CONTROLLABILITY OF QUANTUM STOCHASTIC DIFFERENTIAL INCLUSIONS

M. O. OGUNDIRAN

ABSTRACT. We investigate the controllability problem of quantum stochastic differential inclusions driven by quantum field operators. The operator-valued quantum stochastic processes involved are upper semicontinuous convex-valued multifunctions. We employed the fixed point approach to prove the result.

Keywords and phrases: Fixed point theorems, admissible controls, upper semicontinuous maps.

2010 Mathematical Subject Classification: 34A60, 81S25.

1. INTRODUCTION

This paper is concerned with the controllability results for quantum stochastic differential inclusions with nonlocal conditions. In [7] the existence of mild solution for right and left quantum stochastic differential equation was established. The work is a further generalization of Hudson-Parthasarathy quantum stochastic differential equation to the case of unbounded coefficients. The multivalued generalization of the same work was established in [6] in which the existence of solution of quantum stochastic evolution inclusions was established. A further extension of the quantum stochastic calculus to problems with impulsive effects was investigated in [14] which was an extension of the work in [7] to the case of having impulsive effects. By using a directionally continuous selection strategy, we established the results on the solutions set of semicontinuous quantum stochastic differential inclusions in [15].

In the classical setting several authors have worked on the nonlocal evolution problem initiated by [4]. Some authors even investigated the nonlocal problems with impulsive effects [1], [2], [3], [5], [16], [8]. The controllability results of such work were established in [9], [12] and the references cited therein. The aim of this work is to establish a non-classical generalization of controllability results for quantum stochastic differential inclusions with non-local condition.

Received by the editors August 06, 2015; Revised: July 14, 2016; Accepted: July 18, 2016

M. O. OGUNDIRAN

The fixed point approach employed in this work is Kakutani-Ky Fan fixed point theorem [11]. It is suitable for the work as it gives a multivalued generalization of Schauder fixed point theorem in Banach spaces. The result obtained in this work is an extension of the results in [13] to controllability problem of quantum stochastic evolution inclusions. Moreover, we obtained as a corollary to the result an extension of the result in [14] to quantum stochastic evolution inclusion with non local condition.

In section 2, preliminaries on notations and definitions were stated while main result was established in section 3.

2. PRELIMINARY

Let \mathbb{D} be some pre-Hilbert space whose completion is \mathcal{R} ; γ is a fixed Hilbert space and $L^2_{\gamma}(\mathbb{R}_+)$ is the space of square integrable γ -valued maps on \mathbb{R}_+ .

The inner product of the Hilbert space $\mathcal{R} \otimes \Gamma(L^2_{\gamma}(\mathbb{R}_+))$ will be denoted by $\langle ., . \rangle$ and $\| . \|$ the norm induced by $\langle ., . \rangle$. We denote by V the Banach space from the completion of induced norm $\| . \|$. Let \mathbb{E} be linear space generated by the exponential vectors in Fock

space $\Gamma(L^2_{\gamma}(\mathbb{R}_+))$ and $(\mathbb{D}\underline{\otimes}\mathbb{E})_{\infty}$ be the set of all sequences $\xi = \{\xi_n\}_{n=1}^{\infty}$ of members of $\mathbb{D}\underline{\otimes}\mathbb{E}$, such that

 $\sum_{n=1}^{\infty} \| x\xi_n \|^2 < \infty, \forall x \in \overline{\mathcal{B}}; \text{ where } \mathcal{B} \equiv L_w^+((\mathbb{D} \underline{\otimes} \mathbb{E})_\infty, \mathcal{R} \otimes \Gamma(L_\gamma^2(\mathbb{R}_+))).$ Then the family of seminorms $\{\| . \|_{\xi}, \xi \in (\mathbb{D} \underline{\otimes} \mathbb{E})_\infty\}, \text{ where }$

$$\parallel x \parallel_{\xi} = \left[\sum_{n=1}^{\infty} \parallel x\xi_n \parallel^2 \right]^{\frac{1}{2}}, x \in \mathcal{B},$$

generates a σ -strong topology, denoted by $\tau_{\sigma s}$. The completion of $(\mathcal{B}, \tau_{\sigma s})$ is denoted by $\widetilde{\mathcal{B}}$. The underlying elements of $\widetilde{\mathcal{B}}$ consist of linear maps from $(\mathbb{D} \underline{\otimes} \mathbb{E})_{\infty}$ into $\mathcal{R} \otimes \Gamma(L^2_{\gamma}(\mathbb{R}_+))$ having domains of their adjoints containing $(\mathbb{D} \underline{\otimes} \mathbb{E})_{\infty}$. By a multivalued stochastic process indexed by $I = [0, T] \subseteq \mathbb{R}_+$, we mean a multifunction on Iwith values in $\widetilde{\mathcal{B}}$.

