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ON IDEAL AMENABILITY OF TRIANGULAR

BANACH ALGEBRAS
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ABSTRACT. We provide conditions under which the triangular
Banach algebra T is IT -weakly amenable and ideally amenable
for a closed two-sided ideal IT of T. For Banach algebras A and
B, we show that in the case where A and B are commutative
and are both ideally amenable, A⊗̂B is ideally amenable. Thus
providing a partial answer to the question raised by M.E Gorgi
and T. Yazdanpanah.
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1. INTRODUCTION

In [4], Gorgi and Yazdanpanah introduced two notions of amenabil-
ity for a Banach algebra A. These are the notions of I-weak amenabil-
ity and ideal amenability for a Banach algebra A, where I is a closed
two-sided ideal in A. They related these notions to weak amenabil-
ity and amenability of Banach algebras, and showed that ideal
amenability is different from amenability and weak amenability.
These authors finally posed the following question: If A and B are
ideally amenable Banach algebras, then is A⊗̂B ideally amenable?
Partial answer to this question was given by the first author in [6].
In this paper, we shall also provide a partial answer to the above

question for commutative case.
In [3], Forest and Marcoux investigated the Arens regularity and

n-weak amenability of a triangular Banach algebra T in relation to
that of the algebras A and B and their action on the module M. In
particular, they showed that T is Arens regular if and only if both
A and B are Arens regular and A and B act regularly on M, and
that T is weakly amenable if and only if both A and B are weakly
amenable, where A and B are unital in this case. The triangular
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Banach algebras are algebras of the form

T =

[
A M
0 B

]
,

where A and B are themselves Banach algebras and M is a Banach
A,B-module.
In this paper, we shall also extend the results of Forest and Mar-

coux in [3] by providing conditions under which T is IT -weakly
amenable and ideally amenable for closed two-sided ideal IT of T.

2. PRELIMINARY

First, we recall some standard notions; for further details, see [1]
and [7].
Let A be an algebra and let X be an A-bimodule. A derivation

from A to X is a linear map D : A → X such that

D(ab) = Da · b+ a · Db (a, b ∈ A) .

For example, for x ∈ X, the map δx : A → X defined by
δx(a) = a · x − x · a (a ∈ A) is a derivation; derivations of this
form are called the inner derivations.
Let A be a Banach algebra, and let X be an A-bimodule. Then

X is a Banach A-bimodule if X is a Banach space and if there is a
constant k > 0 such that

‖a · x‖ ≤ k‖a ‖‖x‖, ‖x · a‖ ≤ k‖a ‖‖x‖ (a ∈ A, x ∈ X) .

By renorming X, we can suppose that k = 1. For example, A
itself is Banach A-bimodule and X ′, the dual space of a Banach
A-bimodule X is a Banach A-bimodule with respect to the module
operations given by

〈x, a · λ〉 = 〈x · a, λ〉, 〈x, λ · a〉 = 〈a · x, λ〉 (x ∈ X),

for a ∈ A and λ ∈ X ′; we say that X ′ is the dual module of X . In
particular every closed two-sided ideal I of A is Banach A-bimodule
and I ′ the dual space of I is a dual A-bimodule. Successively, the
duals X(n) are Banach A-bimodules; in particular A(n) is a Banach
A-bimodule for each n ∈ N. We take X(0) = X .
Let A be a Banach algebra and let X be a Banach A-bimodule.

