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ABSTRACT. In the book titled ”Symmetric design: an alge-
braic approach”, Eric Lander gave a wonderful exposition of
difference sets and listed some abelian (v, k, λ) difference set pa-
rameters that were open for small values of k. One of such
parameter sets is (280, 63, 14). Lander[1] and Kopilovich [2]
showed that there are no (280, 63, 14) difference sets in the
three abelian groups of order 280. Using restrictions imposed by
the underlying subgroups of group of order 280, representation
theory and factorization of cyclotomic rings, we conclude that
these difference sets may only exist in five of the thirty-seven
non-abelian groups of order 280.
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1. Introduction

Suppose that G is a multiplicative group of order v. A non-trivial
(v, k, λ) difference set D is a subset of G consisting of k elements, where
1 < k < v − 1 in which every non-identity element of G can be repli-
cated precisely λ times by the multi-set {d1d−1

2 : d1, d2 ∈ D, d1 �= d2}.
The natural number n := k − λ is known as the order of the differ-
ence set. The group type determines the kind of difference set. For
instance, if G is abelian (resp. non-abelian or cyclic), then D is abelian
(resp. non-abelian or cyclic) difference set. Difference sets are closely
associated to other fields of study and a motivating factor for studying
difference sets is the pleasure derived in combining of various techniques
from algebraic number theory, representation theory, geometry, algebra
and combinatorics to tackle difference set problems [3].

There is a nice relationship between symmetric designs and differ-
ence sets. A symmetric design admitting a sharply transitive automor-
phism group G, is isomorphic to the development of a difference set in
G (Theorem 4.2 [1]). To the best of our knowledge, there is no (280,
63, 14) symmetric design and this parameter set does not belong to any
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known family. There are forty groups of order 280 out of which three are
abelian. However, Lander[1] and Kopilovich [2] showed that these three
abelian groups do not admit (280, 63, 14) difference sets. Our focus in
this paper is on the remaining thirty seven non-abelian groups but our
approach incorporates both abelian and non abelian groups. The search
for (280, 63, 14) difference sets yields the following main result of this
paper.

Theorem 1.1. Suppose that G is a group of order 280 with a normal
subgroup N such that G/N ∼= (C2)

2 × C5, D10, C56, D28, C28 × C2,
Frob(20)×C2, C70 or D35, then G does not admit(280, 63, 14) difference
set.

Section 2 discusses relevant basic results while in sections 3, 4 and 5,
we establish the main theorem by illustrating that some factor groups of
G of orders 20, 40, 56 and 70 do not not admit (280, 63, 14) difference
sets.

2. Preliminary

We look at basic information required to analyze this problem.

2.1. Difference sets. Let Z be the ring of integers and and C be the
field of complex numbers. Suppose that G is a group of order v and D is
a (v, k, λ) difference set in a group G. We sometimes view the elements
of D as members of the group ring Z[G], which is a subring of the group
algebra C[G]. Thus, D represents both subset of G and element

∑
g∈D g

of Z[G]. The sum of inverses of elements of D is D(−1) =
∑

g∈D g
−1.

Consequently, D is a difference set if and only if

DD(−1) = n+ λG andDG = kG. (2.1)

If g is a non identity element of G, then the left and right translates of
D, gD and Dg respectively are also difference sets. Furthermore, if α is
an automorphism of G, then Dα := {α(d) : d ∈ D} is also a difference
set. Let X,Y ∈ Z[G]. These two elements are equivalent if there is a
group element g and automorphism α such that X = gα(Y ). For each
g ∈ G, if we take the left translates(or right translates) of D as blocks,
then the resulting structure is called the development of D, Dev(D) and
G is the automorphism group of Dev(D).

Difference sets are often used in the construction of symmetric design
in that symmetric design admitting a sharply transitive automorphism
group G, is isomorphic to the development of a difference set in G (The-
orem 4.2 [1]). It is also known that the existence of symmetric designs
does not necessarily imply that the corresponding difference sets ex-
ists(See [4, 5, 6]).
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Given that D is a difference set in a group G of order v and N is a
normal subgroup of G. Suppose that ψ : G −→ G/N is a homomorphism
and T ∗ = {1, t1, . . . , th} is a left transversal of N in G. We can extend
ψ by linearity, to the corresponding group rings. Thus, the difference
set image in G/N (also known as the contraction of D with respect to
the kernel N) is the multi-set D/N = ψ(D) = {dN : d ∈ D}. We write
ψ(D) =

∑
tj∈G djtjN , where the integer dj = |D ∩ tjN | is known as the

intersection number of D with respect to N . In this work, we shall
always use the notation D̂ for ψ(D) and denote the number of times di
equals i by mi ≥ 0. The symbol ΩG/N represents the set of inequivalent
difference set images in G/N . Also, the phrase group |G/N | stands for
groups of order |G/N |. The following lemma is a necessary condition
(but not sufficient) for the existence of difference set image in G/N . It
describes the distribution of the intersection numbers of difference set
image in G/N .

Lemma 2.1. (The Variance Technique). Suppose that G is a group of
order v and N is a normal subgroup of G. Let D be a difference set in
G and its image in G/N be D̂. Suppose that T ∗ is a left transversal of
N in G such that {di} is a sequence of intersection numbers and {mi},
where mi the number of times di equals i. Then

|N |∑
i=0

mi = |G/N |, (2.2)

|N |∑
i=0

imi = k, (2.3)

|N |∑
i=0

i(i− 1)mi = λ(|N | − 1). (2.4)

2.2. A little about representation and algebraic number theo-
ries. A C- representation of G is a homomorphism, χ : G → GL(d,C),
where GL(d,C) is the group of invertible d × d matrices over C. The
positive integer d is the degree of χ. A linear representation(character)
is a representation of degree one. The set of all linear representations
of G is denoted by G∗. G∗ is an abelian group under multiplication
and if G′ is the derived group of G, then G∗ is isomorphic to G/G′. A
representation is said to be non trivial if there exist x ∈ G such that
χ(x) �= Id, where Id is the d × d identity matrix and d is the degree of
the representation. The least positive integer m′ is the exponent of the

group G if gm
′
= 1 for all g ∈ G. If ζm′ := e

2π
m′ i is a primitive m′-th root

of unity, then Km′ := Q(ζm′) (known as the splitting field of G) is the
cyclotomic extension of the field of rational numbers, Q. Without loss
of generality, we may replace C by the field Km′ . This field is a Galois
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extension of degree φ(m′), where φ is the Euler function. If G is a cyclic

group, then a basis for Km′ over Q is S = {1, ζm′ , ζ2m′ , . . . , ζ
φ(m′)−1
m′ }. S

is also the integral basis for Z[ζm′ ]. With this background and for any
abelian group G, we define the central primitive idempotents in C[G] as

eχi =
χi(1)

|G|
∑
g∈G

χi(g)g
−1 =

1

|G|
∑
g∈G

χi(g)g, (2.5)

where χi is an irreducible character of G. The set {eχi : χi ∈ G∗} is a
basis for C[G]. Notice that

∑
eχ = 1 and every element A ∈ C[G] can

be expressed uniquely by its image under the character χ ∈ G∗, where
G is an abelian group. That is, A =

∑
χ∈G∗ χ(A)eχ.

If χ is a representation of G and σ is a Galois automorphism of Km

fixing Q. For any g ∈ G, σ acts on the entries of the matrix χ(g) in
the natural way and the function σ(χ) is also a group representation.
In this case, χ and σ(χ) are algebraically conjugate. It is easy to see
that algebraic conjugacy is an equivalence relation. We say that two
difference sets D and D′ are equivalent if there exist a group element g
and automorphism σ such that D = gσ(D′).

This brings us to an instrument, called an alias that is an interface
between the values of group rings and combinatorial analysis. Aliases
are members of group ring. They enable us to transfer information from
C[G] to group algebra Q[G] and then to Z[G]. Let G be an abelian group
and Ω = {χ1, χ2, · · · , χh} be the set of characters of G. The element β ∈
Z[G] is known as Ω-alias if for A ∈ Z[G] and all χi ∈ Ω, χi(A) = χi(β).
Since A =

∑
χ∈G∗ χ(A)eχ, we can replace the occurrence of χ(A), which

is a complex number by Ω-alias, β, an element of Z[G]. Furthermore, two
characters of G are algebraic conjugate if and only if they have the same
kernel and we denote the set of equivalence classes of G∗ by G∗/ ∼.
Primitive idempotents give rise to rational idempotents as follows: If
Km′ is the Galois over Q, then central rational idempotents in Q[G]
are obtained by summing over the equivalence classes Xi = {eχi |χi ∼
χj} ∈ G∗/ ∼ on the eχ’s under the action of the Galois group of Km′

over Q. That is,

[eχi ] =
∑

eχj∈Xi

eχj , i = 1, . . . , s.

In particular, if G is a cyclic group of the form Cpm = 〈x : xp
m
= 1〉 (p is

prime) whose characters are of the form χi(x) = ζ ipm, i = 0, . . . , pm − 1,
then the rational idempotents are:

[eχ0 ] =
1

pm
〈x〉, (2.6)

and 0 ≤ j ≤ m− 1

[eχ
pj
] =

1

pj+1

(
p〈xpm−j 〉 − 〈xpm−j−1〉

)
. (2.7)
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The following is the general formula employed in the search of difference
set [7].

Theorem 2.2. Let G be an abelian group and G∗/ ∼ be the set of equiv-
alence classes of characters. Suppose that {χo, χ1, . . . , χs} is a system
of distinct representatives for the equivalence classes of G∗/ ∼. Then
for A ∈ Z[G], we have

A =

s∑
i=o

αi[eχi ], (2.8)

where αi is any χi-alias for A.

Equation (2.8) is known as the rational idempotent decomposi-
tion of A. Suppose that χ is any non-trivial representation of degree d
and χ(D̂) ∈ Z[ζ], where ζ is the primitive root of unity. Suppose that
x ∈ G is a non identity element. Then, χ(xG) = χ(x)χ(G) = χ(G).
This shows that (χ(x)− 1)χ(G) = 0. Since x is not an identity element,
(χ(x)−1) �= 0 and χ(G) = 0 (Z[ζ] is an integral domain). Consequently,

χ(D)χ(D) = n ·Id+λχ(G) = n ·Id, where Id is the d×d identity matrix.

The following lemma extends this property to D̂.

Lemma 2.3. Let D be a difference set in a group G and N be a normal
subgroup of G. Suppose that ψ : G −→ G/N is a natural epimorphism.
Then

(1) D̂D̂(−1) = n · 1G/N + |N |λ(G/N)

(2)
∑
d2i = n+ |N |λ

(3) χ(D̂)χ(D̂) = n · Id, where χ is a non-trivial representation of
G/N of degree d and Id is a d-squared identity matrix.