If Φ is a multivalued stochastic process indexed by $I \subseteq \mathbb{R}_+$, then a selection of Φ is a stochastic process $\phi : I \to \widetilde{\mathcal{B}}$ with the property that $\varphi(t) \in \Phi(t)$ for almost all $t \in I$.

We denote by S_{Φ}^1 the set of all selectors of $\Phi(.)$ that belong to the Lebesgue-Bochner space $L^1(I, \widetilde{\mathcal{B}})$.

Definition 1: A multivalued stochastic process $\Phi : \widetilde{\mathcal{B}} \to 2^{\widetilde{\mathcal{B}}}$ is said to be upper semicontinuous (u.s.c.) if for all nonempty closed subset $C \subseteq \widetilde{\mathcal{B}}$, the set $\Phi^{-}(C) = \{x \in \widetilde{\mathcal{B}} : \Phi(x) \cap C \neq \emptyset\}$ is closed in $\widetilde{\mathcal{B}}$.

370

Definition 2: A multivalued stochastic process Φ will be called (i) adapted if $\Phi(t) \subseteq \widetilde{\mathcal{A}}_t$ for each $t \in \mathbb{R}_+$; (ii) measurable if $t \mapsto d_{\eta\xi}(x, \Phi(t))$ is measurable for arbitrary $x \in \widetilde{\mathcal{B}}, \xi \in (\mathbb{D} \underline{\otimes} \mathbb{E})_{\infty}$; (iii) locally absolutely *p*-integrable if $t \mapsto || \Phi(t) ||_{\xi}, t \in \mathbb{R}_+$, lies in $L^p_{loc}(\widetilde{\mathcal{B}})$ for arbitrary $\xi \in (\mathbb{D} \underline{\otimes} \mathbb{E})_{\infty}$

The set of all absolutely *p*-integrable multivalued stochastic processes will be denoted by $L^p_{loc}(\widetilde{\mathcal{B}})_{mvs}$ and for $p \in (0, \infty)$, $L^p_{loc}(I \times \widetilde{\mathcal{B}})_{mvs}$ is the set of maps $\Phi : I \times \widetilde{\mathcal{B}} \to 2^{\widetilde{\mathcal{B}}}$ such that $t \mapsto \Phi(t, X(t))$, $t \in I$ lies in $L^p_{loc}(\widetilde{\mathcal{B}})_{mvs}$ for every $X \in L^p_{loc}(\widetilde{\mathcal{B}})$.

We denote by $comp(\widetilde{\mathcal{B}})$ (resp. $comp_c(\widetilde{\mathcal{B}})$) the collection of all compact subsets (resp. compact (convex) subsets) of $\widetilde{\mathcal{B}}$. We define the Hausdorff topology on $comp(\widetilde{\mathcal{B}})$ as follows:

For $x \in \widetilde{\mathcal{B}}$, $\mathcal{M}, \mathcal{N} \in comp(\widetilde{\mathcal{B}})$ and $\xi \in (\mathbb{D} \underline{\otimes} \mathbb{E})_{\infty}$, define

$$\rho_{\xi}(\mathcal{M}, \mathcal{N}) \equiv \max(\delta_{\xi}(\mathcal{M}, \mathcal{N}), \delta_{\xi}(\mathcal{N}, \mathcal{M}))$$

where

$$\delta_{\xi}(\mathcal{M}, \mathcal{N}) \equiv \sup_{x \in \mathcal{M}} \mathbf{d}_{\xi}(x, \mathcal{N}) \text{ and} \\ \mathbf{d}_{\xi}(x, \mathcal{N}) \equiv \inf_{y \in \mathcal{N}} \parallel x - y \parallel_{\xi}.$$

The Hausdorff topology which shall be employed in what follows, denoted by, τ_H , is generated by the family of pseudometrics $\{\rho_{\xi}(.) : \xi \in (\mathbb{D} \underline{\otimes} \mathbb{E})_{\infty}\}$.

Moreover, if $\mathcal{M} \in comp(\widetilde{\mathcal{B}})$, then $\mid \mathcal{M} \mid_{\xi}$ is defined by

$$\parallel \mathcal{M} \parallel_{\xi} \equiv \rho_{\xi}(\mathcal{M}, \{0\});$$

for arbitrary $\xi \in (\mathbb{D} \underline{\otimes} \mathbb{E})_{\infty}$.

Consider multivalued stochastic processes $E, F, G, H \in L^2_{loc}(I \times \widetilde{\mathcal{B}})_{mvs}$ and $(0, x_0)$ be a fixed point in $[0, T] \times \widetilde{\mathcal{B}}$. Then, a relation of the form

$$X(t) \in x_0 + \int_0^t (E(s, X(s)) d\Lambda_{\pi}(s) + F(s, X(s)) dA_f(s) + G(s, X(s)) dA_g(s) + H(s, X(s)) ds) \ t \in [0, T]$$

will be called a stochastic integral inclusion with coefficients E, F, G and H.