Then we denote by Z 1(A,X) the space of all continuous derivations
from A into X and N 1(A,X) the space of all inner derivations from
A into X. The first cohomology group of A with coefficients in X
is the quotient space

H 1(A,X) = Z 1(A,X)/N 1(A,X) .
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The Banach algebra A is amenable if H 1(A,X ′) = {0} for each Ba-
nach A-bimodule X and weakly amenable if H 1(A,A′) = {0}. Fur-
ther, as in [2], A is n-weakly amenable for n ∈ N, if H 1(A,A(n)) =
{0}, andA is permanently weakly amenable, if it is n-weakly amenable
for each n ∈ N. For instance, each C∗-algebra is permanently
weakly amenable [2, Theorem 2.1]. Each group algebra is n-weakly
amenable whenever n is odd. Also, Mewomo in [5], showed that the
semigroup algebra �1(S) is (2k + 1)-weakly amenable for k ∈ Z

+

and Rees matrix semigruop S. Recently, the authors in [4] defined
A as I-weakly amenable if H 1(A, I ′) = {0} for a closed two-sided
ideal I of A and ideally amenable if it is I-weakly amenable for
every closed two-sided ideal I of A. Clearly, an amenable Banach
algebra is ideally amenable and an ideally amenable Banach algebra
is weakly amenable.
Let A and B be Banach algebras and suppose X is a Banach

A,B-module, that is, X is a Banach space, a left A-module and a
right B-module and the actions of A and B are continuous in that

‖a.x.b‖ ≤ ‖a‖A‖x‖X‖b‖B.
With the case A = B, X becomes a Banach A-bimodule. With the
right action of A on the dual space X ′ of X and a left action of B
on X ′ given as

〈x, λ · a〉 = 〈a · x, λ〉, 〈x, b · λ〉 = 〈x · b, λ〉 (x ∈ X),

for all a ∈ A, b ∈ B, λ ∈ X ′, then X ′ becomes a Banach B,A-
module.
Let A and B be Banach algebras and let M be a Banach A,B-

module. We define the corresponding triangular algebra

T =

[
A M
0 B

]
,

with the sum and product being given by the usual 2 × 2 matrix
operations. The norm on T is

‖
[
a m
0 b

]
‖ = ‖a‖A + ‖m‖M + ‖b‖B.

3. IDEAL AMENABILITY OF T

In this section, we first give some elementary properties of T
which will assist us in our main result in the section. Suppose the
Banach algebra A is unital (i.e. A has an identity element eA). In
this work, we do not require that ‖eA‖A = 1.
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We recall that a Banach A,B-module M is unital if A has a unit
eA and B has a unit eB such that

eA.m = m.eB = m for all m ∈ M.

Proposition 1: Let A and B be Banach algebras and let

T =

[
A M
0 B

]

be the corresponding triangular Banach algebra. Then

(i) T is unital if and only if A,B and M are unital.
(ii) T is commutative if and only if A and B are commutative
and AM = MB = {0}.
Proof : (i) Suppose eA and eB are the unit elements in A and B

respectively. We show that

[
eA 0
0 eB

]
is a unit element of T.

Let

[
a m
0 b

]
∈ T, then

[
a m
0 b

] [
eA 0
0 eB

]
=

[
aeA meB
0 beB

]
=

[
a m
0 b

]
.

Similarly,[
eA 0
0 eB

] [
a m
0 b

]
=

[
eAa eAm
0 eBb

]
=

[
a m
0 b

]
.

Hence T is unital.
(ii) Suppose A and B are commutative and AM = MB = {0}.

Then [
a1 m1

0 b1

] [
a2 m2

0 b2

]
=

[
a1a2 a1m2 +m1b2
0 b1b2

]

=

[
a2a1 0
0 b2b1

]

=

[
a2 m2

0 b2

] [
a1 m1

0 b1

]
.

Thus T is commutative.
The converse follows easily. �
Corollary 2 : Suppose A is a commutative Banach algebra.

Then T =

[
A A′

0 A

]
is not commutative.

