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CONTROLLABILITY OF QUANTUM STOCHASTIC
DIFFERENTIAL INCLUSIONS

M. O. OGUNDIRAN

ABSTRACT. We investigate the controllability problem of
quantum stochastic differential inclusions driven by quantum
field operators. The operator-valued quantum stochastic pro-
cesses involved are upper semicontinuous convex-valued multi-
functions. We employed the fixed point approach to prove the
result.
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1. INTRODUCTION

This paper is concerned with the controllability results for quantum
stochastic differential inclusions with nonlocal conditions. In [7]
the existence of mild solution for right and left quantum stochastic
differential equation was established. The work is a further gener-
alization of Hudson-Parthasarathy quantum stochastic differential
equation to the case of unbounded coefficients. The multivalued
generalization of the same work was established in [6] in which the
existence of solution of quantum stochastic evolution inclusions was
established. A further extension of the quantum stochastic calcu-
lus to problems with impulsive effects was investigated in [14] which
was an extension of the work in [7] to the case of having impulsive
effects. By using a directionally continuous selection strategy, we
established the results on the solutions set of semicontinuous quan-
tum stochastic differential inclusions in [15].

In the classical setting several authors have worked on the nonlocal
evolution problem initiated by [4]. Some authors even investigated
the nonlocal problems with impulsive effects [1], [2], [3], [5], [16],
[8]. The controllability results of such work were established in [9],
[12] and the references cited therein. The aim of this work is to
establish a non-classical generalization of controllability results for
quantum stochastic differential inclusions with non-local condition.

Received by the editors August 06, 2015; Revised: July 14, 2016; Accepted: July
18, 2016
369



370 M. O. OGUNDIRAN

The fixed point approach employed in this work is Kakutani-Ky
Fan fixed point theorem [11]. It is suitable for the work as it gives
a multivalued generalization of Schauder fixed point theorem in Ba-
nach spaces. The result obtained in this work is an extension of the
results in [13] to controllability problem of quantum stochastic evo-
lution inclusions. Moreover, we obtained as a corollary to the result
an extension of the result in [14] to quantum stochastic evolution
inclusion with non local condition.

In section 2, preliminaries on notations and definitions were stated
while main result was established in section 3.

2. PRELIMINARY

Let D be some pre-Hilbert space whose completion is R; v is a fixed
Hilbert space and Li(RjL) is the space of square integrable ~-valued
maps on R, .

The inner product of the Hilbert space R ® I'(L2(Ry.)) will be de-
noted by (.,.) and || . || the norm induced by (.,.) . We denote by
V' the Banach space from the completion of induced norm || . || .
Let E be linear space generated by the exponential vectors in Fock
space I'(L2(R,)) and (DQE), be the set of all sequences § =
{£,}5°, of members of DRE, such that

2y || 6, |I°< 0o, Vo € B; where B = L (DQE)s, ROT(L2(R4.))).
Then the family of seminorms {|| . ||¢,{ € (DQ®E)}, where

2
Iz = {z;?l | 2t H eB,

generates a o-strong topology, denoted by 7,5 . The completion
of (B, 7,s) is denoted by B. The underlying elements of B consist
of linear maps from (DRE)y into R @ T'(L2(R)) having domains
of their adjoints containing (DRE).,. By a multivalued stochastic
process indexed by I = [0,7] C R, we mean a multifunction on I
with values in .

If ® is a multivalued stochastic process indexed by I C R, then a
selection of @ is a stochastic process ¢ : [ — B with the property
that ¢(t) € ®(t) for almost all ¢t € 1.

We denote by S§ the set of all selectors of ®(.) that belong to the

Lebesgue-Bochner space L'(I, B).

Definition 1: A multivalued stochastic process @ : B — 28 is said
to be upper semicontinuous (u.s.c.) if for all nonempty closed sub-

set C' C B, the set &~ (C) = {z € B: ®(z)NC # 0} is closed in B.
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Definition 2: A multivalued stochastic process ® will be called
(i) adapted if ®(¢) C A, for cach ¢ € R,; (ii) measurable if
t — dye(x, ®(t)) is measurable for arbitrary x € B, ¢ € (DRE)y ;
(iii) locally absolutely p-integrable if ¢ —|| ®(t) ||¢, ¢ € R4, lies in
L (B) for arbitrary ¢ € (DQE)y,

The set of all absolutely p-integrable multivalued stochastic pro-

cesses will be denoted by L} (B).s and for p € (0,00), Lj (I X
B) s is the set of maps & : [ x B — 25 such that t — O(t, X (1)),
t € I lies in Lfac(g)mvs for every X € Lfoc(l?).

