VARIANT OF FINITE SYMMETRIC INVERSE SEMIGROUP

M. BALARABE¹, G. U. GARBA AND A. T. IMAM

ABSTRACT. In a semigroup S fix an element $a \in S$ and, for all $x, y \in S$, define a binary operation $*_a$ on S by $x *_a y = xay$, (where the juxterposition on the left denote the original semigroup operation on S). The operation $*_a$ is clearly associative and so S forms a new semigroup under this operation, which is denoted by S^a and called *variant* of S by a. For a finite set $X_n = \{1, 2, ..., n\}$, let \mathcal{I}_n be the symmetric inverse semigroup on X_n and fix an idempotent $a \in \mathcal{I}_n$. In this paper, we study the variant \mathcal{I}_n^a of \mathcal{I}_n by a. In particular, we characterised Green's relations and starred Green's relations \mathcal{L}^* , \mathcal{R}^* in \mathcal{I}_n^a and also showed that the variant semigroup \mathcal{I}_n^a is abundant.

Keywords: Variant semigroup, Symmetric inverse semigroup, Green's relations, Starred Green's relations, Abundant semigroup.

2010 AMS Mathematics Subject Classification: 20M20

1. INTRODUCTION

Let a be a fixed element of a semigroup S. For all $x, y \in S$, we define a binary operation $*_a$ by $x *_a y = xay$, (where the juxterposition on the left denote the original semigroup operation on S). The operation $*_a$ is associative and so S forms a new semigroup under this operation, which is denoted by S^a and called *variant* of S by a. The first study of variant of an arbitrary semigroup was by Hickey [5] but the notion was originally an extension of an idea due to Lyapin [11], which can also be attributed to Magill [12] who considered the semigroup of functions from a set X into a set Y under the sandwich operation " \cdot " defined by

$$f \cdot g = f \circ \mu \circ g,$$

where μ is some fixed function from Y to X (see also [1], [9], [13] and [14]). When X = Y, the semigroup studied by Magill [12] is

Received by the editors December 27, 2018; Revised July 15, 2020 ; Accepted: July 31, 2020

www.nigerian mathematicalsociety.org; Journal available online at https://ojs.ictp. it/jnms/

¹Corresponding author

exactly the variant of *full transformation semigroup* \mathcal{T}_X . The variant of finite full transformation semigroups \mathcal{T}_n^a have been studied. For instance, Kudryautseva and Tsyaputa [10] classified the nonisomorphic variants of \mathcal{T}_n and later in [19], Tsyaputa characterised Green's relations in such a semigroup. The structure of the variant of finite full transformation semigroup was extensively studied by Dolinka and East [8].

While a semigroup S possesses certain characteristic, its variant S^a may not have that same characteristic. In fact, it is the case that in general $S \not\cong S^a$. It has been pointed out in [8] that the variants \mathcal{T}_n , \mathcal{P}_n and \mathcal{I}_n of respectively finite full transformation semigroup, finite partial transformation semigroup (consisting of all partial maps on a finite set of n elements) and finite symmetric inverse semigroup (consisting of all injective partial maps on a finite set of n elements) are non-regular even though each of these semigroups is regular. Regular semigroups are interesting classes of semigroup that have been extensively studied via the classical Green's equivalences [4], see for example Howie [7]. A generalisation of regular semigroup called abundant semigroup was introduced by Fountain [2, 3] and studied via an extended version of Green's relations known as stared Green's relations.

Two elements a and b of semigroup S are said to be \mathcal{L}^* -related if they are related under the standard Green's \mathcal{L} relation in some oversemiroup of S. The relation \mathcal{R}^* is defined dually. A semgroup S is called right abundant if every \mathcal{L}^* -class and every \mathcal{R}^* -class of S contains an idempotent. Abundant semigroup have been studied see [18, 15, 16, 17, 6]. In this paper, we investigate the variant semigroup \mathcal{I}_n^a of all partial one-to-one transformation in line with [8] on a finite set $X_n = \{1, 2, ..., n\}$. In particular, we characterised Green's relations similar to the corresponding characterisation in the variant semigroup \mathcal{T}_n^a obtained by [8], we also characterised starred Green's relations \mathcal{L}^* , \mathcal{R}^* in the semigroup \mathcal{I}_n^a and showed that it is an abundant semigroup.