Proof : Since certainly A′ does not annihilate A. Then T is not
commutative by Proposition 1. �
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Theorem 1 : Let A and B be commutative unital weakly amenable

Banach algebra and let T =

[
A M
0 B

]
be the corresponding trian-

gular Banach algebra. Suppose AM = MB = {0}. Then
(i) T is permanently weakly amenable.
(ii) T is ideally amenable.
Proof : (i) Since A and B are weakly amenable and unital, then

T is weakly amenable by [3, Corollary 3.5]. Since T is commuta-
tive by Proposition 1 and weakly amenable, then T is permanently
weakly amenable by [2].
(ii) Since T is commutative and weakly amenable, then T is ide-

ally amenable by [4, Theorem 1.3]. �
Corollary 2 : Let A and B be commutative unital weakly amenable

Banach algebras. Then the triangular Banach algebra T =

[
A 0
0 B

]

is ideally amenable.
Proof : Follow from Theorem 1 with M = {0}. �
Example 1 : Let G be a locally compact group. We write M(G)

for the space of all (finite) complex regular Borel measures on G.
(M(G), ∗) with the convolution product

〈f, μ ν〉 =
∫
G

(∫
G

f(gh)dμ(g)

)
dν(h) (f ∈ C0(G), μ, ν ∈ M(G))

is a unital Banach algebra called the measure algebra of G, which is
commutative if and only if G is abelian. For the case in which the
group G is discrete and abelian, M(G) = l1(G) is a unital commu-
tative Banach algebra. It is known that l1(G) is weakly amenable
for all groups G. Thus, in the case where G is discrete and abelian,

we have that T =

[
M(G) 0

0 M(G)

]
is ideally amenable.

Let A and B be Banach algebras, and let IA, IB be closed two-
sided ideals of A and B respectively. By Lemma 1 below,

IT =

[
IA M
0 IB

]
is closed two-sided ideal of T and so I ′T =

[
I ′A M ′

0 I ′B

]

is a dual T -bimodule. We next consider the problem of IT weak
amenability and ideal amenability of T.
Since as a Banach space, T is isomorphic to the l1-direct sum of

A,M and B and I ′A, I
′
B and I ′T are dual modules, it is clear that

I ′T ∼= I ′A ⊕1 M
′ ⊕1 I

′
B.
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It was shown in [3] that the action of T upon T ′ is given by

w ◦ τ =

[
xα + yμ zμ

0 zβ

]
(3.1)

and

τ ◦ w =

[
αx μx
0 μy + βz

]
(3.2)

for w =

[
x y
0 z

]
∈ T and τ =

[
α μ
0 β

]
∈ T ′.

As in [3], we take the action of T on I ′T as those given in (3.1)
and (3.2).
We next consider the problem of IT -weak amenability and ideal

amenability of T. The next lemma is useful in establishing this
problem.
Lemma 1 : Let A and B be Banach algebras. Suppose IA and

IB are closed two-sided ideals of A and B respectively. Then IT =[
IA M
0 IB

]
is a closed ideal of T.

Proof : Clearly IT is a closed subspace of T.

Let

[
a m
0 b

]
∈ T and

[
ia m1

0 ib

]
∈ IT . Then

[
a m
0 b

] [
ia m1

0 ib

]
=

[
aia am1 +mib
0 bib

]
∈ IT

since IA and IB are ideals in A and B respectively. Thus AIT ⊂ IT .
Similarly ITA ⊂ IT , and so IT is a closed ideal of T. �
Lemma 2 : Let δA : A → I ′A and δB : B → I ′B be continuous

derivations. Then DδA : T → I ′T , DδB : T → I ′T , and D : T → I ′T ,
defined by

DδA

([
a m
0 b

])
=

[
δA(a) 0
0 0

]
,

DδB

([
a m
0 b

])
=

[
0 0
0 δB(b)

]
,

and

D

([
a m
0 b

])
=

[
δA(a) 0
0 δB(b)

]
,

are continuous derivations. Furthermore, δA is inner if and only if
DδA is inner and δB is inner if and only if DδB is inner.
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Proof : Let

[
a1 m1

0 b1

]
,

[
a2 m2

0 b2

]
∈ T, then

DδA

([
a1 m1

0 b1

)(
a2 m2

0 b2

])
= DδA

([
a1a2 a1m2 +m1b2
0 b1b2

])
=

[
δA(a1a2) 0

0 0

]
.