The stochastic differential inclusion corresponding to the integral

inclusion above is;

$$dX(t) \in E(t, X(t)) d\Lambda_{\pi}(t) + F(t, X(t)) dA_f(t)$$

+ $G(t, X(t)) dA_g^+(t) + H(t, X(t)) dt.$
 $X(0) = x_0$ almost all $t \in [0, T].$

In this paper, we consider the following nonlocal quantum stochastic evolution system:

$$dx(t) \in [A(t)x(t) + (Bu)(t) + H(t, x(t))]dt + E(t, x(t))d\Lambda_{\pi}(t) + F(t, x(t))dA_{f}(t) + G(t, x(t))dA_{g}^{+}(t) \text{ almost all } t \in I.$$
(1)
$$x(0) + M(x) = x_{0},$$

where $\{A(t)\}_{t\in I}$ is a family of linear operators that generate an evolution operator

$$U: \Delta = \{(t,s) \in I \times I : 0 \le s \le t \le T\} \to L(\mathcal{B})$$

$$\begin{split} E, F, G, H \in L^{2}_{loc}(I \times \widetilde{\mathcal{B}})_{mvs} , M : C(I, \widetilde{\mathcal{B}}) \to \widetilde{\mathcal{B}} , x_{0} \in \widetilde{\mathcal{B}} . L^{2}(I, V) \text{ is a Banach space of admissible control function with norm } \| u \|_{L^{2}} = \left(\int_{0}^{T} \| u(t) \|^{2} dt \right)^{\frac{1}{2}} . B \text{ is a bounded linear operator from } V \text{ to } \widetilde{\mathcal{B}} . \end{split}$$

Definition 3 :A continuous adapted stochastic process $x \in C(I, \mathcal{B})$ will be said to be a mild solution of problem (2.1) if x is of the integral equation

$$\begin{aligned} x(t) &= U(t,0)x(0) + \int_0^t U(t,s) \bigg(\Psi_E(s,x(s)) d\Lambda_\pi(s) + \Psi_F(s,x(s)) dA_f(s) \\ &+ \Psi_G(s,x(s)) dA_g^+(s) + (\Psi_H(s,x(s)) + Bu) ds \bigg), \ t \in I. \end{aligned}$$

with $\Psi_P \in S^1_{P(.,x(.))}$, $P \in \{E, F, G, H\}$ and $x(0) + M(x) = x_0$. **Definition 4**: The system (2.1) is said to be nonlocally controllable

on I if, for every $x_0, x_1 \in \widetilde{\mathcal{B}}$, there exists a control $u \in L^2(I, V)$ such that the mild solution x(.) of (2.1) satisfies $x(T) + M(x) = x_1$.

The following hypotheses shall be employed in the main result:

H(1): $\Phi : I \times \hat{\mathcal{B}} \to comp_c(\hat{\mathcal{B}}), \ \Phi \in \{E, F, G, H\}$ are multivalued stochastic processes such that:

(i) for every $x \in \widetilde{\mathcal{B}}, t \to \Phi(t, x)$ is measurable; (ii) for every $t \in I$, $\Phi(t, .)$ is u.s.c. on $\widetilde{\mathcal{B}}$.

(iii) $\sup\{|\Phi(t,x)|_{\xi}: ||x||_{\xi} \le \frac{n}{5}\} \le \varphi_n(t)$ a.e., with $\varphi_n(.) \in L^1(I,\mathbb{R})$ and

$$\underline{\lim}\frac{1}{n}\int_0^T \varphi_n(s)ds = 0$$

H(2): $\{A(t)\}_{t\in I}$ is a family of linear, densely defined operators that generate a strongly continuous evolution operator

$$U: \Delta = \{(t, s) \in I \times I : 0 \le s \le t \le T\} \to L(\mathcal{B})$$

such that U(t, s) is compact for t - s > 0.

H(3): $M: C(I, \widetilde{\mathcal{B}}) \to \widetilde{\mathcal{B}}$ is a compact operator such that

$$\lim_{\|y\|_{\xi} \to \infty} \frac{\| M(y) \|_{\xi}}{\| y \|_{\xi}} = 0.$$

H(4): The linear operator $W: L^2(I, V) \to \widetilde{\mathcal{B}}$ defined by

$$Wu = \int_0^T U(T,s)Bu(s)ds$$

has an invertible operator W^{-1} which takes values in $L^2(I, V) \setminus KerW$ and there exists positive constants M_1 and M_2 such that $\parallel B \parallel_{\xi} \leq M_1$ and $\parallel W^{-1} \parallel \leq M_2$

The following fixed point theorem shall be employed in the sequel. **Lemma 1** ([17], p. 452): Let X be a Banach space and $K \in P_{cl,c}(X)$ and suppose that the operator $G: K \to P_{cl,c}(K)$ is upper semicontinuous and the set G(K) is relatively compact in X, then G has a fixed point in K..