The character value of χ(D̂) is given by the following lemma.

Lemma 2.4. Suppose that G is group of order v with normal subgroup
N such that G/N is abelian. If D̂ ∈ Z[G/N ] and χ ∈ (G/N)∗, then

|χ(D̂)| =
{
k, if χ is a principal character of G/N√
k − λ, otherwise.

The method used in this paper is known as representation theoretic
method made popular by Leibler(of blessed memory) [7]. Some authors
like Iiams[8] and Smith [9] have used this method in search of difference
sets. This approach entails obtaining comprehensive lists ΩG/N , of dif-
ference set image distribution in factor groups of G. We first find the
difference set image in factor group of least order. We garner more in-
formation about D as we gradually increase the size of the factor group
and compute ΩG/N . If at a point the distribution list ΩG/N is empty,
then it follows that any group G having G/N as a factor group does not
admit (v, k, λ) difference sets. We use lemmas 2.3, 2.4 and the difference
set equation (2.8) to ΩG/N .
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To successfully obtain the difference set images, we need the aliases.
Suppose that G/N is an abelian factor group of exponent m′ and D̂
is a difference set image in G/N . If χ is not a principal character of

G/N , then by Lemma 2.3, χ(D̂)χ(D̂) = n. The determination of the

alias requires the knowledge of how the ideal generated by χ(D̂) factors
in cyclotomic ring Z[ζm′ ], where ζm′ is the m′-th root of unity. Notice

that χ(D̂)χ(D̂) = n is an algebraic equation in Z[ζm′ ] and χ(D̂) is an
algebraic number of length

√
n. The image of Z[G/N ] is Z[ζm′ ]. For the

purpose of this paper, n = 72 and we require how the ideal generated
by 7 factors in Z[ζm′ ], m′ = 2, 4, 5, 8, 10, 14, 20, 28, 56 and 70. If

δ := χ(D̂), then by (2.8), we seek a group ring, Z[G/N ] element say α
such that χ(α) = δ. The task of solving the algebraic equation δδ̄ = n is
sometimes made easier if we consider the factorization of principal ideals
〈δ〉〈δ̄〉 = 〈n〉. To achieve this,

(1) we must look for all principal ideals π ∈ Z[ζm] such that ππ̄ =
〈n〉

(2) for each such ideals, we find a representative element, say δ with
δδ̄ = n and

(3) for each δ, we find an alias α ∈ Z[G/N ] such that χ(α) = δ.

Using algebraic number theory, we can easily construct the ideal π. The
daunting task is to find an appropriate element δ ∈ π. Suppose we are

able to find δ =
∑φ(m′)−1

i=0 diζ
i
m′ ∈ Z[ζm′ ] such that δδ̄ = n, where φ is

the Euler φ-function. A theorem due to Kronecker [10, 11] states that
any algebraic integer all whose conjugates have absolute value 1 must be
a root of unity. If there is any other solution to the algebraic equation,

then it must be of the form δ′ = δu[12], where u = ±ζjm′ is a unit. To
construct alias from this information, we choose a group element g that

is mapped to ζm and set α :=
∑φ(m′)−1

i=0 dig
i such that χ(α) = δ. Hence,

the set of complete aliases is {±αgj : j = 0, 1, . . . ,m′ − 1}.
The following result is used to determine the number of factors of an

ideal in a ring: Suppose p is any prime and m′ is an integer such that
gcd (p,m′) = 1. Suppose that d is the order of p in the multiplicative
group Z∗

m′ of the modular number ring Zm′ . Then the number of prime
ideal factors of the principal ideal 〈p〉 in the cyclotomic integer ring

Z[ζm′ ] is φ(m′)
d , where φ is the Euler φ-function, i.e. φ(m′) = |Z∗

m′ | [13].
For instance, the ideal generated by 2 has two factors in Z[ζ7], the ideal
generated by 7 has two factors in Z[ζ20], while the ideal generated by 7
has four factors in Z[ζ40]. On the other hand, since 2s is a power of 2,
then the ideal generated by 2 is said to completely ramifies as power of
〈1− ζ2s〉 = 〈1− ζ2s〉 in Z[ζ2s ]. The ideal generated by 7 ramifies in the
cyclotomic ring Z[ζm′ ], m′ = 7, 14, 28, 35, 70.

According to Turyn [14], an integer n is said to be semi-primitive
modulo m′ if for every prime factor p of n, there is an integer i such
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that pi ≡ −1 mod m′. In this case, −1 belongs to the multiplicative
group generated by p. Furthermore, n is self conjugate modulo m′ if
every prime divisor of n is semi primitive modulo m′

p, m
′
p is the largest

divisor of m′ relatively prime to p. This means that every prime ideals
over n in Z[ζm′ ] are fixed by complex conjugation. For instance, 72 ≡ −1
(mod m′), where m′ = 2, 5, 10, 50 and 7 ≡ −1 (mod m′), m′ = 2, 4, 8.
Thus, 〈7〉 is fixed by conjugation in Z[ζm′ ], m′ = 2, 4, 5, 8, 10, 50. In this
paper, we shall use the phase m factors trivially in Z[ζm′ ] if the ideal
generated by m is prime (or ramifies) in Z[ζm′ ] or m is self conjugate
modulo m′. Since 7 ≡ −1 (mod 8), the ideal generated by 7 also factors

trivially in the ring Z[ζ56]. In summary, if D̂ is the difference set image of
order 72 in the cyclic factor groupG/N , a group with exponentm′, where
m′ = 2, 4, 5, 8, 10, 14, 28, 35, 56, 70 and χ is a non trivial representation
of G/N , then χ(D̂) = ±7ζ im′ , ζm′ is the m′-th root of unity [11].

Furthermore, the ideal generated by 7 has two factors in Z[ζ20]. Sup-
pose σ ∈ Gal(Q(ζ20)/Q), where σ(ζ20) = ζ720. This automorphism split
the basis elements of Q(ζ20) into two orbits as ζ20 + ζ720 + ζ920 + ζ320 and
ζ1120+ζ

17
20 +ζ

19
16 +ζ

13
16 . Take θ = ζ20+ζ

7
20+ζ

9
20+ζ

3
20. It follows that θ = −θ

and θθ = −θ2 = 5. This implies that θ = i
√
5, where i is the fourth root

of unity. Thus, δ ∈ Z[θ], whose basis elements are {1, θ}. Consequently,
we need a, b ∈ Z with δ = a + bθ such that δδ = 49. This condition
generates the equation a2− 5b2 = 49. The solutions to this equation are
(a, b) = (±7, 0) and (±2,±3). Hence, δ = ±7, ±(2 + 3θ) or ±(2 + 3θ̄).

Consequently, if D̂ is a (280, 63, 14) difference set image in Cm′ and χ is

any non-trivial character of Cm′ such that χ(D̂)χ(D̂) = 49. Then χ(D)

is ±7ζj20, (2+3(ζ20+ζ
3
20+ζ

7
20+ζ

9
20)ζ

j
20 or (−2+3(ζ20+ζ

3
20+ζ

7
20+ζ

9
20)ζ

j
20,

j = 0, . . . , 19.
Based on the above information, we now state the aliases that will

be used later. If D̂ is a (280, 63, 14) difference set in Cm′ , where
m′ = 2, 4, 5, 8, 10, 14, 28, 35, 70, then the possible alias α in the ratio-
nal idempotent decomposition of D̂ is ±7xr, where x is the generator of
Cm′ and r = 0, 1, . . . ,m′ − 1. On the other hand, if D̂ is a (280, 63, 14)
difference set in C20, then the possible alias α in the rational idempotent
decomposition of D̂ is one of the two forms

• ±7xr, x is a generator of C20

• ±(2 + 3(x+ x3 + x7 + x9))g or ±(−2 + 3(x+ x3 + x7 + x9))g, x
is a generator of C20 and g ∈ C20 and r = 0, . . . , 19.

2.3. Characteristics of difference set images in subgroup of a
group. In this subsection, we use the attributes of subgroups of a group
to obtain information about the difference set image in the factor groups.
Dillon [15] proved the following results which will be used to obtain
difference set images in dihedral group of a certain order if the difference
images in the cyclic group of same order are known.
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Theorem 2.5 (Dillon Dihedral Trick). Let H be an abelian group and
let G be the generalized dihedral extension of H. That is, G = 〈Q,H :
Q2 = 1, QhQ = h−1,∀h ∈ H〉. If G contains a difference set, then so
does every abelian group which contains H as a subgroup of index 2.

Corollary 2.6. If the cyclic group Z2m does not contain a (nontrivial)
difference set, then neither does the dihedral group of order 2m.

Finally, we look at subgroup properties of a group that can aid the
construction of difference set image. For the convenience of the reader,
we reproduce the idea of Gjoneski, Osifodunrin and Smith[4] with some
additions. Suppose that H is a group of order 2h with a central involu-
tion z. We take T = {ti : i = 1, . . . , h} to be the transversal of 〈z〉 in H
so that every element in H is viewed as tiz

j , 0 ≤ i ≤ h, j = 0, 1. Denote

the set of all integral combinations,
∑h

i=1 aiti of elements of T, ai ∈ Z
by Z[T ]. The subgroup 〈z〉 has two irreducible representations: z �→ 1
or z �→ −1. Let ϕ0 be the representation induced on H by the trivial
representation z �→ 1 and ϕ1 be the representation induced on H by
the non trivial representation z �→ −1. Using the Frobenius reciprocity
theorem [16], every irreducible representation of H is a constituent of
ϕ0 or ϕ1. Thus, we may write any element X of the group ring Z[H] in
the form

X = X

(
1 + z

2

)
+X

(
1− z

2

)
. (2.9)

Let A be the group ring element created by replacing every occurrence of
z in X by 1. Also, let B be the group ring element created by replacing
every occurrence of z in H by −1. Then

X = A

(〈z〉
2

)
+B

(
2− 〈z〉

2

)
, (2.10)

where A =
∑h

i=1 aiti and B =
∑h

j=1 bjtj, ai, bj ∈ Z. As X ∈ Z[H], A

and B are both in Z[T ] and A ≡ B mod 2. We may equate A with the
homomorphic image of X in G/〈z〉. Consequently, if X is a difference
set, then the coefficients of ti in the expression for A will be intersection
number of X in the coset 〈z〉. In particular, if K is a subgroup of H
such that

