
first and second derivatives respectively and correspond to the dif-
ferentiation with respect to x. Similar to the Vandermonde matrix,
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V in (13) is non-singular. A closed form of the solution for the
system in (13) is presented which has been obtained by considering
the inverse of the Vandermonde matrix, that is,

φ = V −1y. (15)

From the interpolation polynomial (9) and the equations (13) -(15)
we have the following multistep collocation formula of [16] which
was a generalization of [17] and here we extend it to second deriv-
ative of the form

y(x) =
r−1∑
j=0

φj(x)yn+j + h
s−1∑
j=0

ψj(x)y
′
n+j + h2

t−1∑
j=0

γj(x)y
′′
n+j (16)

where yn+j = y(xn + jh) and y′n+j and y
′′
n+j are as defined in (4)

and (5) respectively. Here φj(x), ψj(x) and γj(x) are the continu-
ous coefficients of the formula. They are assumed polynomials of
degree p-1 given by

φj(x) =

p−1∑
i=0

φi+1,jx
i,

hψj(x) = h

p−1∑
i=0

ψi+1,jx
i

and

h2γj(x) = h2
p−1∑
i=0

γi+1,jx
i. (17)

The numerical constant coefficients φi+1,j, ψi+1,j and γi+1,j in (17)
are to be determined. The evaluation of the matrix V and its in-
verse U = V −1 are carried out with a computer algebra system, for
example Maple to determine the constant coefficients φi+1,j, ψi+1,j

and γi+1,j in (17). We now state our main result in the theorem
below, which is an extension of the theorem in [18].

Theorem 1: Let y(x) in (9) be differentiable on [x0, T ] and has
continuous second derivatives in the interval and satisfies the sys-
tem of equations in(10)-(12). Then

V = U−1

where V is as defined in (13) which is assumed to be non-singular.
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Proof: To proof the theorem we define the basis functions xi in
(9) as

Wi(x) =

p−1∑
i=0

xi.

Substituting (17) into (16) we have,

y(x) =
r−1∑
j=0

p−1∑
i=0

φi+1,jyn+jWi(x) + h
s−1∑
j=0

p−1∑
i=0

ψi+1,jfn+jWi(x)

+h2
t−1∑
j=0

p−1∑
i=0

γi+1,jgn+jWi(x)

which is simplified to get

y(x) =

p−1∑
i=0

{
r−1∑
j=0

φi+1,jyn+j + h
s−1∑
j=0

ψi+1,jfn+j

+h2
t−1∑
j=0

γi+1,jgn+j

}
Wi(x). (18)

If we let

Qi =
r−1∑
j=0

φi+1,jyn+j + h
s−1∑
j=0

ψi+1,jfn+j + h2
t−1∑
j=0

γi+1,jgn+j (19)

then (18) becomes

y(x) =

p−1∑
i=0

QiWi(x). (20)

Now consider (20) in the vector form

y(x) = (Q0, Q1, Q2, · · · , Qp−1)
T×

(W0(x),W1(x),W2(x), · · · ,Wp−1(x))
T

y(x) = QT
i (Wi(x))

T . (21)

Imposing (10)-(12) on (21) we have the matrix form:

p−1∑
i=0

QiWi(xn+j) = yn+j, j ∈ {0, 1, 2, ..., r− 1}, (22)
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p−1∑
i=0

QiWi(xn+j) = fn+j , (j = 0, 1, 2, ..., s− 1), (23)

p−1∑
i=0

QiWi(xn+j) = gn+j, (j = 0, 1, 2, ..., t− 1), (24)

giving
V Q =M. (25)

Assuming that the matrix V is non-singular, then from (25) we
have,

Q = V −1M. (26)

Inserting (26) into (21) and recall that p = r + s + t, we get
the propose continuous scheme of the multistep collocation formula
(16), written as,

y(x) =MT (V −1)T (Wi(x))
T

= (yn, · · · , yn+r−1, fn, · · · , fn+s−1, gn, · · · , gn+t−1)
T ×

UT
(
1, x, · · · , xr+s+t−1

)T
. (27)

Expanding (19) fully we get

Qi = (φi+1,0, · · · , φi+1,r−1, hψi+1,0, · · · ,
hψi+1,s−1, h

2γi+1,0, · · · , h2γi+1,t−1

)
M, j = 0, 1, 2, · · · , p− 1. (28)

Comparing the right hand side of (28) with (21) we have that

Qi = Ui+1M. (29)

Therefore

QT = (UM)T (or Q = UM). (30)

From (30) and(26) we get

U = V −1. (31)