3. MAIN RESULTS

Theorem 1: If hypotheses H(1)-H(4) hold, then the problem (2.1) is nonlocally controllable on I.

Proof: Let $y(.) \in C(I, \widetilde{\mathcal{B}})$, define the control

$$u_{p}(t) = W^{-1} \bigg[x_{1} - M(y) - U(T, 0)(x_{0} - M(y)) \\ - \int_{0}^{T} U(T, s) \bigg(\Psi_{E}(s, x(s)) d\Lambda_{\pi}(s) + \Psi_{F}(s, x(s)) dA_{f}(s) \\ + \Psi_{G}(s, x(s)) dA_{g}^{+}(s) + (\Psi_{H}(s, x(s)) ds \bigg](t),$$

where $\Psi_P \in S^1_{P(.,x(.))}, P \in \{E, F, G, H\}$. We shall show that with this control, the multifunction $N : C(I, \widetilde{\mathcal{B}}) \to 2^{C(I,\widetilde{\mathcal{B}})}$, defined by

$$N(y) = \{ x \in C(I, \mathcal{B}) : x(t) = U(t, 0)(x_0 - M(y)) + \gamma(\Psi_E + \Psi_F + \Psi_G + \Psi_H + Bu_p)(t), \Psi_P \in S^1_{P(.,x(.))} \}$$

where
$$\gamma(\Psi_E + \Psi_F + \Psi_G + \Psi_H + Bu_p) \in C(I, \mathcal{B})$$
 is defined by
 $\gamma(\Psi_E + \Psi_F + \Psi_G + \Psi_H + Bu_p)(t) = \int_0^t U(t, s) \left(\Psi_E(s, x(s)) d\Lambda_\pi(s) + \Psi_F(s, x(s)) dA_f(s) + \Psi_G(s, x(s)) dA_g^+(s) + (\Psi_H(s, x(s)) + Bu_p) ds\right)$

has a fixed point. This fixed point is then a solution of the system (2.1). The proof of the theorem shall be in steps, we show that N is an upper semicontinuous compact-convex valued multifunction in $C(I, \tilde{\mathcal{B}})$ and we conclude by Kakutani-KyFan fixed point theorem and thus the system (2.1) is nonlocally controllable. Clearly, $x_1 - M(y) \in (N(y))(T)$.

Step 1 : There exists a positive integer $n_0 \ge 1$ such that $N(B_{n_0}) \subseteq B_{n_0}$, where $B_{n_0} = \{y \in C(I, \widetilde{\mathcal{B}}) : || y ||_C \le n_0\}$. Suppose not, then we can find $y_n \in C(I, \widetilde{\mathcal{B}}), x_n \in N(y_n)$ such that $|| y_n ||_C \le n$ and $|| x_n || > n$. Then we have for every $n \ge 1$,

 $x_{n}(t) = U(t,0)(x_{0} - M(y_{n}) + \gamma(\Psi_{E,n} + \Psi_{F,n} + \Psi_{G,n} + \Psi_{H,n} + Bu_{p_{n}})(t)$ for some $\Psi_{P,n} \in S^{1}_{P(.,y_{n}(.))}$. So we get

$$n < \| x_n \|_C \leq M_3(\| x_0 \|_{\xi} + \| M(y_n) \|_{\xi}) + \| \gamma(\Psi_{E,n} + \Psi_{F,n} + \Psi_{G,n} + \Psi_{H,n}) \|_C + \| \gamma(Bu_{p_n}) \|_C$$
(2)

where $M_3 > 0$ is such that $|| U(t,s) ||_L \leq M_3$. Note that

$$\| \gamma(\Psi_{E,n} + \Psi_{F,n} + \Psi_{G,n} + \Psi_{H,n}) \|_{C} = \sup_{t \in I} \| \gamma(\Psi_{E,n}(t) + \Psi_{F,n}(t) + \Psi_{G,n}(t) + \Psi_{H,n}(t)) \|_{\xi}$$

$$\leq \sup_{t \in I} \int_{0}^{t} \| U(t,s) \|_{L} \left(\| \Psi_{E}(s,x(s)) \|_{\xi} d\Lambda_{\pi}(s) + \| \Psi_{F}(s,x(s)) \|_{\xi} dA_{f}(s) + \| \Psi_{G}(s,x(s)) \|_{\xi} dA_{g}^{+}(s) + (\| \Psi_{H}(s,x(s)) \|_{\xi} ds)$$

$$\leq M_{3} \int_{0}^{T} \varphi_{n}(s) ds.$$

$$(3)$$

$$\| \gamma(Bu_{p_n}) \|_C \le \sup_{t \in I} \int_0^t \| U(t,s) \|_L \cdot \| B \|_{\xi} \cdot \| u_{p_n}(s) \|_{\xi} ds$$

$$\le M_2 M_3 T^{\frac{1}{2}} \| u_{p_n} \|_{L^2}$$
(4)

and

$$\| u_{p_n} \|_{L^2} = \| W^{-1} \bigg[x_1 - M(y_n) - U(T, 0)(x_0 - M(y_n)) - (\gamma(\Psi_{E,n} + \Psi_{F,n} + \Psi_{G,n} + \Psi_{H,n}))(T) \bigg] \|$$

$$\leq M_1 \bigg[\| x_1 \|_{\xi} + M_3 \| x_0 \|_{\xi} + (1 + M_3) \| M(y_n) \|_{\xi}$$

$$+ M_3 \int_0^T \varphi_n(s) ds \bigg]$$
(5)