H ∼= K × 〈z〉, (2.11)

then we may assume that A and B are in the group ring Z[K] and

BB(−1) = (k − λ) · 1. The search for the homomorphic image A in K
gives considerable information about the element B. We describe B in
terms of A as follows: If the structure of a group H is like (2.11), then
the characters of the group are induced by those of K and 〈z〉. Let ϕ0,0

be the characters of H induced by both trivial characters of K and 〈z〉;
ϕ1,s , induced by non-trivial characters of K and 〈z〉; ϕ1,0, induced by
trivial character of K and non-trivial character of 〈z〉 while ϕ0,s, is the
character induced by non-trivial characters of K and trivial character
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of 〈z〉. Suppose that A is a difference set image in K. Then by Lemma
2.4,

ϕ0,0(A) = k, |ϕ0,s(A)| =
√
n, |ϕ1,0(B)| = √

n, |ϕ1,s(B)| = √
n. (2.12)

The identity element of Z[K] is K and since A is a rational idempotent,
it is of the form Y

|K| , Y ∈ Z[K]. We subtract k+
√
n or k−√

n multiples

of K
|K| from both sides of ϕ0,0(A) = k to get |ϕ0,0(A− (k+

√
n

|K| )K)| = √
n

or |ϕ0,0(A − (k−
√
n

|K| )K)| = √
n. Set α = k+

√
n

|K| or α = k−√
n

|K| and B =

A−αK, k is the size of difference set. The entries of A are non-negative
integers and if |K| divides k+√

n or k−√
n, then BB(−1) = (k− λ) · 1

and

D̂ = A

(〈z〉
2

)
+ gB

(
2− 〈z〉

2

)
, (2.13)

g ∈ H. (2.13) can be used to determine the existence or otherwise
of difference set image in H. However, this approach fails to yield a
definite result if |K| � (k +

√
n) and |K| � (k − √

n). To buttress the
point being made here, consider the parameter set (70, 24, 8) in the
group C70

∼= C35 × C2. Take K = C35. This shows that |K| = 35 and
35 does not divide (24 + 4) or (24 - 4). It is known that the group C70

does not admit this difference set([1], Table 6-1). On the other hand,
consider (320, 88, 24) difference set in the group H = (C2)

6 × C5. Take
K = (C2)

5 × C5 and |K| = 160. Also 160 does not divide (88 + 8) or
(88 - 8). Davis and Jedwab[17] constructed (320, 88, 24) difference set
in H.

The process of obtaining difference set in any group G starts with the
computation of difference set images in G/N , where N is an appropriate
normal subgroup. In the next two sections, we shall analyze the non-
existence of difference set images in factor groups of orders 20, 40, 56
and 70.

3. Difference set images in some factor groups of orders 8,

20 and 40

3.1. The Group 8 images. We first obtain (280, 63, 14) difference set
images in groups of order 8.

3.1.1. The C2 image. Suppose that G/N ∼= C2 = 〈x : x2 = 1〉 and

D̂ = d0 + d1x is the (280, 63, 14) difference set image in G/N . The
characters of G/N are of the form χj(x) = (−1)j , j = 0, 1. By applying

x �→ 1 to D̂, we get d0 + d1 = 63 while x �→ −1 on D̂ yields d0 − d1 = 7
or −7. We translate D̂ if necessary to get d0 − d1 = 7. By solving the
system d0 + d1 = 63 and d0 − d1 = 7, up to equivalence, the difference
set image is A = 35 + 28x.
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3.1.2. The C4 image. Suppose that G/N ∼= C4 = 〈x : x4 = 1〉 and

D̂ =
∑3

s=0 dsx
s is the (280, 63, 14) difference set image in G/N . We

view this group ring element as a 1 × 4 matrix with columns indexed
by powers of x. Using (2.6) and (2.7), the rational idempotents of G/N
are [eχ0 ] =

1
4〈x〉, [eχ2 ] =

1
4(2〈x2〉 − 〈x〉) and [eχ1 ] =

1
2(2 − 〈x2〉). The

first two rational idempotents have 〈x2〉 in their kernel and the linear
combination of these idempotents is written as αχ0 [eχ0 ] + αχ2 [eχ2 ] =

A 〈x2〉
2 , where A is the difference set image in C2. The difference set

image is D̂ =
∑2

j=0 αχj [eχj ] = A 〈x2〉
2 + αχ1 [eχ1 ]. As χ1(D̂)(χ1(D̂)) =

49 = (7)(7), αχ1 = ±7xs and the difference set image is

D̂ = A
〈x2〉
2

± 7xs[eχ1 ], (3.1)

s = 0, 1, 2, 3. By translating, if necessary, the distribution scheme, ΩC4

for C4 (up to translation) consists of only A1 = 7 + 14〈x〉.
3.1.3. The C2×C2 image. Using (2.13) with α = 28, K = C2 and |K| =
2, the difference set image in C2 × C2 = 〈x, y : x2 = y2 = 1 = [x, y]〉 is
A2 = 7 + 14(1 + x)(1 + y).

3.1.4. The C8 images. Suppose that G/N ∼= C8 = 〈x : x8 = 1〉 and

D̂ =
∑7

s=0 dsx
s is the (280, 63, 14) difference set image in G/N . We

view this group ring element as a 1× 8 matrix with columns indexed by
powers of x. Using (2.6) and (2.7), the rational idempotents of C8 are
[eχ0 ] =

1
8 〈x〉, [eχ1 ] =

1
2 (2 − 〈x4〉), [eχ4 ] =

1
4(2〈x4〉 − 〈x2〉 and [eχ2 ] =

1
8(2〈x2〉 − 〈x〉). The difference set image is D̂ =

∑
j=0,1,2,4 αχj [eχj ]. The

linear combination of the rational idempotents having 〈x4〉 in their kernel

is A1
2 〈x4〉 = α1[eχ0 ] +α2[eχ2 ] + α3[eχ4 ], where αj is an appropriate alias

and A1 is the only difference image in C4. Thus, the difference set image
becomes

D̂ =
A1

2
〈x4〉+±7xs[eχ1 ]. (3.2)

Up to translation, the only element in ΩC8 is A′ = 7 + 7〈x〉.
3.1.5. The D4 image. Suppose that G/N ∼= D4 = 〈x, y : x4 = y2 =

1, yxy = x−1〉. Let D̂ =
∑1

t=0

∑3
s=0 dstx

syt be the difference set image in
G/N . Using Dillon Dihedral trick, it can be shown that B′

1 = 7+7〈x〉〈y〉
is the only element of ΩD4 up to equivalence.

3.1.6. The C4×C2 image. Consider G/N ∼= C4×C2 = 〈x, y : x4 = y2 =

1 = [x, y]〉. We view the difference set image D̂ =
∑3

i=0

∑1
j=0 dijx

iyj

in C4 × C2 as a 2 × 4 array with columns indexed by powers of x and
rows indexed by powers of y. Using (2.13) with α = 14, |K| = 4, and
Bj = A1 − 14K, where A1 ∈ ΩC4 , B

′
2 = 7 + 7〈x〉〈y〉 is the only viable

difference set image in C4 × C2 up to equivalence.
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3.1.7. The (C2)
3 image. Suppose that G/N ∼= (C2)

3 = 〈a, b, c : a2 =
b2 = c2 = 1 = [a, b] = [b, c] = [a, c]〉. Take K = (C2)

2, |K| = 4, and Bj =
A− 14K, where A ∈ ΩC2×C2 . By (2.13), B′

3 = 7+7(1 + a)(1 + b)(1+ c)
is the only viable difference set image in (C2)

3 up to equivalence.

3.1.8. The Q4 image. Consider G/N ∼= Q4 = 〈x, y : x4 = 1, xy =
yx−1, x2 = y2〉. The derived subgroup of G/N is isomorphic to 〈x2〉.
Let the difference set image in G/N be D̂ =

∑1
t=0

∑3
s=0 dstx

syt. We
view this object as a 2 × 4 matrix with rows indexed by powers of y
and columns indexed by powers of x. Since Q4/〈x2〉 ∼= C2 × C2, G/N

has four characters. By applying these four characters to D̂, we get

A∗ = 1
2

[
21 14 21 14
14 14 14 14

]
. The Only degree two representation of

G/N is

χ : x �→
(
i 0
0 −i

)
, y �→

(
0 1
−1 0

)
.

In non abelian group like this, the idempotents are obtained by applying
the diagonal entries of χ to D̂. Thus, the idempotents are:

f = 1
4

[
1 −i −1 i
0 0 0 0

]
, f̄ = 1

4

[
1 i −1 −i
0 0 0 0

]

fy = 1
4

[
0 0 0 0
1 −i −1 i

]
, f̄y = 1

4

[
0 0 0 0
1 i −1 −i

]
.

Therefore, the two rational idempotents (from χ) are:

[f ] = f+f̄ = 1
4

[
2 0 −2 0
0 0 0 0

]
and [fy] = fy+f̄y = 1

4

[
0 0 0 0
2 0 −2 0

]
.

Consequently, the difference set equation is

D̂ = A∗ + α1[f ] + α2[fy], (3.3)

where αj, j = 1, 2 is an alias. To find the aliases, αj, we apply χ to D̂
and hence,

χ(D̂) =

(
z w
w z

)
,

where z = (d00 − d20) + (d10 − d30)i and w = (d01 − d21) + (d11 − d31)i,
w, z ∈ Z[i]. Thus,

χ(D̂)(χD̂) =

(
zz + ww 0

0 zz + ww

)
= 49I2,

and zz + ww = 49. By expanding this equation, we get,

(d00 − d20)
2 + (d10 − d30)

2 + (d01 − d21)
2 + (d11 − d31)

2 = 49 (3.4)

Up to permutations, the set of all possible values satisfying (3.4) are
listed in Table 1.

Our next task is to find all sets of equivalent solutions to 3.4. The
following facts assist with this objective:
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Table 1. possible coefficients

S/N d00 − d20 d10 − d30 d01 − d21 d11 − d31
i. ±7 0 0 0
ii. ± 6 ±3 ±2 0
iii. ±5 ±4 ±2 ±2
iv. ±4 ±4 ±4 ±1

(1) {1, i} is a basis of Z[i] and if necessary, we can replace either z
or w with zik or wij or their conjugates, where i, is the fourth
root of unity

(2) in (3.3), observe that 2 entries of A∗ are congruent to 1 mod 2
while 6 entries are congruent to zero modulo mod 2.