This completes the proof. �
3. SPECIFICATION OF THE METHODS

3.1 A fourth-order SDRK collocation method

For the first second derivative Runge-Kutta collocation method of
order four we define ξ = (x − xn) for the construction of the con-
tinuous scheme. We also consider the zeros of the second degree
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Chebychev polynomial in the symmetric interval [-1,1], which were
transformed into the standard interval [xn, xn+1] by means of the
following linear transformation x ∈ [−1, 1] → [xn, xn+1]. These
Chebychev polynomials were chosen because of their superior con-
vergence rate and stiffly accurate characteristic properties in rela-
tion to the approximation of functions [19]. Proceeding in the same
manner as is done for the linear multistep methods, we expand (16)
using the method of Taylor series expansion and collect powers in
h to obtain the continuous scheme of the form in (27) as follows

y(x) = φ0(x)yn + h[ψ0(x)fn+u + ψ1(x)fn+v]+

h2[γ0(x)gn+u + γ1(x)gn+v] (32)

where

φ0(x) = 1,

ψ0(x) =

[
48
√
2ξ4 − 96

√
2hξ3 + 36

√
2h2ξ2 + (24 + 12

√
2)h3ξ

48h3

]
,

ψ1(x) =

[
−48

√
2ξ4 + 96

√
2hξ3 − 36

√
2h2ξ2 + (24 − 12

√
2)h3ξ

48h3

]
,

γ0(x) =

[
24ξ4 − (48 + 8

√
2)hξ3 + (30 + 12

√
2)h2ξ2 − (6 + 3

√
2)h3ξ

48h2

]
,

γ1(x) =

[
24ξ4 − (48− 8

√
2)hξ3 + (30− 12

√
2)h2ξ2 − (6− 3

√
2)h3ξ

48h2

]
.

Evaluating the continuous scheme y(x) in (32) at the points x =
xn+1, xn+u and xn+v (where u and v are the zeros of the second
degree Chebychev polynomial) we obtain symmetric block hybrid
formula,

yn+1 = yn +
h

48
[24fn+u + 24fn+v] +

h2

48
[
√
2gn+u −

√
2gn+v]

yn+u = yn +
h

384
[(96− 30

√
2)fn+u + (96− 66

√
2)fn+v]

+
h2

384
[(11− 4

√
2)gn+u + (5− 4

√
2)gn+v]
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yn+v = yn +
h

384
[(96 + 66

√
2)fn+u + (96 + 30

√
2)fn+v]

+
h2

384
[(5 + 4

√
2)gn+u − (11 + 4

√
2)gn+v].

Converting the block hybrid formula to second derivative Runge-
Kutta collocation method and using (7) we write the method as,

yn = yn−1 + h

(
1

2

)
F1 + h

(
1

2

)
F2 + h2

(√
2

48

)
G1 − h2

(√
2

48

)
G2. (33)

The internal stage values at the nth step are computed as,

Y1 = yn−1 + h

(
1

4
− 5

√
2

64

)
F1 + h

(
1

4
− 11

√
2

64

)
F2

−h2
(

11

384
−

√
2

96

)
G1 + h2

(
5

384
−

√
2

96

)
G2

Y2 = yn−1 + h

(
1

4
+

11
√
2

64

)
F1 + h

(
1

4
+

5
√
2

64

)
F2

+h2

(
5

384
+

√
2

96

)
G1 − h2

(
11

384
+

√
2

96

)
G2

Y3 = yn−1 + h

(
1

2

)
F1 + h

(
1

2

)
F2 + h2

(√
2

48

)
G1 − h2

(√
2

48

)
G2

with the stage derivatives as follows

F1 = f
(
xn−1 + h

(
1
2
−

√
2
4

)
, Y1

)
,

F2 = f
(
xn−1 + h

(
1
2
+

√
2
4

)
, Y2

)
,

F3 = f(xn−1 + h(1), Y3).

We write the coefficients of the SDRK collocation method (33) in
an extended Butcher Tableau (8) as follows:
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c A Â

bT b̂T
=

0 0 0 0 0
2−√

2
4

16−5
√
2

64
16−11

√
2

64
−11+4

√
2

384
5−4

√
2

384

2+
√
2

4
16+11

√
2

64
16+5

√
2

64
5+4

√
2

384
−11−4

√
2

384

1 1
2

1
2

√
2

48
−√

2
48

1
2

1
2

√
2

48
−√

2
48

3.2 A sixth-order SDRK collocation method
For the second method of the second derivative Runge-Kutta collo-
cation method, we consider the zeros of the Chebychev polynomial
of degree 3 in the symmetric interval [-1,1], transformed into the
standard interval [xn, xn+1] using the same linear transformation of
the form in method (33), that is, x ∈ [−1, 1] → [xn, xn+1]. Again
expanding (16) we have the continuous scheme of the form in (27)
as follows,

y(x) = φ0(x)yn + h[ψ0(x)fn+u + ψ1(x)fn+w + ψ2(x)fn+v]+

h2[γ0(x)gn+u + γ1(x)gn+w + γ2(x)gn+v] (34)