Hence by (3.1), we have

$$n < (M_{3} + M_{1}M_{2}M_{3}^{2}b^{\frac{1}{2}}) \parallel x_{0} \parallel_{\xi} + (M_{1}M_{2}M_{3}^{2}b^{\frac{1}{2}}) \parallel x_{1} \parallel_{\xi} + ((1 + M_{1}M_{2}b^{\frac{1}{2}} + M_{1}M_{2}M_{3}b^{\frac{1}{2}})M_{3} \parallel M(y_{n}) \parallel_{\xi} + (M_{3} + M_{1}M_{2}M_{3}^{2}b^{\frac{1}{2}}) \int_{0}^{T} \varphi_{n}(s)ds \Rightarrow 1 < \frac{1}{n} \bigg[C_{1} + C_{2} \parallel M(y_{n}) \parallel_{\xi} + C_{3} \int_{0}^{T} \varphi_{n}(s)ds \bigg],$$
(6)

where $C_1 = M_3 + M_1 M_2 M_3^2 b^{\frac{1}{2}} \parallel x_0 \parallel_{\xi} + (M_1 M_2 M_3^2 b^{\frac{1}{2}}) \parallel x_1 \parallel_{\xi}$, $C_2 = (1 + M_1 M_2 b^{\frac{1}{2}} + M_1 M_2 M_3 b^{\frac{1}{2}}) M_3$ and $C_3 = (M_3 + M_1 M_2 M_3^2 b^{\frac{1}{2}})$. By passing to the limit as $n \to \infty$ in inequality (3.5), we get $1 \le 0$, a contradiction. Thus we conclude that there is $n_0 \ge 1$ such that $N(B_{n_0}) \subseteq B_{n_0}$. Step 2: We shall show that $N(B_{n_0})$ is equicontinuous. Let $x \in$

Step 2: We shall show that $N(B_{n_0})$ is equicontinuous. Let $x \in N(B_{n_0})$ and let $t_2, t_1 \in I, t_2 > t_1 > 0$. We have $y \in N(B_{n_0})$,