Moreover,[
a1 m1

0 b1

]
DδA

([
a2 m2

0 b2

])
+DδA

([
a1 m1

0 b1

])[
a2 m2

0 b2

]

=

[
a1 m1

0 b1

] [
δA(a2) 0

0 0

]
+

[
δA(a1) 0

0 0

] [
a2 m2

0 b2

]

=

[
a1δA(a2) 0

0 0

]
+

[
δA(a1)a2 0

0 0

]

(using (3.1) and (3.2) of the action of T on I ′T )

=

[
a1δA(a2) + δA(a1)a2 0

0 0

]
=

[
δA(a1a2) 0

0 0

]

since δA : A → I ′A is a derivation.
Thus DδA is a derivation.
The proof that DδA and D are derivation are similar.
Suppose δA is inner. Then there exists α ∈ I ′A such that

δA(a) = a.α− α.a. Consider τ =

[
α 0
0 0

]
∈ I ′T . Then

Dτ

([
a m
0 b

])
=

[
a m
0 b

] [
α 0
0 0

]
−
[
α 0
0 0

] [
a m
0 b

]

=

[
aα 0
0 0

]
−

[
αa 0
0 0

]

(using (3.1) and (3.2))

=

[
aα− αa 0

0 0

]

= DδA

([
a m
0 b

])
,

and so DδA is inner.

Conversely, supposeDδA is inner. Then there exists τ =

[
α μ
0 β

]
∈

I ′T such that

DδA

([
a m
0 b

])
=

[
a m
0 b

] [
α μ
0 β

]
−
[
α μ
0 β

] [
a m
0 b

]



AMENABILITY OF TRIANGULAR BANACH ALGEBRAS. . . 397

=

[
aα +mμ bμ

0 bβ

]
−

[
αa μa
0 μm+ βb

]

(using (3.1) and (3.2))

=

[
aα +mμ− αa bμ− μa

0 bβ − μm− βb

]
.

But DδA

([
a m
0 b

])
=

[
δA(a) 0
0 0

]
.

It follows that δA(a) = aα + mμ − αa for all a ∈ A,m ∈ M. We
may assume without loss of generality that m = 0. Then for any
a ∈ A, we have

δA(a) = aα− αa,

and so δA is inner.
The proof that δB is inner is similar. �
Forest and Marcoux in [3] gave the following theorem:
Theorem 2 : Let A and B be unital Banach algebras and M

be a unital Banach A,B-module. Let T =

[
A M
0 B

]
be the corre-

sponding triangular Banach algebra. Then

H1(T, T ′) ∼= H1(A,A′)⊕H1(B,B′).

It clearly follow from the Theorem 2 and the above lemmas that

H1(T, I ′T ) ∼= H1(A, I ′A)⊕H1(B, I ′B),

for every closed two-sided ideals IA of A and IB of B. Thus, we
have the next result.
Theorem 3 : Let A and B be unital Banach algebras and let

M be a unital Banach A,B-module. Let T =

[
A M
0 B

]
be the

corresponding triangular Banach algebra. Then
(i) T is IT -weakly amenable if and only A is IA-weakly amenable
and B is IB weakly amenable.
(ii) T is ideally amenable if and only if both A and B are ideally
amenable.
Proof : (i) Suppose T is IT -weakly amenable, then H1(T, I ′T ) =

{0} and so H1(A, I ′A) = H1(B, I ′B) = {0}. Thus A is IA-weakly
amenable and B is IB weakly amenable.
Conversely, suppose A is IA-weakly amenable and B is IB weakly
amenable. Then H1(A, I ′A) = H1(B, I ′B) = {0}, and so H1(T, I ′T ) =
{0}. Thus T is IT -weakly amenable.
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(ii) This follows from (i) and the fact that for every closed two-

sided ideal IA of A and IB of B, IT =

[
IA M
0 IB

]
is a closed two-

sided ideal of T. �
4. IDEAL AMENABILITY OF A⊗̂B

In this section, we try to provide a partial answer to the problem
of ideally amenability of A⊗̂B raised by Gorgi and Yazdanpanah
in [4].
Let A and B be Banach algebras. The projective tensor product