where

φ0(x) = 1,

ψ0(x) =

⎡
⎢⎢⎢⎣

640
√
3ξ6 − (384 + 1920

√
3)hξ5 + (960 + 2100

√
3)h2ξ4−

(720 + 1000
√
3)h3ξ3 + (120 + 150

√
3)h4ξ2 + (60 + 30

√
3)h5ξ

135h5

⎤
⎥⎥⎥⎦ ,

ψ1(x) =

⎡
⎣ 256ξ5 − 640hξ4 + 480h2ξ3 − 80h3ξ2 + 5h4ξ

45h4

⎤
⎦ ,

ψ2(x) =

⎡
⎢⎢⎢⎣

−640
√
3ξ6 − (384− 1920

√
3)hξ5 + (960− 2100

√
3)h2ξ4−

(720− 1000
√
3)h3ξ3 + (120− 150

√
3)h4ξ2 + (60− 30

√
3)h5ξ

135h5

⎤
⎥⎥⎥⎦ ,

γ0(x) =

⎡
⎢⎢⎢⎣

640ξ6 − (1920 + 192
√
3)hξ5 + (2220 + 480

√
3)h2ξ4−

(1240 + 420
√
3)h3ξ3 + (330 + 150

√
3)h4ξ2 − (30 + 15

√
3)h5ξ

540h4

⎤
⎥⎥⎥⎦ ,



AN EFFICIENT FAMILY OF 2ND DERIVATIVE RUNGE-KUTTA . . . 121

γ1(x) =

[
256ξ6 − 768hξ5 + 816h2ξ4 − 352h3ξ3 + 51h4ξ2 − 3h5ξ

54h4

]
,

γ2(x) =

⎡
⎢⎢⎢⎣

640ξ6 − (1920 − 192
√
3)hξ5 + (2220− 480

√
3)h2ξ4−

(1240− 420
√
3)h3ξ3 + (330− 150

√
3)h4ξ2 − (30− 15

√
3)h5ξ

540h4

⎤
⎥⎥⎥⎦ .

Evaluating the continuous scheme y(x) in (34) at the point x = xn+1

and at some off-grid points xn+u, xn+w and xn+v (where u, w and
v are the zeros of the third degree Chebychev polynomial) we have
the following symmetric block hybrid formula,
yn+1 = yn+

h
180

[48fn+u+84fn+w+48fn+v]+
h2

180
[
√
3gn+u−

√
3gn+v]

yn+u = yn +
h

34560
[(4608− 1396

√
3)fn+u +

(8064− 4608
√
3)fn+w + (4608− 2636

√
3)fn+v]

+ h2

34560
[−(271− 96

√
3)gn+u − 40gn+w + (161− 96

√
3)gn+v]

yn+w = yn +
h

4320
[(576 + 280

√
3)fn+u +

1008fn+w + (576− 280
√
3)fn+v]

+ h2

4320
[(10 + 12

√
3)gn+u − 140gn+w + (10− 12

√
3)gn+v]

yn+v = yn +
h

34560
[(4608 + 2636

√
3)fn+u +

(8064 + 4608
√
3)fn+w + (4608 + 1396

√
3)fn+v]

+ h2

34560
[(161 + 96

√
3)gn+u − 40gn+w − (271 + 96

√
3)gn+v].

Converting the block hybrid formula to second derivative Runge-
Kutta collocation method and writing the method in the form of
(7) we have,

yn = yn−1 + h

(
4

15

)
F1 + h

(
7

15

)
F2 + h

(
4

15

)
F3+

h2

(√
3

180

)
G1 − h2

(√
3

180

)
G3 (35)