(3) The sum of the last two terms in (3.3), must have property 2
also

Hence, up to negatives and permutations, we consider only the coeffi-
cients in Table 2. Therefore, we choose aliases according to values in

Table 2. possible coefficients

S/N d00 − d20 d10 − d30 d01 − d21 d11 − d31
i. 7 0 0 0
ii. 3 6 2 0
iii. 3 2 6 0
iv. 3 0 6 2
v. 1 4 4 4
vi. 5 4 2 2
vii. 5 2 4 2

table 2. Up to equivalence, the following are the elements of ΩQ4 :

• F1 = 7+7〈x〉〈y〉, F2 = 12+10x+9x2+4x3+8y+7xy+6x2y+7x3y
• F3 = 12 + 8x + 9x2 + 6x3 + 10y + 7xy + 4x2y + 7x3y, F4 =
12 + 7x+ 9x2 + 7x3 + 10y + 8xy + 4x2y + 6x3y

• F5 = 11 + 9x + 10x2 + 5x3 + 9y + 9xy + 5x2y + 5x3y, F6 =
13 + 9x+ 8x2 + 5x3 + 8y + 8xy + 6x2y + 6x3y

• F7 = 13 + 8x+ 8x2 + 6x3 + 9y + 8xy + 5x2y + 6x3y.

3.2. Difference set images in factor groups of order 20. In this
section, we show that some factor groups of order 20 and 40 do not admit
(280, 63, 14) difference sets. First, we give the difference set images in
factor groups of orders 5 and 10.
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3.3. The C5 image. Suppose that G/N ∼= C5 = 〈x : x5 = 1〉. Then
the difference set image is A′ = −7 + 14〈x〉.

3.4. The C10 and D5 images. Suppose that G/N ∼= C10 = 〈x, y : x5 =
y2 = [x, y] = 1〉. Since C10

∼= C5 × C2, we can use (2.13) with α = 14,
|K| = 5, and Bj = A′ − 14K, where A′ is the C5 image. Thus, the
difference set image is E = −7+7〈x〉〈y〉. We can also show using Dillon
trick that E is the only difference set image in G/N ∼= D5 = 〈x, y : x5 =
y2 = yxyx = 1〉.

3.5. There are no C10 × C2 and D10 images. Suppose that N is a
normal subgroups of G such that G/N ∼= C10 × C2 or D10

∼= D5 × C2.
These groups are of the form K × C2, K = C10 or D5. Let z be the
generator of C2. Take α = 7, |K| = 10, and B = E−7K, where E ∈ ΩD5

or E ∈ ΩC10 . Then, by (2.13)

D̂ = E

(〈z〉
2

)
+ gB

(
2− 〈z〉

2

)
, (3.5)

g ∈ D10 or g ∈ C10×C2. Notice that E
( 〈z〉

2

)
consists of 2 integers and 18

fractions while B
(2−〈z〉

2

)
consists of 18 integers and 2 fractions. These

observations show that the two terms on the right hand of (3.5) are not
compatible to produce integer solutions. Hence, (C2)

2 ×C5 and D10 do
not admit (280, 63, 14) difference sets.

3.6. The C20 image. Consider G/N ∼= C20 = 〈x, y : x5 = y4 = 1 =

[x, y]〉. Let D̂ =
∑3

t=0

∑4
s=0 x

syt be the difference set in G/N . We view

D̂ as a 4 × 5 matrix with the columns indexed by the powers of x and
rows indexed by powers of y. This group has 6 rational idempotents out
of which four have 〈y2〉 in their kernel. The linear combination of these
four rational idempotents is

∑
j=0,1

∑
k=0,2 αχ(j,k)

[eχ(j,k)
] = E

2 〈y2〉, where
E is the difference set image in C10 and αχ(j,k)

is an alias. The remaining

two rational idempotents are: [eχ(0,1)
] = 1

10 〈x〉(1− y2) and [eχ(1,1)
] =

1
10(5− 〈x〉)(1 − y2). Thus, the difference set image in C20 is

D̂ =
E

2
〈y2〉+ αχ(0,1)

[eχ(0,1)
] + αχ(1,1)

[eχ(1,1)
], (3.6)

where αχ(1,1)
∈ {±7(xy)p1 , (2 + 3(x+ x3 + x7 + x9))(xy)p2 , (−2 + 3(x+

x3+x7+x9))(xy)p3} and αχ(0,1)
∈ {±7(xy)p4}, p1, p2, p3, p4 = 0, . . . , 19.

Put
B1 = (2+3(xy+(xy)3+(xy)7+(xy)9)[eχ(1,1)

] = 1
10

(
(10−2〈x〉)+15(x−

x2−x3+x4)−(10−2〈x〉)−15(x−x2−x3+x4)), B2 = (−2+3(xy+(xy)3+

(xy)7 + (xy)9)[eχ(1,1)
] = 1

10

(−(10− 2〈x〉) + 15(x− x2 − x3 + x4)− (10−
2〈x〉)− 15(x−x2 −x3+x4)

)
, B3 = 7[eχ(1,1)

] = 7
10

(
(5−〈x〉)− (5−〈x〉)),
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and C = 7[eχ(0,1)
] = 7

10〈x〉(1 − y2). Then (3.6) becomes

D̂ =
E

2
〈y2〉±xtysBl±yjC, t = 0, · · · , 4; s, j = 0, 1, 2, 3; l = 1, 2, 3 (3.7)

Observe that 18 entries of E
2 〈y2〉 are congruent to 10 mod 20 while

the remaining entries are congruent to 0 mod 20. This condition im-
plies that solution exist if 18 entries of ±xtysBl ± yjC are congruent
to 10 mod 20 while the remaining entries are congruent to 0 mod 20.
Thus, (3.7) has solutions if and only if t = 0, l = 1 and s = j. Up to
equivalence, the unique difference set image is E′ = 2x + 5x2 + 5x3 +
2x4+(5+4x+4x2 +4x3 +4x4)y+(5x+2x2 +2x3 +5x4)y2+(2+3x+
3x2 + 3x3 + 3x4)y3.

3.7. The Frob(20) images. Suppose that G/N ∼= Frob(20) = C5 �
C4 = 〈x, y : x5 = y4 = 1, yx = x2y〉, the Frobenius group of order
20. The Frobenius groups are finite groups with non trivial normal sub-
group N ′ (known as Frobenius kernel) and a non trivial subgroup K ′,
called Frobenius complement such that for each t ∈ Frob(20)/N ′ there
is a unique s ∈ N ′ with t ∈ sK ′s−1 and gcd (|N |, |K ′|) = 1. The de-
rived group of Frob(20) is a Sylow 5-subgroup, 〈x〉 and Frob(20)/〈x〉 ∼=
C4. The center of this group is C(Frob(20)) = {1}. Now let D̂ =∑3

k=0

∑4
j=0 djkx

jyk be the difference set image in Frob(20). Since Frob(20)/〈x〉 ∼=
C4, Frob(20) has four characters. These characters are of the form
χj(x) = 1 and χj(y) = ij , j = 0, . . . , 3. Also, Frob(20) has a degree four
representation induced by the faithful characters of 〈x〉. This represen-
tation is:

χ′ : x �→

⎛
⎜⎜⎝

ζ5 0 0 0
0 ζ25 0 0
0 0 ζ45 0
0 0 0 ζ35

⎞
⎟⎟⎠ , y �→

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠

and ζ5 is the fifth root of unity.
Unlike the usual case, we avoid carrying out our computation in Q(ζ),

the minimal splitting field of χ′, by creating integral representations
which are not unitary but equivalent to χ′. The Frobenius comple-
ment 〈y〉 is a Sylow 2-subgroup of Frob(20). Let {1, x, x2, x3, x4} be a
left transversal of Sylow 2-subgroup of Frob(20). We induce the trivial
representation of this Sylow 2-subgroup to get integral-valued represen-
tation. This representation is equivalent to χ′

0⊕χ′ and defined explicitly

as:χ : x �→

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ , y �→

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ .

This is also known as permutation representation of Frob(20).
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3.7.1. The background work. Let I denote a 5 by 5 identity matrix and
J denote the corresponding all one matrix. Suppose that a (280, 63, 14)
difference set D exists in group G. Then by (2.1),

DD(−1) = 49 · 1G + 14 ·G. (3.8)

Thus, the image of this difference set in Frob(20) satisfies

χ(D̂)χ(D̂) = 49 · I + 14χ(G)

= 49 · I + 14 · 14 · χ(Frob(20))
= 49 · I + 784 · J, (3.9)

where, χ(Frob(20)) = 4J , χ(D̂)J = 63J and χ(G) �= 0 since this rep-
resentation has the trivial representation in it’s constituent. Set M =
χ(D̂)− aJ. As (3.9) does not satisfy orthogonality relations (Chapter 2

[16]), we need to find the value of a such that (χ(D̂)−aJ)(χ(D̂)− aJ) =
49 · I + μJ and μ is as small as possible. To achieve this, we multiply

out the left hand side of the last equation, to get χ(D̂)χ(D̂)−aχ(D̂)J −
aJχ(D̂)− a2J2 = 49 · I + (784− 126a+5a2)J. Since we need μ as small
as possible, we choose μ = 0, so that 784 − 126a + 5a2 = 0. Using the
quadratic formula, we get a = 126±14

10 . But a has to be an integer, so

we choose a = 14. Thus, (χ(D̂)− 10J)(χ(D̂)− 14J) = 49 · I with M =

χ(D̂)− 14J . By implication of the above, MJ = χ(D̂)J − 14J2 = −7J .
But MM t = 49 · I implies (17M)(17M

t) = I, which means 1
7M and 1

7M
t

are inverses of each other. Using the fact that A and B are inverses if and
only if AB = I and BA = I then M tM = 49 · I. This indicates that the
columns of M also preserve the properties of the rows and JM = −7J .
In order to get more information about M ,
let �a = ( x0 x1 x2 x3 x4 ) be a row(column) vector in M . Thus,
the above conditions indicate that inner product of this row(column)
by itself, is �a · �a = x20 + x21 + x22 + x23 + x24 = 49 and row(column)sum,∑
xi = −7. A careful consideration of the constraints shows that the

row(column) of M will be generated by vectors (up to permutation)
�a1 = ( −7 0 0 0 0 ), �a2 = ( −6 −3 2 0 0 ),

�a3 = ( −6 −2 −2 2 1 ), �a4 = ( −4 −4 −3 2 2 ) and �a5 =

( −4 4 −3 −2 −2 ). Since there are five distinct vectors, there are

25 − 1 = 31 ways to choose these vectors to construct M . Thus,

Lemma 3.1. Let M be a 5 by 5 matrix with integer entries such that
MJ = −7J , JM = −7J and MM t = 49 · I5. Then up to permutation
of rows and columns, M is one of the following: M1 = −7I5,
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M2 =

⎡
⎢⎢⎢⎢⎣

−7 0 0 0 0
0 −7 0 0 0
0 0 −3 2 −6
0 0 −6 −3 2
0 0 2 −6 −3

⎤
⎥⎥⎥⎥⎦ , M3 =

⎡
⎢⎢⎢⎢⎣

1 −6 −2 2 −2
−6 1 −2 2 −2
−2 −2 −3 −4 4
2 2 −4 −3 −4
−2 −2 4 −4 −3

⎤
⎥⎥⎥⎥⎦

Proof. We split the five vectors into two categories. Category A consists
of �a1 and �a2 while category B contains the remaining vectors. Notice

that for �a ∈ A and �b ∈ B, �a · �b �= �0 up to permutation of entries. As
the vectors in these categories are not orthogonal, it implies that any
combination of at least one vector from each of the categories will not
yield a viable matrix M . Due to the composition of these vectors, �a1 is
the only vector that can produce a viable matrix M by itself. Thus, out
of all the 31 combinations, only the following could generate a viableM :
�a1 only, �a1 and �a2 only, �a3 and �a4 only, �a3 and �a5 only, �a4 and �a5 only
and �a3 , �a4 and �a5 only. It turns out that �a1 only yields M1, �a1 and �a2
only generate M2, �a3, �a4 and �a5 only yield M3 while others could not
produce any viable matrix. �

Now, we have good information about M and of course, χ(D̂). Thus,

χ(D̂) =Mi + 14J , where i = 1, 2, 3.