$$\begin{split} P \in S^1(P(.,y(.))), \text{ for any } \epsilon > 0, \text{ such that } t_1 - \epsilon > 0, \\ \|x(t_2) - x(t_1)\|_{\xi} = \|\gamma(\Psi_E + \Psi_F + \Psi_G + \Psi_H + Bu_p)(t_2) \\ -\gamma(\Psi_E + \Psi_F + \Psi_G + \Psi_H + Bu_p)(t_1)\|_{\xi} \\ = \|\int_0^{t_2} U(t_2,s) \Big[\Psi_E(s,x(s)) d\Lambda_\pi(s) + \Psi_F(s,x(s)) dA_f(s) \\ &+ \Psi_G(s,x(s)) dA_g^+(s) + (\Psi_H(s,x(s)) + Bu_p(s)) ds \Big] \\ -\int_0^{t_1} U(t_1,s) \Big[(\Psi_E(s,x(s)) d\Lambda_\pi(s) + \Psi_F(s,x(s)) dA_f(s) \\ &+ \Psi_G(s,x(s)) dA_g^+(s) + (\Psi_H(s,x(s)) + Bu_p(s)) ds \|_{\xi} \\ \leq \int_{t_2}^{t_1} \|U(t_2,s)\|_L \cdot \| \Big[\Psi_E(s,x(s)) d\Lambda_\pi(s) + \Psi_F(s,x(s)) dA_f(s) \\ &+ \Psi_G(s,x(s)) dA_g^+(s) + (\Psi_H(s,x(s)) + Bu_p(s)) ds \Big] \|_{\xi} \\ + \int_0^{t_1} \|U(t_2,s) - U(t_1,s)\|_L \| \Big[\Psi_E(s,x(s)) d\Lambda_\pi(s) + \Psi_F(s,x(s)) dA_f(s) \\ &+ \Psi_G(s,x(s)) dA_g^+(s) + (\Psi_H(s,x(s)) + Bu_p(s)) \|_{\xi} ds \\ \leq M_3 \int_{t_1}^{t_2} [\varphi_{n_0}(s) + M_2 \|u_f(s)\|_{\xi}] ds \\ &+ \int_0^{t_1-\epsilon} \|U(t_2,s) - U(t_1,s)\|_L \| \Big[\Psi_E(s,x(s)) d\Lambda_\pi(s) + \Psi_F(s,x(s)) dA_f(s) \\ &+ \Psi_G(s,x(s)) dA_g^+(s) + (\Psi_H(s,x(s)) + Bu_p(s)) \|_{\xi} ds \\ \leq M_3 \int_{t_1}^{t_2} [\varphi_{n_0}(s) + M_2 \|u_f(s)\|_{\xi}] ds + 2M_3 \int_{t_1-\epsilon}^{t_1-\epsilon} [\varphi_{n_0}(s) + M_2 \|u_f(s)\|_{\xi}] ds \\ \leq M_3 \int_{t_1}^{t_2} [\varphi_{n_0}(s) + M_2 \|u_f(s)\|_{\xi}] ds + 2M_3 \int_{t_1-\epsilon}^{t_1-\epsilon} [\varphi_{n_0}(s) + M_2 \|u_f(s)\|_{\xi}] ds \\ \leq M_3 \int_{t_1}^{t_2} [\varphi_{n_0}(s) + M_2 \|u_f(s)\|_{\xi}] ds + 2M_3 \int_{t_1-\epsilon}^{t_1-\epsilon} [\Psi_0(s) + M_2 \|u_f(s)\|_{\xi}] ds \\ \leq M_3 \int_{t_1}^{t_2} [\varphi_{n_0}(s) + M_2 \|u_f(s)\|_{\xi}] ds + 2M_3 \int_{t_1-\epsilon}^{t_1-\epsilon} [\Psi_0(s) + M_2 \|u_f(s)\|_{\xi}] ds \\ \leq M_3 \int_{t_1}^{t_2} [\varphi_{n_0}(s) ds + 2M_3 \int_{t_1-\epsilon}^{t_1-\epsilon} [\Psi_0(s) + M_2 \|u_f(s)\|_{\xi}] ds \\ \leq M_3 \int_{t_1}^{t_2} [\varphi_{n_0}(s) ds + 2M_3 \int_{t_1-\epsilon}^{t_1-\epsilon} [\Psi_0(s) + M_2 \|u_f(s)\|_{\xi}] ds \\ + \int_{0}^{t_1-\epsilon} \|U(t_2,s) - U(t_1,s)\|_{L} \|g_{n_0}(s) ds + \int_{0}^{t_1-\epsilon} \|U(t_2,s) - U(t_1,s)\|_{L} \varphi_{n_0}(s) ds \\ + \left(\int_{0}^{t_1-\epsilon} \|U(t_2,s) - U(t_1,s)\|_{L}^{2} ds\right)^{\frac{1}{2}} M_2 \|u_p\|_{L^2} \\ + M_2M_3(t_2-t_1)^{\frac{1}{2}} \|u_p\|_{L^2} + 2M_2M_3\epsilon^{\frac{1}{2}} \|u_p\|_{L^2} \\ \text{and} \\ \end{bmatrix}$$

$$\| u_p \|_{L^2} \le M_1 \left[M_3 \| x_0 \|_{\xi} + \| x_1 \|_{\xi} + (M_3 + 1) \| M(B_{n_0}) \|_{\xi} + M_2 \int_0^T \varphi_{n_0}(s) ds \right] = M_4$$

where $\| M \|_{\xi} = \sup[\| M(y) \|_{\xi}: y \in B_{n_0}]$ is bounded (since M is a compact operator). Moreover, $t \to U(t,s)$ is continuous in the operator norm topology, uniformly $s \in T$ such that t - s is bounded away from zero. Given $\epsilon_1 > 0$, by absolute continuity of

376

the Lebesgue integral we can choose $\epsilon > 0$, such that

$$2M_3 \int_{t_1-\epsilon}^{t_1} \varphi_m(s) ds + 2M_2 M_3 M_4 \epsilon^{\frac{1}{2}} < \frac{\epsilon_1}{2}.$$

By the continuity property of U(., s) and absolute continuity of the Lebesgue integral, we can find $\delta > 0$ such that if $t_2 - t_1 < \delta$, we have

$$M_3 \int_{t_1}^{t_2} \varphi_{n_0}(s) ds + \int_0^{t_1-\epsilon} \| U(t_2,s) - U(t_1,s) \|_L \varphi_{n_0}(s) ds + \left(\int_0^{t_1-\epsilon} \| U(t_2,s) - U(t_1,s) \|_L^2 ds \right)^{\frac{1}{2}} M_2 M_4 + M_2 M_3 M_4 (t_2-t_1)^{\frac{1}{2}} < \frac{\epsilon_1}{2}$$

So $N(B_{n_0})$ is equicontinuous. Also,

$$K = \{\gamma(\Psi_E + \Psi_F + \Psi_G + \Psi_H + Bu_p) : y \in B_{n_0}, \Psi_P \in S^1_{P(.,x(.))}\} \subseteq C(I, \widetilde{\mathcal{B}})$$

is equicontinuous.