where the internal stage values at the nth step are computed as,

Y1 = yn−1 + h

(
2

15
− 349

√
3

8640

)
F1 + h

(
7

30
− 4

√
3

30

)
F2 +

(
2

15
− 659

√
3

8640

)
F3

−h2

(
271

34560
−

√
3

360

)
G1 − h2

(
1

864

)
G2 + h2

(
161

34560
−

√
3

360

)
G3
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Y2 = yn−1 + h

(
2

15
+

7
√
3

108

)
F1 + h

(
7

30

)
F2 +

(
2

15
− 7

√
3

108

)
F3

+h2

(
1

432
+

√
3

360

)
G1 − h2

(
7

216

)
G2 + h2

(
1

432
−

√
3

360

)
G3

Y3 = yn−1 + h

(
2

15
+

659
√
3

8640

)
F1 + h

(
7

30
+

4
√
3

30

)
F2 +

(
2

15
+

349
√
3

8640

)
F3

+h2

(
161

34560
+

√
3

360

)
G1 − h2

(
1

864

)
G2 − h2

(
271

34560
+

√
3

360

)
G3

Y4 = yn−1 + h

(
4

15

)
F1 + h

(
7

15

)
F2 + h

(
4

15

)
F3 +

h2

(√
3

180

)
G1 − h2

(√
3

180

)
G3

and the stage derivatives are as follows

F1 = f
(
xn−1 + h

(
1
2
−

√
3
4

)
, Y1

)
,

F2 = f
(
xn−1 + h

(
1
2

)
, Y2
)
,

F3 = f
(
xn−1 + h

(
1
2
+

√
3
4

)
, Y3

)
,

F4 = f(xn−1 + h(1), Y4).
Using the extended Butcher Tableau (8) we present the coefficients
of the SDRK collocation method (35) as follows,

c A Â

bT b̂T
=

0 0 0 0 0 0 0
2−√

3
4

1152−349
√
3

8640
7−4

√
3

30
1152−659

√
3

8640
−271+96

√
3

34560
−1
864

161−96
√
3

34560

1
2

144+70
√
3

1080
7
30

144−70
√
3

1080
10+12

√
3

4320
−7
216

10−12
√
3

4320

2+
√
3

4
1152+659

√
3

8640
7+4

√
3

30
1152+349

√
3

8640
161+96

√
3

34560
−1
864

−271−96
√
3

34560

1 4
15

7
15

4
15

√
3

180
0 −√

3
180

4
15

7
15

4
15

√
3

180
0 −√

3
180
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3.3 An eighth-order SDRK collocation method

In this section we introduce collocation at the two end points of
the standard interval [xn, xn+1] in addition to the interior colloca-
tion points of the zeros of the second degree Chebychev polynomial
of method (33). Expanding (16) we obtain the proposed continuous
scheme of the form in (27) as follows,

y(x) = φ0(x)yn + h[ψ0(x)fn + ψ1(x)fn+u + ψ2(x)fn+v + ψ3(x)fn+1]

+h2[γ0(x)gn + γ1(x)gn+u + γ2(x)gn+v + γ3(x)gn+1] (36)

Evaluating the proposed continuous scheme y(x) in (36) at the
points x = xn+1, xn+u and xn+v (where u and v are the zeros of the
second degree Chebychev polynomial) we obtain the block hybrid
formula which were converted to second derivative Runge-Kutta
collocation method and using the extended Butcher Tableau (8)
we present the coefficients of the SDRK collocation method (36) as
follows,

c A

bT
=

0 0 0 0 0

2−√
2

4
13739−8448

√
2

26880
−3072+2929

√
2

13440
−3072+2159

√
2

13440
11989−8448

√
2

26880

2+
√

2
4

13739+8448
√

2
26880

−3072−2159
√

2
13440

−3072−2929
√

2
13440

11989+8448
√

2
26880

1 67
70

−16
35

−16
35

67
70

67
70

−16
35

−16
35

67
70

Â

b̂T
=

0 0 0 0
1251−832

√
2

53760
−375+256

√
2

5376
361−256

√
2

5376
−1181+832

√
2

5376

1251+832
√
2

53760
361+256

√
2

5376
−375−256

√
2

5376
−1181−832

√
2

5376

19
420

2
√
2

21
−2

√
2

21
−19
420

19
420

2
√
2

21
−2

√
2

21
−19
420

3.4 A tenth-order SDRK collocation method

Using the three zeros of the Chebychev polynomial in method (35)
as the interior collocation points we introduce collocation at the
two end points of the standard interval [xn, xn+1]. Expanding (16)
we have the proposed continuous scheme of the form in (27) as fol-
lows,
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y(x) = φ0(x)yn

+h[ψ0(x)fn + ψ1(x)fn+u + ψ2(x)fn+w + ψ3(x)fn+v + ψ4(x)fn+1]

+h2[γ0(x)gn+γ1(x)gn+u+γ2(x)gn+w+γ3(x)gn+v+γ4(x)gn+1] (37)

Evaluating the proposed continuous scheme y(x) in (37) at the
points x = xn+1, xn+u, xn+w, and xn+v we obtain the block hybrid
formula which were converted to second derivative Runge-Kutta
collocation method. Displaying the coefficients of the method in
the form of the extended Butcher Tableau (8) we have