(A⊗̂B, ‖.‖π) of A and B is defined on [1, p. 165]; (A⊗̂B, ‖.‖π) is a
Banach A-bimodule and a Banach algebra. We denote by A# the
unitization of A. Clearly A is a closed two-sided ideal of A#.
As in [4, Theorem 1.9], we have the following theorem.
Theorem 5 : Let A be a Banach algebra and let I be a closed

two-sided ideal in A with a bounded approximate identity. If A is
ideally amenable, then I is ideally amenable
The following lemma is very useful in establishing our main result

in this section.
Lemma 3 : Let A and B be Banach algebras.

(i) If A and B are commutative, Then A⊗̂B is commutative.
(ii) A⊗̂B has a bounded approximate identity if and only if both A
and B have bounded approximate identity.
(iii) For every closed two-sided ideal IA of A and IB of B, IA⊗̂IB
is closed two-sided ideal of A⊗̂B.
Proof : (i) This is elementary since for (a⊗ b), (c⊗ d) ∈ A⊗̂B

(a⊗ b).(c⊗ d) = ac⊗ bd = ca⊗ db = (c⊗ d).(a⊗ b)

if and only if A and B are commutative.
(ii) This follows from [1, Proposition 2.9.21].

(iii) This is easy. �
Theorem 7 : Let A and B be commutative ideally amenable

Banach algebras. Then A⊗̂B is ideally amenable.
Proof : By Lemma 3 (i) A⊗̂B is commutative. A and B are

ideally amenable implies A and B are weakly amenable, and so
A⊗̂B is weakly amenable by [1, Proposition 2.8.71]. Since A⊗̂B is
commutative and weakly amenable, then it is ideally amenable by
[4, Theorem 1.3]. �
Remark 1 : Whenever A and B are commuative and ideally

amenable, A⊗̂B is ideally amenable. For the case in which A and
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B are non commutative, suppose A and B have bounded approx-
imate identity and are both ideally amenable. Then I = A⊗̂B
has a bounded approximate identity and it is closed two-sided ideal
of A#⊗̂B# and by Theorem 5, I = A⊗̂B is ideally amenable if
A#⊗̂B# is ideally amenable.

ACKNOWLEDGEMENTS

The author would like to thank the anonymous referee whose com-
ments improved the original version of this manuscript.

REFERENCES
[1] H.G. Dales, Banach algebras and automatic continuity, London Mathematical

Society Monographs, New Series, Volume 24, (The Clarendon Press, Oxford,
2000).

[2] H.G. Dales, F. Grahramani, and N. Gronbaek , Derivations into iterated duals of
Banach algebras, Studia Math. 128 (1998), 19-54.

[3] B.E. Forest, and L.W. Marcoux, Weak amenability of triangular Banach algebras,
Transaction Amer. Math. Soc. 354, No.4, (2001), 1435-1452.

[4] M.E. Gorgi and T. Yazdanpanah, Derivations into duals of ideals of Banach alge-
bras, Proc. Indian Acad. Sci. (Math. Sci), Vol. 114, No.4, (2004), 399-408.

[5] O.T. Mewomo, On n-weak amenability of Rees semigroup algebras, Proc. Indian
Acad. Sci. (Math. Sci.) 118, No. 4, (2008), 1-9.

[6] O.T. Mewomo, On ideal amenability in Banach algebras, Analele Stiintifice ale
Univ. Al. I. Cuza Din Iasi 56, f.2, (2010), 273 - 278.

[7] O.T. Mewomo, Various notions of amenability in Banach algebras, Expo. Math.
29 (2011), 283-299.

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, UNIVER-
SITY OF KWAZULU-NATAL, DURBAN, SOUTH AFRICA
E-mail address: mewomoo@ukzn.ac.za

DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY OF AGRICULTURE,
ABEOKUTA, NIGERIA
E-mail addresses: olukoredegabriel@yahoo.com