It is known, due to [8], that every variant S^x of a semigroup S by an elements $x \in S$ is isomorphic to a variant S^a of S by an idempotent $a \in S$. Thus, it is no loss of generality if we assume throughout this paper that the variant \mathcal{I}_n^a of \mathcal{I}_n is always with respect to an idempotent a of height r (where $1 \leq r \leq n-1$) with dom $(a) = \operatorname{im}(a) = \{a_1, a_2, \ldots, a_r\}$. Thus, the idempotent a is a

partial identity on $\{a_1, a_2, \ldots, a_r\}$ and can be written, in an array notation, as

$$a = \begin{pmatrix} a_1 & a_2 & \dots & a_r \\ a_1 & a_2 & \dots & a_r \end{pmatrix}$$

For a semigroup S we denote by E(S), the set of all idempotent elements in S, that is $E(S) = \{e \in S | e^2 = e\}.$

In the next lemma we characterised idempotent elements in \mathcal{I}_n^a .

Lemma 1.1. Let $\alpha \in \mathcal{I}_n^a$. Then, $\alpha \in E(\mathcal{I}_n^a)$ if and only if $\alpha \in E(\mathcal{I}_n)$ and $\operatorname{im}(\alpha) \subseteq \operatorname{dom}(a)$.

Proof. Suppose that $\alpha \notin E(\mathcal{I}_n^a)$ and let $x \in \text{dom}(\alpha)$ be such that $x\alpha^2 \neq x$. Then, $x\alpha^2 = x(\alpha *_a \alpha) = x(\alpha a \alpha) = (x\alpha)a\alpha$.

Now, if $x\alpha \in \text{dom}(a)$, then $(x\alpha)a = x\alpha$ (since *a* is a partial identity) and so, $x\alpha^2 = x(\alpha *_a \alpha) = (x\alpha)\alpha \neq x\alpha$ always. If $x\alpha$ is not in dom(*a*), then *x* is not in dom $x(\alpha *_a \alpha)$ and therefore, α is again not an idempotent.

Also, suppose that $\operatorname{im}(\alpha) \not\subseteq \operatorname{dom}(a)$ and let $x \in \operatorname{im}(\alpha) \setminus \operatorname{dom}(a)$ and $y \in \operatorname{dom}(\alpha)$ be such that $y\alpha = x$. Then clearly y is not in $\operatorname{dom}(\alpha a \alpha)$ which implies that $\alpha * a\alpha \neq \alpha$.

Conversely, it is easy to see that if $\alpha \in E(\mathcal{I}_n)$ and $\operatorname{im}(\alpha) \subseteq \operatorname{dom}(a)$, then $\alpha a \alpha = \alpha$ which implies α is an idempotent in (\mathcal{I}_n^a) . \Box

2. Green's relations in (\mathcal{I}_n^a)

On a semigroup S (see Howie [7]), the five equivalence relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{J}$ and \mathcal{D} are defined as for all $a, b \in S$, $a\mathcal{L}b$ if and only if $S^1a = S^1b$; $a\mathcal{R}b$ if and only if $aS^1 = bS^1$; $a\mathcal{J}b$ if and only if $S^1aS^1 = S^1bS^1$; $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ and $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$. These are known, in semigroup theory as Green's relations [4]. Since the appearance of these relations in 1951 they became standard tool for understanding the structure of a semigroup. In order to avoid confusion, if \mathcal{K} is one of $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{J}$ and \mathcal{D} , we will write \mathcal{K}^a for Green's \mathcal{K} -relation on the variant S^a of S, and write \mathcal{K}^a_x for the \mathcal{K}^a -class of $x \in S^a$.