c A

bT
=

0 0 0 0 0 0

2−√
3

4
128150−71424

√
3

143360
−262144+158889

√
3

362880
608−351

√
3

3240
−262144+151287

√
3

362880
61877−35712

√
3

71680

1
2

1453
1120

−2048−462
√

3
2835

76
405

2048+462
√

3
2835

103
224

2+
√

3
4

128150+71424
√

3
143360

−262144−151287
√

3
362880

608+351
√

3
3240

−262144−158889
√

3
362880

61877+35712
√

3
71680

1 123
70

− 4096
2835

152
405

− 4096
2835

123
70

123
70

− 4096
2835

152
405

− 4096
2835

123
70

Â

b̂T
=

0 0 0 0 0

54650−31104
√

3
2580480

−71637+40960
√

3
1451520

−1
138240

70923−40960
√

3
1451520

−26947+15552
√

3
1290240

613
20160

147+60
√

3
5670

−23
1080

147−160
√

3
5670

−47
4032

54650+31104
√

3
2580480

−70923+40960
√

3
1451520

−1
138240

−71637−40960
√

3
1451520

−26947−15552
√

3
1290240

53
1260

32
√

3
567

0 −32
√

3
567

−53
1260

53
1260

32
√

3
567

0 −32
√

3
567

−53
1260

4. ANALYSIS OF THE SDRK COLLOCATION METHODS

4.1 Order, Consistency, Zero-stability and Convergence of
the SDRKC Methods

With the multistep collocation formula (16) we associate the lin-
ear difference operator � defined by

�[y(x);h] =
r∑

j=0

φj(x)y(x + jh) + h
s∑

j=0

ψj(x)y
′(x+ jh) + h2

t∑

j=0

γj(x)y
′′(x+ jh) (38)

where y(x) is an arbitrary function, continuously differentiable on
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[x0, T ]. Following [20], we can write the terms in (38) as a Taylor
series expansion about the point x to obtain the expression,

�[y(x);h] = C0y(x) + C1hy
′(x) +C2h

2y′′(x) + · · ·+ Cph
py(p)(x) + · · · (39)

where the constant coefficients Cp, p = 0, 1, 2, · · · are given as fol-
lows,

C0 =
r∑
j=0

φj

C1 =

r∑
j=0

jφj

C2 =
1

2!

[
r∑
j=1

jφj − 2
s∑
j=0

ψj

]

C3 =
1

3!

[
r∑
j=1

j2φj − 3
s∑
j=1

jψj −
t∑

j=0

γj

]

...

Cp =
1

p!

[
r∑
j=1

jpφj − 1

(p− 1)!

s∑
j=1

jp−1ψj − 1

(p− 2)!

t∑
j=0

jp−2γj

]
,

p = 3, 4, · · ·
According to [20], the multistep collocation formula (16) has order
p if

�[y(x); h] = © (
h(p+1)

)
, C0 = C1 = · · · = Cp = 0, Cp+1 �= 0. (40)

Therefore, Cp+1 is the error constant and Cp+1h
p+1y(p+1)(x) is the

principal local truncation error. Hence, from our calculation the or-
der and error constants for the constructed methods are presented
in Table 1. It is clear from the Table that the second derivative
Runge-Kutta collocation methods are of high order with smaller er-
ror constants and hence more accurate than the conventional Gauss
and Lobatto-Runge-Kutta methods of the same order of conver-
gence.
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Table 1: Order and error constants of the SDRKC methods

Method Order Error constant

Method (33) p = 4, C5 = 1.4583× 10−2

Method (35) p = 6, C7 = 1.1858× 10−4

Method (36) p = 8, C9 = 3.3585× 10−6

Method (37) p = 10, C11 = 4.9761× 10−8

Definition 4.1:(Consistency) The second derivative of high-order
accuracy Runge-Kutta collocation methods (33), (35), (36) and (37)
are said to be consistent if the order of the individual method is
greater than or equal to one, that is, if p ≥ 1.
(i)ρ(1) = 0 and
(ii)ρ′(1) = σ(1), where ρ(z) and σ(z) are respectively the 1st and
2nd characteristic polynomials.

From Table 1 and definition 4.1 we can attest that the second de-
rivative Runge-Kutta collocation methods are consistent.

Definition 4.2: (Zero-stability) The second derivative Runge-Kutta
collocation methods (33), (35), (36) and (37) are said to be zero-
stable if the roots condition of the methods are satisfied, that is, if

ρ(λ) = det

[
k∑
i=0

Aiλk−1

]
= 0

satisfies |λj | ≤ 1, j = 1, 2, · · · , k and for those roots with |λj| = 1,
the multiplicity does not exceed 2, (see [20]).

Definition 4.3: (Convergence) The necessary and sufficient con-
ditions for the second derivative Runge-Kutta collocation methods
(33), (35), (36) and (37) to be convergent are that they most be
consistent and zero-stable (see [20] theorem 2.1 page 33 and [21]).

From definitions 4.1 and 4.2 the second-derivative Runge-Kutta col-
location methods are convergent.