We denote by comp(B) (resp. comp,(B)) the collection of all com-
pact subsets (resp. compact (convex) subsets) of B. We define the

Hausdorff topology on comp~(l3) as follows:
Forxz € B, M,N € comp(B) and £ € (DRE), define

Pg(M,N) = maX((SE(M>N)’5§(N’M))
where
d¢(M,N) = sup d¢(z, N) and

zeEM
de(z,N) = inf ||z —y .

The Hausdorff topology which shall be employed in what follows,
denoted by, 7y , is generated by the family of pseudometrics {p¢(.) :
§ € (DKo}

Moreover, if M € comp(B) , then | M | is defined by

I M [le= pe(M, {0});

for arbitrary £ € (DQE) .
Consider multivalued stochastic processes E, F,G,H € L} (I x

B).mes and (0, x0) be a fixed point in [0, 7] x B. Then, a relation of
the form

X(t) € mo + /0 (E(s, X (5))dAz(s) + F(s, X(s))dAs(s)
+ G(s, X (s5))dA; (s) + H(s, X (s))ds) t € [0,T]

will be called a stochastic integral inclusion with coefficients F, F', G
and H.
The stochastic differential inclusion corresponding to the integral
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inclusion above is;
dX(t) € E(t, X(t))dA(t) + F(t, X (t))dAs(t)
+ Gt X (4)dAS () + H(t, X (1))dt.
X (0) = z¢ almost all ¢ € [0, T].

In this paper, we consider the following nonlocal quantum stochas-
tic evolution system:

dx(t) € [A(t)z(t) + (Bu)(t) + H(t,z(t))]dt + E(t, z(t))dA,(t)
+ F(t,x(t))dA(t) + G(t, x(t))dA; (t) almost all t € I. (1)
z(0) + M(x) = o,

where {A(t) }1er is a family of linear operators that generate an
evolution operator

U:A={(t,s) eI x[:0<s<t<T}— L(B)
E,F,G,H¢e L% (IXB)ms,M:C(I,B) = B,xy€B. L2(I,V) is

loc

a Banach space of admissible control function with norm || u || 2=
1

(fOT | w(t) || dt) . B is a bounded linear operator from V to B.

Definition 3 :A continuous adapted stochastic process x € C(I, B)
will be said to be a mild solution of problem (2.1) if z is of the
integral equation

x(t) = U(t,0)x(0) —l—/o U(t,s) <\I’E‘(S,l‘(5))dA7r(5) + Wp(s,x(s))dAf(s)
+ Ug(s,z(s))dA; (s) + (P (s, x(s)) + Bu)ds), tel.

with Wp € Sp( .y, P € {E,F,G, H} and z(0) + M(x) = 0.
Definition 4: The system (2.1) is said to be nonlocally controllable
on I if, for every zo, 21 € B, there exists a control u € L2(I, V') such
that the mild solution x(.) of (2.1) satisfies z(T") + M (x) = z;.
The following hypotheses shall be employed in the main result:
H(1): ® : I x B — comp,(B), ® € {E,F,G, H} are multivalued
stochastic processes such that:

(i) for every z € B, t — ®(t,z) is measurable; (i) for every t € I,
®(t,.) is w.s.c. on B.

(iii) sup{| ®(t, z) ||| = [|e< 2} < pn(t) ace. , with ¢, (.) € L*(I,R)
and

1 T
lim— / on(s)ds =0
nJo



QUANTUM STOCHASTIC DIFFERENTIAL INCLUSIONS... 373

H(2): {A(t)}ses is a family of linear, densely defined operators that
generate a strongly continuous evolution operator

U:A={(t,s) eI x[:0<s<t<T}— L(B)

such that U(t, s) is compact for ¢t — s > 0.
H(3): M : C(I,B) — B is a compact operator such that

M
M)
lylle—o0 H Y ||§

H(4): The linear operator W : L*(I,V) — B defined by

0.