3.7.2. The search for difference set images in Frob(20). We now de-
scribe the technique for finding the intersection numbers in Frob(20).
Frob(20) could be viewed in many ways but the representation χ sug-
gests that we think of this group as a permutation group, 〈α, β〉 with
α = ( 0 1 2 3 4 ), β = ( 1 2 4 3 ). We can now view this
group as a subgroup of symmetric group of degree five, S5 [9]. In this
situation, χ represents each of the elements of Frob(20) as 5 × 5 per-
mutation matrices in four parallel (non horizontal nor vertical) classes
W = 〈α〉, Wβ, Wβ2, Wβ3. These parallel classes have slopes 1, 2, 4
and 3 respectively in the affine plane with 30 lines, 25 points, 6 parallel
classes, 5 points on each line and 6 lines on a point. This characteriza-
tion of elements of 〈α, β〉 as permutation matrices can easily be extended
to the permutations of S5 acting naturally on the set {0, 1, 2, 3, 4}[9].
In view of the problem at hand, we consider a left transversal of this
subgroup, 〈α, β〉 of S5: T = {π0 = 1, π1 = (01), π2 = (234), π3 =
(01)(234), π4 = (243), π5 = (01)(243)}. The advantages of choosing this
transversal in S5 are:

• Ts = T−1
s

• Most of the permutation matrices of elements of T commute
with Mj , j = 1, 2, 3

Therefore, a matrix equivalent to χ(D̂) (under the row and column per-

mutations) has the form χ(πk)χ(gD̂h)χ(πl), where g, h ∈ Frob(20) and
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πk, πl ∈ T . With this correspondence,

χ(gD̂h) = χ(πk)(Mi)χ(πl). (3.10)

We know that if σ is an automorphism of a group G then gD̂σ is an
equivalent difference set of D̂ for g ∈ G. But conjugation is an automor-
phism, thus D̂ is a difference set if and only if gD̂h is a difference set.
Therefore, we assume, without loss of generality that the difference set
image is of the form

χ(D̂) = χ(πk)(Mi)χ(πl), i = 1, 2, 3, (3.11)

where χ(πl) is a permutation matrix corresponding to πl, a representa-
tive of coset of 〈α, β〉. This shows that, for each i, (3.11) has 36 choices

of matrices for χ(D̂) and we attempt to reduce these possibilities as far
as we can. Notice that the matrix M1 = 7I, a scalar matrix, is at the
center of the ZSym(5) so it commutes with all the permutation matrices.

Thus, the difference set image is transformed as χ(D̂) = 14J +M1χ(πl),
l = 0, 1, 2, 3, 4, 5; where χ(πl) is a permutation matrix corresponding to
πl ∈ T1, a representative of coset of 〈α, β〉. To obtain the coset represen-
tative that commutes withM2, we partition M2 along the columns/rows
that have similar entries. Thus,

M2 =

⎡
⎢⎢⎢⎢⎣

−7 0 0 0 0
0 −7 0 0 0
0 0 −3 2 −6
0 0 −6 −3 2
0 0 2 −6 −3

⎤
⎥⎥⎥⎥⎦

This partition suggests that we can permute rows (columns) 0 and
1 or rows (columns) 2, 3, and 4. So, we consider S{0,1} × S{2,3,4}.
This gives information about the permutation matrices of elements of
the subgroup of S5 that commute with M2. Consequently, the per-
mutation matrices of (1), (01), (234), (01)(234), (243) and (01)(243)
commute with M2. Therefore, the 36 choices of matrices reduce to
χ(D̂) = 10J + χ(πk)(M2)χ(πl), l = 0, . . . , 5. Notice that the struc-
ture of entries of matrix M3 is similar to those of M2 and hence, the
permutation matrices of (1), (01)(24), (24) and (01) commute with
M3. Furthermore, (1) and (01)(24) are in the same coset and (01)
and (24) are in the same coset of Frob(20). In this case, we have to
multiply on the left by permutation matrices of elements in T that do
not commute with M3. Thus, the 36 choices of matrices reduced to
χ(D̂) = 10J + χ(πk)(M3)χ(πl), k = 2, 3, 4, 5; l = 0, . . . , 5. We worked
through the 6 + 6 + 30 = 42 matrices by computing the respective
line sums for the four out of the six equivalence classes (the other two
are assigned zero value). Thus, only M2χ(π5), χ(π2)M3χ(π5), M3χ(π1),
χ(π3)M3χ(π4), χ(π4)M3χ(π3), χ(π5)M3χ(π2) and their transposes have
desirable pattern and could potentially yield images.
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The question now is how do we construct the corresponding element
in Z[Frob(20)] for any choice of χ(D̂)? To answer this question, notice
that the rows and columns of the representation χ are indexed by Z5 =
{0, 1, 2, 3, 4} with the coordinates of the 5 × 5 matrix viewed as points
of the affine plane AG(2, 5). For instance, the χ(α) is the characteristic
function of the line y = x+1 while χ(β) is the characteristic function of
the line y = 2x. In general, χ(αsβt) is the characteristic function of the
line y = 2tx+ s in AG(2, 5) and is an injection from the 20 members of
Frob(20) into the 30 lines of AG(2, 5) missing the horizontal and vertical
lines. By this correspondence, each member of Z[Frob(20)] is associated
with a member of the collection of functions from the 30 lines of AG(2, 5)
to Z which assign zero to the horizontal and vertical lines. Thus, the
(y, x) coordinates of χ(D̂) = α̂g(

∑
g∈Frob(20) αgg) is the sum of the αg

for all lines g on the point (y, x). Next, we give some vital definitions:
Define f to be a function from the lines of an affine plane of or-

der q into the integers Z and another function f̂ on the points and
lines by f̂(p) :=

∑
L on p f(L) and f̂(L) :=

∑
p∈L f̂(p), respectively.

Furthermore we extend f to parallel classes of the plane by defining
f(Πj) :=

∑
L∈Πj

f(L), where Πj is a parallel class with slope j and

L is a line in it. Thus, for any fixed line L in a parallel class Πj,

f̂(L) =
∑

p ∈ L

∑
L′ on p f(L

′) = q · f(L) − f(Πj) +
∑

all lines L′ f(L′).
With k =

∑
all lines L′ f(L′), we can find f(L) using the formula

f(L) =
f̂(L)− k + f(Πj)

q
, (3.12)

if f̂(L) and f(Πj) are known.
In considering our specific case, the members of Frob(20) are the

non vertical nor horizontal lines and the six parallel classes are the four
cosets of W = 〈α〉 along with the 5-rows and 5-columns of the matrix.
The size of our difference set is 63 and thus, k =

∑
all lines L′ f(L′) = 57,

f(Π) = {21, 14, 14, 14} and the order of the plane is q = 5. Thus, for

any point p with coordinates (y, x) in the affine plane the f̂(p) is the

(y, x) coordinate of the matrix χ(D̂i), i = 1, · · · , 5 while f̂(L) is the sum
of the coordinates corresponding to the points of L. Therefore,

f(L) =
f̂(L)− 63 + f(Πj)

5
=
f̂(L) + f(Πj)− 3

5
− 12. (3.13)

Furthermore, since f(L) is the cardinality of the intersection of D̂ and
any coset of N , the proposed intersection numbers must be non-negative
integers not greater than 14, then (f̂(L) + f(Πj)− 3) ≡ 0 (mod 5) and

60 ≤ f̂(L) + f(Πj) − 3 ≤ 130. This constraint severely restricts the
possible values of f(L) and the 42 choices of matrices reduced to six
(as stated earlier) since the lines L of the affine plane such that f(L)
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Table 3. Values of f̂(L)

Slope Slope Slope Slope
1 3 4 2
52 74 69 64
57 64 64 74
72 64 64 59
67 59 69 64
67 54 49 54

Table 4. Values of f(L)

Slope Slope Slope Slope
1 3 4 2
2 5 4 3
3 3 3 5
6 3 3 2
5 2 4 3
5 1 0 1

is negative integer or fraction is discarded. Consequently, the matri-
ces M2χ(π5), χ(π2)M3χ(π5), M3χ(π1), χ(π3)M3χ(π4), χ(π4)M3χ(π3),
χ(π5)M3χ(π2) and their transposes can generates difference set images
in Frob(20). Now take M2χ(π5) and

χ(D̂) = 14J +M2χ(π5) =

⎡
⎢⎢⎢⎢⎣

14 7 14 14 14
7 14 14 14 14
14 14 8 11 16
14 14 16 8 11
14 14 11 16 8

⎤
⎥⎥⎥⎥⎦

The values of f̂(L) (sum of weights on a line) are given in Table 3 ac-
cording to the parallel classes.

For instance, for line y = x + 1 of slope 1, the weights associated
with points on this line are 17, 10, 8, 8 and 10, these are the underlined
values in χ(D̂). In this case, f̂(L) = 7 + 14 + 16 + 16 + 14 = 67(This is
the bolded value in Table 3). To use (3.13), we choose f(Πj) = 21 and
f(L) = 5, this is the bolded value in A1. By repeating this procedure
several times, we get the image of Frob(20) corresponding to M2χ(π5)
as A1 = 2 + 3x + 6x2 + 5x3 + 5x4 + (5 + 3x+ 3x2 + 2x3 + x4)y + (4 +
3x+ 3x2 + 4x3)y2 + (3 + 5x+ 2x2 + 3x3 + x4)y3.