4.2 Regions of absolute stability of the SDRKC methods

For any new derived method for the solution of ordinary differen-
tial equations, linear stability is very important aspect to consider.
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Therefore we consider for the new second derivative Runge-Kutta
collocation methods the test equation of the form

dy

dx
= λy, λ ∈ C and Rλ < 0,

with a fixed positive step size h. Since the new methods contain
second derivative g(x,y), it is natural to suppose that g(x, y) = λ2y.
Therefore reformulating the block hybrid formula in (33), (35), (36)
and (37) as general linear methods (see [1]) which is represented by
a partitioned (s+ r)× (s+ r) matrices containing A, U, B and V.
Here, for convenience we replaced U with C and V with D. The
elements of the matrices A, C, B and D are substituted into the
stability matrix,

y[n−1] =M(z)y[n], n = 1, 2, 3, · · · ,N− 1, z = λh,

where

M(z) = D + zB(I − zA)−1C

and the stability polynomial of each method can easily be obtain
as follows,

ρ(η, z) = det(r(A− Cz −D1z2)− B).

The region of absolute stability (RAS)of the method is defined as

R = x ∈ C : ρ(η, z) = 1 =⇒ |η| ≤ 1.

Computing the stability function give the stability polynomial of
the method, which is plotted to produce the required graph of the
absolute stability of each method as shown in Figure 1.

Remark 4.1: In the stable second derivative Runge-Kutta colloca-
tion methods we added the matrix D1 obtained from the coefficients
of h2 to the matrices A, C, B and D which enabled us to plot the
regions of absolute stability of the new methods.
The regions of absolute stability of methods (33),(35) and (37) are
A-stable, since the regions consist of the complex plane outside the
enclosed Figures, while method (36) is A(α)−stable.
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Figure 1: Regions of Absolute Stability of the SDRKC methods

5. NUMERICAL EXPERIMENTS

In this section, practical performance of the new methods are exam-
ined on some test examples. We present the results obtained from the
test examples which include linear and nonlinear stiff and highly oscilla-
tory system of initial value problems found in the literature. The results
are compared with the exact solutions (Ext). The results or absolute
errors |y(x) − yn(x)| are presented side by side in the Table of values.
In each presentation, nfe denotes the number of function evaluations in
the Figures. We used MATLAB codes for the computational purposes.

Example 1: In the first example we consider a system whose first
component is slowly varying in the specified interval while the second
component decays rapidly in the transient phase,[

y′1(x)

y′2(x)

]
=

[
−10−5 100

−100 −10−5

][
y1(x)

y2(x)

]
,

[
y1(0)

y2(0)

]
=

[
0

1

]
.

The exact solution is,
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[
y1(x)

y2(x)

]
=

[
e−10−5x

sin(100x)

e−10−5x
cos(100x)

]
.

We solve this problem using the newly derived methods and the results
obtained are presented in Table 2 while the solution curves are displayed
in Figure 2.

Table 2: Absolute errors in the numerical integration of example 1

x yi Method (33)|y(x) − yn(x)| Method(35) |y(x)− yn(x)|
5 y1 0 1.387778780781446 × 10−17

y2 0 1.110223024625157 × 10−16

50 y1 1.110223024625157 × 10−16 2.220446049250313 × 10−16

y2 1.110223024625157 × 10−16 5.551115123125783 × 10−16

250 y1 4.440892098500626 × 10−16 3.330669073875470 × 10−16

y2 1.665334536937735 × 10−16 1.110223024625157 × 10−16

500 y1 6.661338147750939 × 10−16 6.661338147750939 × 10−16

y2 1.221245327087672 × 10−15 2.220446049250313 × 10−16
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Solution curves of example 1 using methods (33) and (35)respectively,
with nfe =500

Figure 2: Graphical plots of example 1 using SDRKC methods

Example 2: We consider a linear system,[
y′1(x)

y′2(x)

]
=

[
−2y1(x) + y2(x)

998y1(x)− 999y2(x)

]
+

[
2sin(x)

999(cos(x) − sin(x))

]
,

[
y1(0)

y2(0)

]
=

[
2

3

]
.
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The exact solution is,

[
y1(x)

y2(x)

]
=

[
2exp(−x) + sin(x)

2exp(−x) + cos(x)

]
.

We solve this problem using the derived methods and the results ob-
tained are presented in Table 3 while the solution curves are displayed
in Figure 3. For fair comparison with method of the same order in the
literature see [22] Table 2, page 131.