Wu = /T U(T, s)Bu(s)ds

has an invertible operator W~! which takes values in L?(I,V) \
KerW and there exists positive constants M; and M, such that
| B lle< My and || W [|< M,

The following fixed point theorem shall be employed in the sequel.
Lemma 1 ([17], p. 452): Let X be a Banach space and K €
P, .(X) and suppose that the operator G : K — P, .(K) is upper
semicontinuous and the set G(K) is relatively compact in X, then
G has a fixed point in K..

3. MAIN RESULTS

Theorem 1: If hypotheses H(1)-H(4) hold, then the problem (2.1)
is nonlocally controllable on 1.

Proof: Let y(.) € C(I,B), define the control

%mzw*h—M@—mﬂwm—M@>

— /0 U(T, s) (‘I’E(s, 2(8))dA(s) + Yp(s, z(s))dAs(s)
+ Ua(s, 2(s))dA; (s) + (Vi(s, z(s))ds | (1),

where Up € 5113(.,55(.))’ P e {E,F,G, H}. We shall show that with
this control, the multifunction N : C'(1, g) —y 2CWU.B) , defined by

N(y) ={z € C(I,B) : z(t) = U(t,0)(zo — M(y))
(Vg + Ve + Ve + Uy + Bup)(t), Up € Spu)}
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where y(VUg + g + U + Uy + Buy) € C(I, B) is defined by
fﬂ@E+—WF%—WG%—WH—FBungziétU@ﬁﬂ(WE&gx@»dAW@)
+ Up(s, 2(5))dAs(s) + Wa(s, 2(s))dAS (s)
(s, 2(6)) + B

has a fixed point. This fixed point is then a solution of the system
(2.1). The proof of the theorem shall be in steps, we show that N is
an upper semicontinuous compact-convex valued multifunction in
C(I,B) and we conclude by Kakutani-KyFan fixed point theorem
and thus the system (2.1) is nonlocally controllable. Clearly, z; —

M(y) € (N(y))(T).
Step 1 : There exists a positive integer ny > 1 such that N(B,,) C

B,,, where B,, = {y €~C(I,l§) v ||c< no}. Suppose not, then
we can find y, € C(I,B), z, € N(y,) such that || y, ||c< n and
| z ||> n. Then we have for every n > 1,

zn(t) = U(t, 0)(wo—M(Yn) +Y(YEn+VEn+Yen+ Vi, + Buy,)(t)
for some ¥p,, € S}D(_’yn(.)). So we get
n <[ zn llc
< Ms(|| 2o lle + Il M(yn) lle) (2)
F Y ¥en + Vrn+ Uon+Yun) o+ | v(Buy,) llo
where M3 > 0 is such that || U(t, s) ||,< Mj;. Note that
[ Y(VEn+ Vrn+ Yen+ Yun) o= StlelII) | V(Y En(t) + Vrn(t)

+\IjGn )+\11Hn( )) HE
< Sup/ U s) Il (| Wels, z(s)) [le dAr(s)

+ | Wels,z(s)) lle dAs(s)+ || Wals,x(s)) [le dAg (s)
+ (I Wi (s, z(s)) lle ds)

< M3/O on(s)ds.
(3)

t
7 (Buy,) lle < Stlel?/o LU s) M Blle - | upa(s) [l ds

< MyMsT? | uyp, || 12

(4)



QUANTUM STOCHASTIC DIFFERENTIAL INCLUSIONS... 375

and

I g [z =] W [ ~ M(ya) — U(T,0)(xo — M(y,))

= (Y WEen + Vrn+ Yau + Wun)(T)| |

(5)
< Mll |21 e +Ms || wo [le +(1 + Ms) [| M(yn) |
T
+ M3/ cpn(s)ds}
0
Hence by (3.1), we have
n < (Ms+ MiMyM3b?) || 7o [l +(My MM | 2y le
+ (14 My Myb? + My My Mb?)Ms || M(y,) |e
T
+ (Mg + M1M2M§b%)/ @n(s)ds (6)
0