Step 3: We shall show that $N(B_{n_0})(t) = \{x(t) : x \in N(B_{n_0})\}$ is a relatively compact subset of $\widetilde{\mathcal{B}}$ for every $t \in I$.

 $N(B_{n_0})$ is bounded since B_{n_0} is bounded and $N(B_{n_0}) \subset B_{n_0}$. Let $t \in (0,T]$ be fixed and ϵ be a real number satisfying $0 < \epsilon < t$. For $y \in B_{n_0}$ and $h \in N(y)$ there exist functions $\Psi_P \in S^1_{P(.,x(.))}$, $P \in \{E, F, G, H\}$, such that

$$\begin{split} h(t) &= U(t,0)(y_0 - M(y)) + \int_0^{t-\epsilon} U(t,s) \bigg[(\Psi_E(s,x(s))d\Lambda_\pi(s) \\ &+ \Psi_F(s,x(s))dA_f(s) + \Psi_G(s,x(s))dA_g^+(s) + (\Psi_H(s,x(s)) + Bu_P(s))ds \bigg] \\ &+ \int_{t-\epsilon}^t U(t,s) \bigg[(\Psi_E(s,x(s))d\Lambda_\pi(s) + \Psi_F(s,x(s))dA_f(s) \\ &+ \Psi_G(s,x(s))dA_g^+(s) + (\Psi_H(s,x(s)) + Bu_P(s))ds \bigg] \end{split}$$

Define

$$\begin{aligned} h_{\epsilon}(t) &= U(t,0)(y_0 - M(y)) + \int_0^{t-\epsilon} U(t,s) \bigg[\Psi_E(s,x(s)) d\Lambda_{\pi}(s) \\ &+ \Psi_F(s,x(s)) dA_f(s) + \Psi_G(s,x(s)) dA_g^+(s) + (\Psi_H(s,x(s)) + Bu_p(s)) ds \bigg] \\ &= U(t,0)(y_0 - M(y)) + U(\epsilon,0) \int_0^{t-\epsilon} U(t-\epsilon,s) \bigg[\Psi_E(s,x(s)) d\Lambda_{\pi}(s) \\ &+ \Psi_F(s,x(s)) dA_f(s) + \Psi_G(s,x(s)) dA_g^+(s) + (\Psi_H(s,x(s)) + Bu_p(s)) ds \bigg] \end{aligned}$$

Since U(t,s), is compact, the set $H_{\epsilon}(t) = \{h_{\epsilon}(t) : h_{\epsilon} \in N(y)\}$ is precompact in $\widetilde{\mathcal{B}}$ for every ϵ , $0 < \epsilon < t$. Moreover, for every $h \in N(y),$

$$|h(t) - h_{\epsilon}(t)| \leq M \int_{t-\epsilon}^{t} (\varphi(x(s)) + c) ds$$
$$\leq M \int_{t-\epsilon}^{t} (\varphi(\alpha(s)) + c) ds$$

Therefore, there are precompact sets arbitrarily close to the set $\{h(t) : h \in N(y)\}$. Hence the set $\{h(t) : h \in N(y)\}$ is precompact in $\widetilde{\mathcal{B}}$.

Step 4: We shall show that N has closed graph.

Let $y_n \to y_*$, $h_n \in N(y_n)$, $y_n \in K$ and $h_n \to h_*$. We shall prove that $h_* \in N(y_*)$, $h_n \in N(y_n)$ means that there exists $\Psi_{n,P} \in S^1_{P(.,y_n(.))}$, such that for each $t \in I$,

$$h_{n}(t) = U(t,0) \left[y_{0} - M(y_{n}) \right] + \int_{0}^{t} U(t,s) \left[(\Psi_{*,E}(s,x(s))) d\Lambda_{\pi}(s) + \Psi_{*,F}(s,x(s))) dA_{f}(s) + \Psi_{*,G}(s,x(s)) dA_{g}^{+}(s) + (\Psi_{*,H}(s,x(s)) + Bu_{y_{*}}(s)) ds \right]$$

We have that

$$\| h_n - U(t,0)[y_0 - M(y_n)] - \int_0^t U(t,s)[Bu_n(s)]ds - \left(h_* - U(t,0)[y_0 - M(y_*)]\right) - \int_0^t U(t,s)Bu_{y_*}(s)ds \|_C \to 0 \text{ as } n \to \infty$$

Consider the linear operator

$$\Gamma: L^1(I, \widetilde{\mathcal{B}}) \to C(I, \widetilde{\mathcal{B}}),$$
$$v \mapsto \Gamma(v)(t) = \int_0^t U(t, s)v(s)ds$$