Table 3: Absolute errors in the numerical integration of example 2

x yi Method (33)|y(x) − yn(x)| Method(35) |y(x)− yn(x)|
5 y1 1.274596866234656 × 10−3 1.19662193702241 × 10−3

y2 1.350208214789817 × 10−6 1.2675300864462 × 10−6

50 y1 3.706881694870087 × 10−5 3.27152236946661 × 10−5

y2 1.109910142960136 × 10−7 1.01934331558917 × 10−7

250 y1 4.172319945853576 × 10−12 3.68202972340515 × 10−12

y2 2.916279550339200 × 10−11 2.70423036448451 × 10−11

500 y1 8.599721463637592 × 10−21 7.58922919034555 × 10−21

y2 1.340548156227326 × 10−15 1.22760970021559 × 10−15
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Solution curves of example 2 using methods (33) and (35)respectively,
with nfe =500

Figure 3: Graphical plots of example 2 using SDRKC methods

Example 3: Lotka-Volterra system
In this example we consider a real life problem of mathematical model
for predicting the population dynamic of biological system. The popu-
lations of the pair of species is described by the system,
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y′1(t) = 0.95y1(t)− 0.25y1(t)y2(t), y1(0) = 15,

y′2(t) = 0.25y1(t)y2(t)− 2.45y2(t), y2(0) = 8.

We applied the newly derived SDRK collocation methods to the system
of the Lotka-Volterra equation, subject to the given initial conditions and
display the solution curves obtained in Figure 4. The solution curves
generated by the new methods are in good agreement with the solutions
obtained from the ode solver of MatLab.
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Solution curves of example 3 using methods(33) and (36)respectively,
and the ode of MatLab

Figure 4: Graphical plots of example 3 using SDRKC methods and
the ODE code of MatLab
Example 4: We consider the system,

y′1(x) = −10y1(x) + βy2(x), y1(0) = 1,

y′2(x) = −βy1(x)− 10y2(x), y2(0) = 1,

y′3(x) = γy3(x), y3(0) = 1,

where β = 21 and γ = 10.
The exact solution of this example is given by

y1(x) = e−γx(cos(βx) + sin(βx)),

y2(x) = e−γx(cos(βx) − sin(βx)),

y3(x) = e−γx.

We solve the problem using the new stable SDRK collocation methods
in the interval [0,1] and the results obtained are presented side by side
in Table 4, while the solution curves are displayed in Figure 5.
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Figure 5: Graphical plots of example 4 using SDRKC methods

Table 4: Absolute errors in the numerical integration of example 4

x yi Method (33)|y(x) − yn(x)| Method(35) |y(x)− yn(x)|
y1 8.881784197001252 × 10−16 2.220446049250313 × 10−16

5 y2 1.443289932012704 × 10−15 1.110223024625157 × 10−16

y3 0 0

y1 7.799316747991725 × 10−15 0

50 y2 2.553512956637860 × 10−15 5.551115123125783 × 10−16

y3 2.775557561562891 × 10−16 1.110223024625157 × 10−16

y1 1.665334536937735 × 10−16 2.081668171172169 × 10−17

250 y2 7.346553920761778 × 10−16 6.505213034913027 × 10−18

y3 6.938893903907228 × 10−18 7.806255641895632 × 10−18

y1 9.666339994066076 × 10−18 3.320369153236857 × 10−19

500 y2 2.751163012681968 × 10−18 8.131516293641283 × 10−20

y3 2.710505431213761 × 10−20 6.776263578034403 × 10−21

Example 5: Linear problem
The fifth example is a stiff system of three linear ordinary differential
equations with corresponding initial conditions [23],

⎡
⎢⎢⎣

y′1(x)

y′2(x)

y′3(x)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

42.2 50.1 −42.1

−66.1 −58 58.1

26.1 42.1 −34

⎤
⎥⎥⎦
⎡
⎢⎢⎣

y1(x)

y2(x)

y3(x)

⎤
⎥⎥⎦ ,
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⎢⎢⎣

y1(0)

y2(0)

y3(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1

0

2

⎤
⎥⎥⎦ .

The exact solution is,⎡
⎢⎢⎣

y1(x)

y2(x)

y3(x)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

exp(0.1x)sin(8x) + exp(−50x)

exp(0.1x)cos(8x) − exp(−50x)

exp(0.1x)(cos(8x) + sin(8x)) + exp(−50x)

⎤
⎥⎥⎦ .

The results of using the newly constructed methods and the exact
solutions on the interval [0,1] are presented in Table 5 and the solution
curves are shown in Figure 6.

Table 5: Absolute errors in the numerical integration of example 5

x yi Method(33)|y(x) − yn(x)| Method(37)|y(x) − yn(x)|
y1 0 1.110223024625157 × 10−16

5 y2 8.150232377879263 × 10−9 0

y3 8.148960173315345 × 10−9 2.220446049250313 × 10−16

y1 1.097286705942224 × 10−9 1.665334536937735 × 10−15

50 y2 1.098710566971306 × 10−9 1.554312234475219 × 10−15

y3 1.107702152225443 × 10−9 2.220446049250313 × 10−16

y1 5.9301001854811826 × 10−11 4.218847493575595 × 10−15

250 y2 5.865408159166918 × 10−11 5.551115123125783 × 10−16

y3 6.468159341466162 × 10−13 4.884981308350689 × 10−15

y1 1.185984643825577 × 10−11 3.99680288650564 × 10−15

500 y2 1.753213685340427 × 10−10 4.024558464266193 × 10−15

y3 1.871810484388448 × 10−10 4.440892098500626 × 10−16

Example 6:

We consider another linear problem which is particularly referred to
by some eminent authors, (see [2,24]) as a troublesome problem for some
existing methods. This is because some of the eigenvalues lying close
to the imaginary axis, a case where some stiff integrators were known
to be inefficient. The reference solutions at the end point of integration
interval [0,1] are shown in Table 6 while the solution curves are plotted
and displayed in Figure 7.