1 T
= 1< o ol M e+ [ ntolds]
0

where Oy = My + MyMyM3b> || o ||e +(MMyMZbz) || 21 |le,
Cy = (14 My Mab2 + My My Msbz )My and Cs = (Ms+ M, My M2bz).
By passing to the limit as n — oo in inequality (3.5), we get 1 <0,
a contradiction. Thus we conclude that there is ng > 1 such that
N(B,,) € By,-

Step 2: We shall show that N(B,,) is equicontinuous. Let = €
N(B,,) and let t5,t; € I, ta > t; > 0. We have y € N(B,,),



376 M. O. OGUNDIRAN

P e SYP(.,y(.)), for any € > 0, such that t; — e > 0,

lz(t2) — z(t1) [le= v(YE + ¥F + ¥o + Vi + Bup)(t2)
—Y(¥e+Yp + Yo+ Uy + Bup)(t1) ||e

to
=|| /0 Ultz, s) [\I/E(s, x(s))dAr(s) + Y (s, z(s))dAs(s)

+ Ug(s, x(s))dA;'(s) + (P (s,z(s)) + Bup(s))ds

ty

=/ Ul(ti,s) |:(‘I/E(S, x(s))dAr(s) + ¥ (s, z(s))dAs(s)

+ Ve (s, 2(s))dAF (s) + (Vi (s, 2(5)) + Bup(s))ds |l¢

< / U s) I | [va(s,x(s))dAw(s)wF(s,x(s))dAf(s)
+ W (s, 2(5))dAF (5) + (U pr (5, 2(5)) + Bup(s))ds| |le

t1
+ /0 1 Ut2,8) = Ultr,s) I [WE(s, 2(5))dAr (s) + Wi (s, o(s))dA (s)
+ WG (s, 2(s))dAy (s) + (Vi (s,2(5)) + Bup(s)) ||¢ ds

< Ms / *(ono (5) + Ma || up(s) [le]ds

+/ e | U(ta,s) = U(t,s) LIl | YE(s,z(s))dAx(s) + Y (s, z(s))dAf(s)

|
)
[T ) - U o) |
)

+ g (s, 2(s))dA] (s) + (P r (s, 2(s)) + Bup(s)) ll¢ ds

+ g (s, 2(s))dA] (s) + (P r (s, 2(s)) + Bup(s)) ll¢ ds

Vi(s,x(s))dAr(s) + Yp(s,z(s))dAs(s)

to t1
< My / (ornas) + Ma [y () lllds + 2 [ [ono(s) + Ma || g () flelds

t1—e

t1—€
+/ | U(t2,8) = Ultr, ) |z [ono(s) + M2 || up(s) llelds

t1 t1—e€
< Ms / o ()ds + 2Ms / o (5)ds + / | Ulta, s) — U(t1,5) . ono ()ds
0

t1 t1—e€

1
t1—e 2
T (/0 | Ulta,s) — Ut s) [ ds) Ma || up || 2
1 1
+ MoM3(ta —t1)2 [ up L2 +2MaM3ze? || up || 12

and

[up (22 < M {Mz 2o lle + [l 21 lle +(Ms +1) [| M(Bp,) |le

T
+M2/ gpno(s)ds] = M,
0

where || M ||¢= sup[|| M(y) |le: v € B,) is bounded (since M
is a compact operator). Moreover, ¢ — U(t,s) is continuous in
the operator norm topology, uniformly s € T such that ¢ — s is
bounded away from zero. Given €; > 0, by absolute continuity of
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the Lebesgue integral we can choose € > 0, such that
t 1 €1
2M3/ (.pm(S)dS“— 2M2M3M465 < 5

t1—e

By the continuity property of U(., s) and absolute continuity of the
Lebesgue integral, we can find § > 0 such that if ¢, — t; < §, we
have

to t1—e
Ms / oo (5)ds + / | Ulta,s) — U(t1,5) |, @no (s)ds
t1 0
1

t1—e€ 2 1
+(/ | Ultz,s) = Uts,s) |13 dS) MaMy + MaM3sMy(te —t1)2 < %1
0

So N(B,,) is equicontinuous. Also,
K ={y(Yg+¥p+UG+Uu+Bup) : y € Bpy, Up € Sp_y} € C(I,B)

is equicontinuous.