The other images are A2 = 2x + 5x2 + 5x3 + 2x4 + (3 + 2x + 3x2 +
3x3+3x4)y+(2+5x+5x2+2x3+7x4)y2+(3+3x+3x2+2x3+3x4)y3,
A3 = 1+2x+2x2 +5x3 +4x4 +(1+5x+3x2 +3x3 +2x4)y+(3+4x+
4x2 + 3x3 + 7x4)y2 + (3 + x + 3x2 + 5x3 + 2x4)y3 and A4 = 1 + 4x +
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5x2 + 2x3 + 2x4 + (3 + 5x + x2 + 2x3 + 3x4)y + (3 + 4x + 4x2 + 3x3 +
7x4)y2 + (1 + 3x+ 2x2 + 5x3 + 3x4)y3.

3.8. There are no Frob(20) × C2 images. Suppose that there is a
normal subgroup of G such that G/N ∼= Frob(20) ×C2 = 〈x, y, z :
x5 = y4 = z2 = 1, yx = x2y, xz = zx, yz = zy〉. The derived group of
G/N is isomorphic to 〈x〉 and (Frob(20) × C2)/〈x〉 ∼= C4 × C2. Also,

(Frob(20)×C2)/〈z〉 ∼= Frob(20). Let D̂ =
∑4

k=0

∑1
j=0

∑3
i=0 dijkx

iyjzk

be the difference set image in Frob(20) × C2. By applying the eight

characters of Frob(20) × C2 to D̂, we get the following equations:

4∑
i=0

di00 = c00,

4∑
i=0

di10 = c10,

4∑
i=0

di20 = c20,

4∑
i=0

di30 = c30 (3.14)

4∑
i=0

di01 = c01,

4∑
i=0

di11 = c11,

4∑
i=0

di21 = c21,

4∑
i=0

di31 = c31.

where the 2× 4 matrix (cij) is an image set in ΩC4×C2 . Also, using the
map z �→ 1 we get 20 more linear equations

di00 + di01 = bi0, di10 + di11 = bi1 (3.15)

di20 + di21 = bi2, di30 + di31 = bi3, i = 0, . . . , 4,

where the 4× 5 matrix (bij) is the unique element of ΩFrob(20). The last
representation of Frob(20)× C2 is:

χ : x �→

⎛
⎜⎜⎝

ζ 0 0 0
0 ζ2 0 0
0 0 ζ4 0
0 0 0 ζ3

⎞
⎟⎟⎠ , y �→

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ , z �→

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

ζ is the fifth root of unity. By applying this representation to D̂, we get

χ(D̂) =

⎛
⎜⎜⎝

A B C D
σ(D) σ(A) σ(B) σ(C)
C̄ D̄ Ā B̄

σ(B) σ(C) σ(D) σ(A)

⎞
⎟⎟⎠ ,

where A =
∑4

s=0 asζ
s, B =

∑4
s=0 bsζ

s, C =
∑4

s=0 csζ
s, D =

∑4
s=0 dsζ

s,
as = ds00 − ds01, bs = ds10 − ds11, cs = ds20 − ds21, ds = ds30 − ds31 and
σ(ζ) = ζ2.

By solving χ(D̂)χ(D̂) = 49, we get 16 equations which are equivalent
to the following system: -

AĀ+BB̄ + CC̄ +DD̄ = 49 (3.16)

AC +BD = 0 (3.17)

Aσ(D) +Bσ(A) + Cσ(B) +Dσ(C) = 0 (3.18)

Aσ(B) +Bσ(C) + Cσ(D) +Dσ(A) = 0 (3.19)
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Conditions (3.16)-(3.19) generate 14 more linear equations. We now
use computer to search of possible values of dijk by combining these 14
linear equations with (3.14) and (3.15). In order to have an exhaustive
search, we fix the values of bij from the Frob(20) image and allow csk in
(3.14) to vary. This search yielded no result. Consequently, there is no
difference set image in Frob(20) × C2.

4. Difference set images in factor groups of orders 28 and

56

In this section, we show that G that satisfies G/N ∼= C56, C28 × C2,
Q14×C2 or D28 do not admit (280, 63, 14) difference sets. We also give
information about G in which G/N ∼= Q28.

4.1. The C7 Images. Suppose that G/N ∼= C7 = 〈x : x7 = 1〉. Since
the ideal generated by 7 factors trivially in the cyclotomic ring, the
difference set images are −7 + 10〈x〉 and 7 + 8〈x〉, up to equivalence.

4.2. The C14 and D7 Images. Suppose that G/N ∼= C14 = 〈x, y :
x7 = y2 = [x, y] = 1〉. Using (2.13) with α = 8 or 10, |K| = 7,
the difference set images up to equivalence are, A1 = 7 + 4〈x〉〈y〉 and
A2 = 7 + 3〈x〉 + 5〈y〉. The other solutions are A3 = −7 + 5〈x〉〈y〉 and
A4 = −7 + 6〈x〉 + 4〈y〉 but they are not considered images because of
negative number. By Dillon trick, one can show that A1 and A2 are also
D7 = 〈x, y : x7 = y2 = 1, yxy = x−1〉 images. Next, we construct the
difference set images in G/N ∼= C28, D14, C14 × C2 and C7 � C4.

4.3. The C28, D14 and C14 × C2 Images. The construction of the
difference set images in factor groups of order 28 involves information
from C14 and D7 images.

4.3.1. The C28 and D14. Consider G/N ∼= C28 = 〈x, y : x7 = y4 = 1 =

[x, y]〉 and let D̂ =
∑3

t=0

∑7
s=0 x

syt be the difference set in this group.

We view D̂ as a 4×7 matrix with the columns indexed by the powers of x
and rows indexed by powers of y. This group has 6 rational idempotents
just like the G/N ∼= C20 case. Using the same approach therefore, the
difference set images, up to equivalence, are E1 = 7 + 2〈x〉〈y〉, E2 =
7 + (1 + 2y + 3y2 + 2y3)〈x〉 and E3 = 7 + (1 + 3y + 2y2 + 2y3)〈x〉.

Now suppose that G/N ∼= D14 = 〈θ, y : θ14 = y2 = 1, yθy = θ−1〉
and the difference set image is D̂ =

∑14
s=0

∑1
t=0 dstθ

syt. We view this
group ring element as a 2 × 14 matrix. In order to take advantage of
the Dillon Dihedral trick, we need the difference set images in C28. We
now view C28 as C28 = 〈z : z28 = 1〉. Set θ = z2 and y = z in C28.
This transformation enables us to rewrite each of the three difference
set images as 2 × 14 matrix, E′

j . For instance, take E2 ∈ ΩC28 . This

image is transformed as E′
2 = (8+ 3θ+ θ2 +3θ3 + θ4 +3θ5 + θ6 +3θ7 +

θ8 + 3θ9 + θ10 + 3θ11 + θ12 + 3θ13) + 2(1 + θ + θ2 + θ3 + θ4 + θ5 + θ6 +
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θ7 + θ8 + θ9 + θ10 + θ11 + θ12 + θ13)y. The factor group G/N has three
equivalent degree two representations. One of them is:

χ : θ �→
(
ζ14 0
0 ζ1314

)
, y �→

(
0 1
1 0

)
We now apply this degree two representation to the transformed image
E′

j, j = 1, 2, 3 and verify whether or not χ(E′
j)χ(E

′
j) = 49I2. In the case

of E′
2, χ(E

′
2) =

(
β α
ᾱ β̄

)
, where α = 5 + 2θ �= 0, θ = ζ14 + ζ314 + ζ514 −

ζ214 − ζ414 − ζ614 and β = 0. It turns out that α = ᾱ and θ2 = 6 − 5θ.

The requirement χ(E′
2)χ(E

′
2) = 49I2 implies that αᾱ + ββ̄ = 49.Thus,

αᾱ+ββ̄ = (5+2θ)(5+2θ̄) = 49. It is easy to verify that E′
j, j = 1, 3 also

satisfies the above condition. Consequently, E′
j, j = 1, 2, 3 is a difference

set image in D14.

4.3.2. The C14 × C2 images. Suppose that G/N ∼= C14 × C2 = 〈x, y :
x7 = y2 = [x, y] = 1〉 × 〈z : z2 = 1〉. This group is of the form (2.11)
and using (2.13) we get

D̂ = Ai

(〈z〉
2

)
+ gBj

(
2− 〈z〉

2

)
, g ∈ C14 × C2, (4.1)

where K = C14, |K| = 14, α = 4, Bj = Aj − 4K, i = 1, 2, j = 1, 2, 3, 4.
Note that Ai and Aj , i = j = 1, 2 are difference set images in C14

while Aj , j = 3, 4 is other solution. Thus, the difference set images
are Ē1 = 7 + 〈x〉〈y〉〈z〉, Ē2 = 7 + 〈x〉 + 3〈x〉y + 2〈x〉〈y〉z and Ē3 =
7 + 〈x〉+ 2〈x〉y + 2〈x〉〈y〉z + 〈x〉z.
Remark 1. The computation of difference set distribution in factor groups
of 28 will aid us to find the difference set images in G/N ∼= C7 � C4.
Notice that all the four groups of order 28 have a factor group that is
isomorphic to D7 or C14. Recall that there are two types of difference
set images in D7 or C14, up to equivalence. The distribution of these dif-
ference set images are 111413, 3657101, where distribution 111413 means
that the intersection number 4 appears thirteen times and the intersec-
tion number 11 appears once. The coset bound for difference set images
in factor group G/N of order 28 is 10. This means that intersection
numbers of difference set images in these groups satisfy 0 ≤ ds,t ≤ 10.
Furthermore, the size of the kernel of homomorphism between groups of
order 14 and groups of order 28 is 2. This means that each intersection
number of the difference set image in groups of order 14 will split into
two in the difference set image in groups of order 28. Based on the dif-
ference set images in groups of order 14, we look at two cases:
Case 1: The distribution 111413:
11 split as (10, 1), (9, 2), (8, 3), (7, 4), (6, 5) and 4 split as (4, 0), (3, 1)
or (2, 2): We consider five subcases:
Subcase 1a: Suppose 11 split as (10, 1) and 4 split as (4, 0), (3, 1) or (2,
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2). Let 0 ≤ αi ≤ 13, i = 1, 2, 3 be the number of intersection number 4
that split as (2, 2), (3, 1) and (4, 0) respectively. Using the symbols of
variance technique (Lemma 2.1), m0 = m4 = α3,m1 = α2+1,m2 = 2α1,
m3 = α2, m10 = 1, m5 = m6 = m7 = m8 = m9 = 0. The variance tech-
nique equations (2.2) - (2.4) become:

3∑
i=1

αi = 13, (4.2)

2α1 + 3α2 + 6α3 = 18, (4.3)