134 D. G. YAKUBU et al.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

y(1)
y(2)
y(3)
y(1)Ext
y(2)Ext
y(3)Ext

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

y(1)
y(2)
y(3)
y(1)Ext
y(2)Ext
y(3)Ext

Solution curves of example 5 using methods(33) and (37) respectively,
with nfe =500

Figure 6: Graphical plots of example 5 using SDRKC methods

Thus, only the first four components {y1, y2, y3, y4} are shown in Table
6. ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y′1(x)

y′2(x)

y′3(x)

y′4(x)

y′5(x)

y′6(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10 100 0 0 0 0

−100 −10 0 0 0 0

0 0 −4 0 0 0

0 0 0 −1 0 0

0 0 0 0 −0.5 0

0 0 0 0 0 −0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(x)

y2(x)

y3(x)

y4(x)

y5(x)

y6(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(0)

y2(0)

y3(0)

y4(0)

y5(0)

y6(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Solution curves of example 6 using method (33) and method(35), with
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Figure 7: Graphical plots of example 6 using SDRKC methods

Table 6: Absolute errors in the numerical integration of example 6

x yi Method(33)|y(x) − yn(x)| Method(35)|y(x) − yn(x)|
y1 2.22044604925031 × 10−16 4.44089209850063 × 10−16

5 y2 1.74166236988071 × 10−15 2.56739074444567 × 10−16

y3 3.33066907387547 × 10−16 0

y4 2.22044604925031 × 10−16 0

y1 1.666533453693773 × 10−15 3.33066907387547 × 10−16

50 y2 8.24340595784179 × 10−15 1.94289029309402 × 10−16

y3 2.55351295663786 × 10−15 4.44089209850063 × 10−16

y4 3.77475828372553 × 10−15 0

y1 5.86336534880161 × 10−16 2.42861286636753 × 10−17

250 y2 4.18068357710411 × 10−16 1.73472347597681 × 10−18

y3 3.63598040564739 × 10−15 2.77555756156289 × 10−17

y4 5.10702591327572 × 10−15 8.88178419700125 × 10−16

y1 8.73121562029733 × 10−18 5.99699326656045 × 10−19

500 y2 4.43167638003450 × 10−18 4.06575814682064 × 10−20

y3 8.15320033709099 × 10−16 2.42861286636753 × 10−17

y4 1.66533453693773 × 10−16 5.55111512312578 × 10−16
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Example 7: Hires Problem

The high irradiance responses problem consists of system of 8 nonlin-
ear ordinary differential equations which originates from plant physiol-
ogy [25].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′1(t) = −1.71y1(t) + 0.43y2(t)

+8.32y3(t) + 7× 10−4, y1(0) = 1,

y′2(t) = 1.71y1(t)− 8.75y2(t), y2(0) = 0,

y′3(t) = −10.03y3(t) + 0.43y4(t) + 0.035y5(t), y3(0) = 0,

y′4(t) = 8.32y2(t) + 1.71y3(t)− 1.12y4(t), y4(0) = 0,

y′5(t) = −1.745y5(t) + 0.43y6(t) + 0.43y7(t), y5(0) = 0,

y′6(t) = −280y6(t)y8(t) + 0.69y4(t) + 1.71y5(t)

−0.43y6(t) + 0.69y7(t), y6(0) = 0,

y′7(t) = 280y6(t)y8(t)− 1.81y7(t), y7(0) = 0,

y′8(t) = −y′7(t), y8(0) = 0.0057.

The reference solution at the end point of the integration interval of [0,
1] are plotted and displayed in Figure 8. We observe that the graphs
of the approximated solutions and the graphs of the solutions from the
ode solver coincide with each other.
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Solution curves of example 7 using methods(36) and (37)respectively
and the ode of MatLab

Figure 8: Graphical plots of example 7 using SDRKC methods and
the ode code of MatLab

6. CONCLUDING REMARKS

From the examples so far solved by the new methods we can conclude
that the new methods are effective in treating stiff and highly oscillatory
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system of initial value problems in ordinary differential equations. This
fact is clearly seen from the accuracy of results presented in the Table of
values, which are supported by the solution curves displayed in Figures.
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