Step 3: We shall show that N(B,,)(t) = {z(t) : # € N(By,)} is

a relatively compact subset of B for every t € I.

N(B,,) is bounded since B,, is bounded and N(B,,) C By, . Let
t € (0,7] be fixed and € be a real number satisfying 0 < € < t.
For y € B,, and h € N(y) there exist functions Vp € S}J(“x(.)),

P e{E F G, H}, such that
t—e
M) = U000~ M) + [ Ult.5) | (Vs (o)
0
+ Ur(s,z(s))dAs(s) + ‘Ilg(s,x(s))dA;' (s)+ (¥r(s,z(s)) + Bup(s))ds}

[ 00| (Wl 0)ans(5) + ¥ (s,2(5))d s ()

+ Pals, $(s))dA;r(s) + (T (s,z(s)) + Bup(s))ds}
Define
he(®) = U0 = M) + [ U, | Wa(o,a(6)dAs(5)
0
+ Up(s,z(s))dAys(s) + Yg (s, a:(s))dA;r (s) + (P (s,z(s)) + Bup(s))ds}
t—e
= U0 — M) +U(0) [ Ul - e.5)[Wa(s,2(:)dAs(9)
0

+ Up(s,z(s))dAs(s) + Tg (s, :v(s))dA;' (8) + (T (s,z(s)) + Bup(s))ds}

Since U(t,s), is compact, the set H.(t) = {h(t) : he € N(y)}
is precompact in B for every ¢, 0 < e < t. Moreover, for every
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h € N(y),

t

| A(t) = he(t) | <M [ (p(z(s)) + c)ds

<M [ (plats)) + s

Therefore, there are precompact sets arbitrarily close to the set
{h(t) : h € N(y)}. Hence the set {h(t) : h € N(y)} is precompact

in B.

Step 4: We shall show that N has closed graph.
Let yp = Yu, hn € N(yn), yn € K and h,, — h... We shall prove that
h. € N(y.), hn € N(y,) means that there exists ¥, p € S}D(”yn(.)),
such that for each t € I,

h,(t) = U(t,0) {yo — M(yn)] —i—/o Ul(t, s) [(\If*,E(S, z(s))dAx(s)
+ U, p(s,2(5))dAs(s) + (s, 2(s))dAS (s)

(a5, 2(5)) + Buyxs))ds}

We have that

t

I o — U(£0) g0 — M(ya)] — /0 U(t, 5) [ Bun(s)]ds

_ <h* —U(t,0)[yo — M(y)]

t
—/ U(t, s)Buy, (s)ds) lc— 0 as n — oc.
0

Consider the linear operator

I':L'(I,B) = C(I,B),

v D()(t) = /0 U(t, s)v(s)ds

From [11], it follows that " o Sp is a closed graph operator. More-
over, we have that

h,(t) — U(t,0) {yo - M(y*)] - /0 U(t,s)Buy,(s)ds € T'(Spy,)-
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Since y, — Y., it follows that
t
Ba(0) = U0 = ()] = [ U0, (5)ds
0

- /0 U 5yv. (5)ds

for some v, € Sp,,. As a consequence of Lemma 1, we deduce that
N has a fixed point and therefore the system (2.1) is nonlocally
controllable on I.

If B =0 in the system (2.1), we have quantum stochastic evolu-
tion inclusions with non local condition. Therefore, the next corol-
lary gives a result on the existence of mild solution of quantum
stochastic evolution inclusions with non local condition. However,
in this case, the mild solution will be of the form :

t
x(t) = U(t,0)z(0) —I—/O U(t,s) <\PE(s,x(s))dA7T(s) + Wp(s,z(s))dAs(s)

+ Ug(s,z(s))dA; (s) + (\I/H(s,x(s)))ds), tel.
with Wp € S}D(.@(')), Pe{E,F,G,H} and z(0) + M(z) = xo.

Corollary If hypotheses (H;)— (Hj3) are satisfied then there exist
a mild solution to the non local problem

dz(t) € [A(t)x(t) + H(t,x(t))]dt + E(t, x(t))dA (1)
+ F(t,x(t)dAs(t) + G(t, (t))dA, (t), almost all t € [I.
z(0) + M(x) = xo.
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