In all the cases, (2.3) is redundant. From (4.2), the sum of three positive
integers is odd. This implies that either one or all the numbers are odd.
Thus, by (4.3), α2 is even. We eliminate α2 by adding −2 times (4.2) to
(4.3). This operation yields α2 + 4α3 = −8. Since the sum of positive
numbers cannot be negative, this option yields no distribution.
Subcase 1b: Suppose 11 split as (9, 2) and 4 split as (4, 0), (3, 1) or (2,
2). Let 0 ≤ αi ≤ 13, i = 1, 2, 3 be the number of intersection number
4 that split as (2, 2), (3, 1) and (4, 0) respectively. Using the symbols
Lemma 2.1, m0 = m4 = α3,m1 = α2,m2 = 2α1 + 1, m3 = α2, m9 = 1,
m5 = m6 = m7 = m8 = m10 = 0. The variance technique equations
(2.2) - (2.4) become:

3∑
i=1

αi = 13, (4.4)

2α1 + 3α2 + 6α3 = 26, (4.5)

We again eliminate α2 by adding −2 times (4.2) to (4.3). This operation
yields α2 + 4α3 = 0. Consequently, α2 = α3 = 0. The subcase yields a
unique distribution 91227. A similar approach shows that:
Subcase 1c: If 11 split as (8, 3) and 4 split as (4, 0), (3, 1) or (2, 2),
then the distributions are (i) 162143781 and (ii) 0112220334181.
Subcase 1d: If 11 split as (7, 4) and 4 split as (4, 0), (3, 1) or (2, 2), then
the distributions are 110263104171, 0116212364271 and 0212218324371.
Subcase 1e: If 11 split as (6, 5) and and 4 split as (4, 0), (3, 1) or (2, 2),
then the distributions are 112223125161, 021421434425161, 01182838415161

and 03220435161.
Case 2: The distribution 1015736: There are six subcases.
Subcase 2a: If 10 split as (10, 0), 5 split as (5, 0), (4, 1) or (3, 2) and 3
split as (3, 0) or (2, 1), then there are no distributions. Subcase 2b: If
10 split as (9, 1), 5 split as (5, 0), (4, 1) or (3, 2) and 3 split as (3, 0) or
(2, 1), then there are no distributions. Subcase 2c: If 10 split as (8, 2),
5 split as (5, 0), (4, 1) or (3, 2) and 3 split as (3, 0) or (2, 1), then the
unique distribution is 162143781.
Subcase 2d: If 10 split as (7, 3), 5 split as (5, 0), (4, 1) or (3, 2) and 3
split as (3, 0) or (2, 1), then there are no distributions.
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Subcase 2e: If 10 split as (6, 4), 5 split as (5, 0), (4, 1) or (3, 2)
and 3 split as (3, 0) or (2, 1), then the distributions are 11029334561,
011721135425161, 011829354461, 021521137415161, 021629374361, 031429394261

and 041229 3114161.
Subcase 2f: If 10 split as (5, 5), 5 split as (5, 0), (4, 1) or (3, 2) and 3
split as (3, 0) or (2, 1), then there are no distributions.
All together, there are eighteen possible distributions for the difference
set images in G/N .

4.3.3. The Q28
∼= C7 � C4 images. Consider G/N ∼= C7 � C4 = 〈x, y :

x7 = y4 = 1, yxy−1 = x6〉. The derived subgroup of G/N is isomorphic
to 〈x〉 and the center of G/N is C(G/N) ∼= 〈y2〉. Suppose that the

difference set image in G/N is D̂ =
∑6

s=0

∑3
t=0 ds,tx

syt. We view D̂
as a 4 × 7 matrix with the columns indexed by the powers of x and
rows by powers of y. Since (G/N)/〈y2〉 ∼= D7, the information about
the difference set image in D7 and the map y2 �→ 1 yield the following
system of equations:

ds0 + ds2 = fs0, ds1 + ds3 = fs1 s = 0, . . . , 6 (4.6)

where 2 × 7 matrix (fst) is a difference set image set in D7. Also,
H/〈x〉 ∼= C4 and the map x �→ 1 produce four more equations:

6∑
s=0

ds0 = c0,

6∑
s=0

ds1 = c2,

6∑
s=0

ds2 = c2,

6∑
s=0

ds3 = c3, (4.7)

where the 1 × 4 matrix (ct), is the unique difference set image in C4.
We have considered all the lifted representations of H from normal sub-
groups. The group H has three other equivalent degree two representa-
tions. One of them is

χ : x �→
(
ζ 0
0 ζ−1

)
, y �→

(
0 i
i 0

)
,

where ζ and i are the seventh and fourth roots of unity respectively. By

applying this representation to D̂, we get χ(D̂) =

(
a bi
b̄i ā

)
, where

a =
∑6

s=0(ds0 − ds2)ζ
s, b =

∑6
s=0(ds1 − ds3)ζ

s, and a, b ∈ Z[ζ]. Further-
more,

χ(D̂)χ(D̂) =

(
aā+ bb̄ 0

0 aā+ bb̄

)
.

But as we require χ(D̂)χ(D̂) = 49I2, where I2 is a 2× 2 matrix, then

aā+ bb̄ = 49. (4.8)

We now garner information about the algebraic numbers a and b. But
first, we rewrite (4.6) as

ds2 = fs0 − ds0, ds3 = fs1 − ds1 s = 0, . . . , 6 (4.9)
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and substitute in a and b to get

A := 2

6∑
s=0

ds0ζ
s −

6∑
s=0

fs0ζ
s, B := 2

6∑
s=0

ds1ζ
s −

6∑
s=0

fs1ζ
s

and A,B ∈ Z[ζ]. Since fs0 and fs1, s = 0, . . . , 6 are known, it turns out

that for the two D7 images, A = 2
∑6

s=0 ds0ζ
s−7 and B = 2

∑6
s=0 ds1ζ

s.
Thus, (4.8) becomes

1

7

(
A1Ā1 +B1B̄1

)
=

1

2

(
A1 + Ā1

)
, (4.10)

with A1 =
∑6

s=0 ds0ζ
s and B1 =

∑6
s=0 ds1ζ

s. The right hand sides of
(4.10) implies

• d00 is any integer between 0 and 10
• ds0 + d7−s,0 ≡ 0 mod 2, s = 1, . . . , 6
• ds0 and d7−s,0 are either both even integers or both odd integers

• the sum
∑6

s=1 ds0 is even

• based on (4.6), it follows that
∑6

s=1 ds2 is also even.

With the above stipulations, we can show that subcases 2c and 2e cannot
generate difference set image. We look at subcase 2e.

Without loss of generality we choose d00 = 6 and consequently, d02 =
4. We apply an automorphism, if necessary, so that

6∑
s=0

ds0 = 21,

6∑
s=0

ds1 = 14,

6∑
s=0

ds2 = 14,

6∑
s=0

ds3 = 14. (4.11)

As
∑6

s=1 ds0 is even, then d00 +
∑6

s=1 ds0 is also even this contradicts

the fact that
∑6

s=0 ds0 = 21. The subcase 1b and 1c(i) produced images
E1 = 7+2〈x〉〈y〉 and E2 = 7+(1+2y+3y2+2y3)〈x〉 respectively. Finally,
for subcases 1c, 1d and 1e, we need the following: As a, b ∈ Z[ζ], (4.8)
has solutions in the quadratic sub ring of Z[ζ] whose integral basis are
{1, ζ2 + ζ5, ζ3 + ζ4}. Consequently, (4.8) yields three more equations

6∑
s=0

a2s +
6∑

s=0

b2s −
6∑

s=0

asas+1 −
6∑

s=0

bsbs+1 = 49 (4.12)

6∑
s=0

as+2as +

6∑
s=0

bs+2bs −
6∑

s=0

asas+1 −
6∑

s=0

bsbs+1 = 0 (4.13)

6∑
s=0

as+3as +

6∑
s=0

bs+3bs −
6∑

s=0

asas+1 −
6∑

s=0

bsbs+1 = 0 (4.14)

The subscripts of (4.12), (4.13), (4.14) are congruent to 0 modulo 7,
as = ds0 − ds2 and bs = ds1 − ds3, s = 0, . . . , 6. To find the other images,
we need to combine conditions generated by (4.10) with (4.6) and (4.11)
- (4.14).
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4.4. There are no C56, C28 ×C2 and D28 Images.

4.4.1. The C56 and D28 Cases. The factor group G/N ∼= C56 = 〈x, y :
x7 = y8 = 1 = [x, y]〉 has eight rational idempotents. Six of these
idempotents have 〈y4〉 in their kernel and the linear combination of these

idempotents is
∑

j=0,1

∑
k=0,2,4 αχ(j,k)

[eχ(j,k)
] = Ei

2 〈y2〉, where Ei is a
difference set image in C28 and αχ(j,k)

is an alias. The remaining two
rational idempotents are:

[eχ(0,1)
] =

1

14
〈x〉(1− y4) and [eχ(1,1)

] =
1

14
(7− 〈x〉)(1 − y4).

Thus, the difference set image in C56 will be obtained by the equation

D̂ =
Ei

2
〈y4〉+ αχ(0,1)

[eχ(0,1)
] + αχ(1,1)

[eχ(1,1)
] (4.15)

with αχ(0,1)
, αχ(1,1)

∈ {±7xsyt} and s = 0, . . . , 6; t = 0, . . . , 7. Up to

equivalence, the solutions to (4.15) are: 7+ 〈x〉〈y〉, 8+ 〈x〉〈y〉+ 〈x〉(−1+
y4) and 9+ 〈x〉〈y〉+3y− 3y3 − 2y4 − 3y5 +3y7. None of these solutions
is a difference set image because at least one number is outside the coset
bound [0, 5]. Consequently, the Dillon technique shows that there are
no (280, 63, 14) difference set images in G/N ∼= D28 = 〈x, y : x28 =
y2 = 1, yxy = x−1〉.
4.4.2. The C28×C2 Case. Suppose that G/N ∼= C28×C2 = 〈x, y : x7 =
y4 = [x, y] = 1〉 × 〈z : z2 = 1〉. This group is of the form (2.11) and
using (2.13) we get

D̂ = Ej

(〈z〉
2

)
+ gBj

(
2− 〈z〉

2

)
, g ∈ C28 × C2 (4.16)

with K = C28, |K| = 28, α = 2, Bj = Ej − 2K, j = 1, 2, 3 and Ej is a
difference set image in C28. After considering all possible combinations,
there is no feasible difference set image.