From [11], it follows that $\Gamma \circ S_P$ is a closed graph operator. Moreover, we have that

$$h_n(t) - U(t,0) \left[y_0 - M(y_*) \right] - \int_0^t U(t,s) B u_{y_*}(s) ds \in \Gamma(S_{P,y_n}).$$

378

Since $y_n \to y_*$, it follows that

$$h_*(t) - U(t,0)[y_0 - M(y_*)] - \int_0^t U(t,s)Bu_{y_*}(s)ds$$
$$= \int_0^t U(t,s)v_*(s)ds$$

for some $v_* \in S_{P,y_*}$. As a consequence of Lemma 1, we deduce that N has a fixed point and therefore the system (2.1) is nonlocally controllable on I.

If $B \equiv 0$ in the system (2.1), we have quantum stochastic evolution inclusions with non local condition. Therefore, the next corollary gives a result on the existence of mild solution of quantum stochastic evolution inclusions with non local condition. However, in this case, the mild solution will be of the form :

$$\begin{aligned} x(t) &= U(t,0)x(0) + \int_0^t U(t,s) \bigg(\Psi_E(s,x(s)) d\Lambda_\pi(s) + \Psi_F(s,x(s)) dA_f(s) \\ &+ \Psi_G(s,x(s)) dA_g^+(s) + (\Psi_H(s,x(s))) ds \bigg), \ t \in I. \end{aligned}$$

with $\Psi_P \in S^1_{P(.,x(.))}, P \in \{E, F, G, H\}$ and $x(0) + M(x) = x_0$.

Corollary If hypotheses $(H_1) - (H_3)$ are satisfied then there exist a mild solution to the non local problem

$$dx(t) \in [A(t)x(t) + H(t, x(t))]dt + E(t, x(t))d\Lambda_{\pi}(t) + F(t, x(t))dA_{f}(t) + G(t, x(t))dA_{g}^{+}(t), \text{ almost all } t \in I. x(0) + M(x) = x_{0}.$$

REFERENCES

- A. Anguraj and M. Mallika Arjunan, Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electronic Journal of Differential Equations, 111 (2005), 1-8.
- [2] M. Malika Arjunan, V. Kavitha and S. Selvi, Existence results for impulsive differential equations with nonlocal conditions via measures of noncompactness, J. Nonlinear Sci. Appl. 5, 2012, 195-205.
- [3] M. Benchohra and S. K. Ntouyas, Existence of mild solutions of semilinear evolution inclusions with nonlocal conditions, Georgian Math. J., 7, 2000, 221-230.
- [4] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162, 1991, 494-505.
- [5] L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of solutions of nonlocal Cauchy problem in a Banach space, Appl. Anal. 40, 1990, 11-19.
- [6] G.O.S. Ekhaguere, Quantum stochastic evolutions, International Journal of Theoretical Physics, 35, 1996, 9, 1909-1946.

M. O. OGUNDIRAN

- [7] F. Fagnola and S.J. Wills, Solving quantum stochastic differential equations with unbounded coefficients, J. Funct. Anal. 198, 2003, 279-310.
- [8] Z. Fan, Impulsive problems for semilinear differential equations with nonlocal conditions, Nonlinear Anal. 72, 2010, 1104-1109.
- [9] E.P. Gatsori, Controllability results for nondensely defined evolution differential inclusions with nonlocal conditions, J. Math. Anal. Appl. 297, 2004, 194-211.
- [10] R.L. Hudson and K.R. Parthasarathy, Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys., 93, 1984, 3, 301-323.
- [11] A. Lasota, Z. Opial, An application of the KakutaniKy Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13, 1965, 781786.
- [12] G. Li and X. Xue, Controllability of evolution inclusions with nonlocal conditions, Appl. Math. Computation, 141, 2003, 375-384.
- [13] M. O. Ogundiran, On the mild solutions of Quantum stochastic evolution inclusions, Communications in Appl. Anal., 19, 2015, 2, 307-318.
- [14] M. O. Ogundiran and V. F. Payne, On the existence of solutions of Impulsive Quantum stochastic differential equations, Journal of Differential Equations and Control processes, 2013, 2, 62-73.
- [15] M. O. Ogundiran and V. F. Payne, On the solution sets of semicontinuous quantum stochastic differential inclusions, Applied Mathematics E-Notes, 14, 2014, 135-143.
- [16] X. Xue, Existence of semilinear differential equations with nonlocal initial conditions, Acta Math. Sinica, 23, 6, 2007, 983-988.
- [17] E. Zeidler, Nonlinear Functional Analysis and Applications, Fixed Point Theorems, Springer-Verlag, New York, 1986.

DEPARTMENT OF MATHEMATICS, OBAFEMI AWOLOWO UNIVERSITY, ILE - IFE, NIGERIA

E-mail address: mogundiran@oauife.edu.ng, adeolu74113@yahoo.com