Remark 2. In order to effectively obtain difference set images in any
factor group of order 56, we need the possible distributions. By Variance
technique, the feasible distributions of difference set images in any factor
group of order 56 is 0a1b2c3d4e5f , where the values of a, b, c, d, e, f are
respectively, 6 45 2 0 1 2; 6 46 0 0 3 1; 7 43 2 2 0 2; 7 44 0 2 2 1; 8 40 5
1 0 2; 8 41 3 1 2 1; 8 42 0 4 1 1; 8 42 1 1 4 0; 9 37 8 0 0 2; 9 38 6 0 2 1;
9 39 3 3 1 1; 9 39 4 0 4 0; 9 40 0 6 0 1; 9 40 1 3 3 0; 10 36 6 2 1 1; 10 37
3 5 0 1; 10 37 4 2 3 0; 10 38 1 5 2 0; 11 33 9 1 1 1; 11 34 6 4 0 1; 11 34
7 1 3 0; 11 35 4 4 2 0; 11 36 1 7 1 0; 12 30 12 0 1 1; 12 31 9 3 0 1; 12 31
10 0 3 0; 12 32 7 3 2 0; 12 33 4 6 1 0; 12 34 1 9 0 0; 13 28 12 2 0 1; 13
29 10 2 2 0; 13 30 7 5 1 0; 13 31 4 8 0 0; 14 25 15 1 0 1; 14 26 13 1 2 0;
14 27 10 4 1 0; 14 28 7 7 0 0; 15 22 18 0 0 1; 15 23 16 0 2 0; 15 24 13 3
1 0; 15 25 10 6 0 0; 16 21 16 2 1 0; 16 22 13 5 0 0; 17 18 19 1 1 0; 17 19
16 4 0 0; 18 15 22 0 1 0; 18 16 19 3 0 0; 19 13 22 2 0 0; 20 10 25 1 0 0;
21 7 28 0 0 0;
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4.5. The C7�C8 Images. Suppose G/N ∼= C7�C8 = H = 〈x7 = y8 =
1, yxy−1 = x−1〉. The center of this group is C(H) = {1, y2, y4, y6} ∼=
C4. Thus, H/〈y4〉 ∼= Q28, H/C(H) ∼= D7 and H/〈x〉 ∼= C8. Suppose

that D̂ =
∑6

s=0

∑7
t=0 dstx

syt is the difference set image in this group.

By applying the map y4 �→ 1 to D̂, we get the difference set image in
Q28 and consequently, the system of equations

ds0 + ds4 = fs0, ds1 + ds5 = fs1 (4.17)

ds2 + ds6 = fs2, ds3 + ds7 = fs3 s = 0, . . . , 6,

where 4 × 7 matrix (fst) is a difference set image set in Q14. Also, the

map x �→ 1 on D̂ yields

6∑
s=0

ds0 = c0,

6∑
s=0

ds1 = c2,

6∑
s=0

ds2 = c2,

6∑
s=0

ds3 = c3 (4.18)

6∑
s=0

ds4 = c4,

6∑
s=0

ds5 = c5,

6∑
s=0

ds6 = c6,

6∑
s=0

ds7 = c7,

where the 1 × 8 matrix (ct), is the unique difference set image in C8.
One of the remaining six equivalent degree two representations of H is

χ : y �→
(
ζ 0
0 ζ−1

)
, x �→

(
0 τ
τ 0

)
,

where ζ and τ are the seventh and eighth roots of unity respectively. By
applying this representation to D̂, we get

χ(D̂) =

(
a0 + b0τ

2 a1τ + b1τ
3

ā1τ + b̄1τ
3 ā0 + b̄0τ

2

)
,

where a0 =
∑6

s=0(ds0 − ds4)ζ
s,b0 =

∑6
s=0(ds2 − ds6)ζ

s,

a1 =
∑6

s=0(ds1−ds5)ζs, b1 =
∑6

s=0(ds3−ds7)ζs, and a0, a1, b0, b1 ∈ Z[ζ].
Furthermore,

χ(D̂)χ(D̂) =

(
a11 a12
ā12 a22

)
,

with a11 = a0ā0 − a0b̄0τ
2 + ā0b0τ

2 + b0b̄0 + a1ā1 − a1b̄1τ
2 + ā1b1τ

2 +
b1b̄1,a22 = a0ā0+a0b̄0τ

2−ā0b0τ2+b0b̄0+a1ā1+a1b̄1τ2−ā1b1τ2+b1b̄1 and
a12 = −a0a1τ3−a0b1τ+b0a1τ−b0b1τ3+a1a0τ−a1b0τ3+a0b1τ3+b0b1τ .
The requirement χ(D̂)χ(D̂) = 49I2, implies

a0ā0 + b0b̄0 + a1ā1 + b1b̄1 = 49 (4.19)

ā0b0 + ā1b1 − a0b̄0 − a0b̄0 = 0 (4.20)

(a0 + b0)(a1 + b1)− 2a0b1 = 0 (4.21)

The existence or otherwise of the difference set image in H will be de-
cided by remark 2 and solving (4.17), (4.18), (4.19), (4.20) and (4.21)
simultaneously.
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4.6. The (C2)
3�C7 Images. Suppose G/N ∼= Frob(56), the Frobenius

group of order 56 and Frob(56) = ((C2)
3 � C7) = 〈a, b, c, x : a2 = b2 =

c2 = x5 = 1, xbx−1 = a, xbx−1 = b, xbx−1 = bc, ab = ba, ac = ca, bc =
cb〉. The derived subgroup of this group is isomorphic to the elementary
abelian group H ′ = 〈a, b, c : a2 = b2 = c2 = 1 = [a, b] = [b, c] = [a, c]〉 of
order 8. Suppose that

D̂ =
∑

�v∈H′,0≤j≤6

d�v,jg�vx
j, g�v = av1bv2cv3 , 0 ≤ v1, v2, v3 ≤ 1

is the difference set image in Frob(56). This group ring element may
also be viewed as a 8×7 matrix with the rows indexed by elements of H ′

and columns indexed by powers of x. Thus, we write D̂ =
∑6

j=0 D̂jx
j

with D̂j = (d�v,j) ∈ Z[H ′], the (j + 1)th column of D̂, j = 0, . . . , 6 and

D̂j is a 8 × 1 matrix. As a linear representation will have the derived
(commutator) group in its kernel and in this case, Frob(56)/H ′ ∼= C7,
therefore, H has seven characters, defined as

χt(a) = χt(b) = χt(c) = 1, χt(x) = ζt, t = 0, . . . , 6;

ζ is the seventh root of unity and χ0 is the trivial character. Further-
more, using the presentation of Frob(56), there are two conjugate classes
in H ′. These conjugate classes produced the orbits:

1, the identity

a→ cb→ ba→ acb→ ca→ c→ b→ a.

These orbits are used to define the non linear representations of H by
inducing the non-trivial characters of H ′. Suppose that T = {1, x, x2,
x3, x4, x5, x6} is a left transversal of H ′ in Frob(56). Then, the rep-
resentation of Frob(56) induced by the non-trivial of characters of H ′
is:

ψ : x �→ A0, a �→ A1, b �→ A2, c �→ A3,

where

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Furthermore, by inducing the trivial representation of H ′, we get:

χ : x �→ A0, a, b, c �→ I7.

As Frob(56)/H ′ ∼= C7, χ is the direct sum of χt, t = 0, . . . , 6 and has

the trivial representation in its constituent. However, if δ =
∑6

t=0 atx
tH ′

∈ Z[Frob(56)/H ′], then it’s translate is xH ′δ =
∑6

t=0 atx
t+1H ′. This

shows that translation of δ results in linear shift of coefficients. Thus,
χ(D̂) is a circulant matrix and hence, using the C7 images, we get

χ(D̂) = 10J7 − 7I7 or χ(D̂) = 8J7 + 7I7. Furthermore, χ(D̂)J7 = 63J7,

χ(Frob(56)) = 8J7 and χ(D̂)χ(D̂)(−1) = 49I5+14·8·5J5 = 49I7+560J7.
The representation ψ is irreducible and does not have the trivial repre-
sentation in its constituent, then ψ(D̂) · ψ(D̂)(−1) = 49 · I7. Just like in

the Frob(20) case, the rows and columns of ψ(D̂) have the same prop-

erty. Also, the entries of ψ(D̂) are real and hence the characters of ψ(D̂)
are real valued (but the converse in not necessarily true). Consequently,

(1) any two distinct rows of ψ(D̂) are orthogonal

(2) the inner product of any row of ψ(D̂) by itself is 49

(3) ψ(D̂)J = Jψ(D̂) = ±7J

The above information along with remark 2 will be helpful in deciding
the existence or otherwise of (280, 63, 14) difference set image in this
group.

5. Difference set images in some factor groups of order 70

5.1. The C35 images. Suppose that G/N ∼= C35 = 〈x, y : x7 = y5 =
1 = [x, y]〉. As the ideal generated by 7 factors trivially in the ring

Z[ζ35], the alias is of the form ±7ζj35, j = 0, . . . , 34. Thus, the difference
set images are F1 = 7 + 2〈x〉(y + y2 + y3 + y4) and F2 = 7y + (1 +
y)〈x〉+ 2〈x〉(y2 + y3 + y4). The other solutions that are not images are
F3 = −7 + 2〈x〉〈y〉 and F4 = −7y + (1 + 3y)〈x〉 + 2〈x〉(y2 + y3 + y4).

5.2. There are no C70
∼= C35 × C2 images. Suppose that G/N ∼=

C35 × C2 = 〈x, y : x7 = y5 = [x, y] = 1〉 × 〈z : z2 = 1〉. As this group is
of the form (2.11), we use (2.13) to get

D̂ = Fi

(〈z〉
2

)
+ gBj

(
2− 〈z〉

2

)
, g ∈ C35 × C2 (5.1)

where K = C35, |K| = 35, α = 2, Bj = Fj − 2K, i = 1, 2, j = 1, 2, 3, 4.
Note that Fi and Fj are difference set images in C35 for i = j = 1, 2
while Fj is other solution, j = 3, 4. The solutions to (5.1) are 7 −
〈x〉 + 〈x〉(y + y2 + y3 + y4) + 〈x〉〈y〉z, 7 + 〈x〉(y + y2 + y3 + y4)〈z〉 and
7 + 〈x〉(y + y2 + y3) + 〈x〉〈y〉z. However, none of these solutions is a
difference set image because either one of the entries is negative or one
intersection number exceeds coset bound of 4. Dillon trick also implies
that there are no difference set images in D35.
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6. CONCLUDING REMARKS

The existence or otherwise of (280, 63, 14) difference sets is almost
decided. Our search reveals that, out of the forty groups of order 280,
only three with GAP location numbers [18] (280, cn), where cn = 2, 6, 33
could possibly admit this difference sets. To finish up, one needs to start
by finding the complete difference set images in G/N ∼= Q28, G/N ∼=
C7�C8 and G/N ∼= (C2)

3 �C7 if they exist. Thereafter, one can either
construct (280, 63, 14) difference sets or show that such construction is
impossible.
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