As noted by Dolinka and East [8], for any semigroup S and a fixed element $a \in S$, the subsets

$$P_1(S) = \{ \alpha \in S : xa\mathcal{R}x \}$$
(1)

$$P_2(S) = \{ x \in S : ax \mathcal{L}x \}$$
(2)

$$P(S) = P_1(S) \cap P_2(S) \tag{3}$$

played vital role in characterising Green's relations in the variant semigroup S^a . In fact, in [8], the following characterisation of Green's relations in S^a was proved.

Theorem 2.1. and East [8]/ If $x \in S$, then

$$i. \ R_x^a = \begin{cases} R_x \cap P_1(S) & \text{if } x \in P_1(S), \\ \{x\} & \text{if } x \in S \setminus P_1(S) \end{cases}$$

$$ii. \ L_x^a = \begin{cases} L_x \cap P_2(S) & \text{if } x \in P_2(S), \\ \{x\} & \text{if } x \in S \setminus P_2(S) \end{cases}$$

$$iii. \ H_x^a = \begin{cases} H_x \cap P(S) & \text{if } x \in P(S), \\ \{x\} & \text{if } x \in S \setminus P(S) \end{cases}$$

$$iv. \ D_x^a = \begin{cases} D_x \cap P(S) & \text{if } x \in P(S), \\ R_x^a & \text{if } x \in P_1(S) \setminus P_2(S), \\ L_x^a & \text{if } x \in P_2(S) \setminus P_1(S), \\ \{x\} & \text{if } x \in S \setminus (P_1(S) \cup P_2(S)). \end{cases}$$

Therefore, it will be important to further describe the elements in the subsets $P_1(S)$, $P_2(S)$ and P(S) in the semigroup \mathcal{I}_n in order to obtain characterisation of Green's relation in \mathcal{I}_n^a .

Lemma 2.2. In the symmetric inverse semigroup we have:

 $i. P_1(\mathcal{I}_n) = \{ \alpha \in \mathcal{I}_n : \operatorname{im}(\alpha) \subseteq \operatorname{dom}(a) \};\\ii. P_2(\mathcal{I}_n) = \{ \alpha \in \mathcal{I}_n : \operatorname{dom}(\alpha) \subseteq \operatorname{im}(\alpha) \};\\iii. P(\mathcal{I}_n) = \{ \alpha \in \mathcal{I}_n : (\operatorname{dom}(\alpha) \cup \operatorname{im}(\alpha)) \subseteq \operatorname{dom}(a) \}$

Proof. i.

$$P_{1}(\mathcal{I}_{n}) = \{ \alpha \in \mathcal{I}_{n} : \alpha a \mathcal{R} \alpha \}$$

= $\{ \alpha \in \mathcal{I}_{n} : \operatorname{dom}(\alpha) = \operatorname{dom}(\alpha a) \}$
= $\{ \alpha \in \mathcal{I}_{n} : \operatorname{dom}(\alpha) = (\operatorname{im}(\alpha) \cap \operatorname{dom}(a)) \alpha^{-1} \}$
= $\{ \alpha \in \mathcal{I}_{n} : \operatorname{im}(\alpha) = \operatorname{im}(\alpha) \cap \operatorname{dom}(a) \}$
= $\{ \alpha \in \mathcal{I}_{n} : \operatorname{im}(\alpha) \subseteq \operatorname{dom}(a) \}.$

242

ii.

$$P_{2}(\mathcal{I}_{n}) = \{ \alpha \in \mathcal{I}_{n} : a\alpha \mathcal{L}\alpha \}$$

$$= \{ \alpha \in \mathcal{I}_{n} : \operatorname{im}(\alpha) = \operatorname{im}(a\alpha) \}$$

$$= \{ \alpha \in \mathcal{I}_{n} : \operatorname{im}(\alpha) = (\operatorname{im}(a) \cap \operatorname{dom}(\alpha))\alpha \}$$

$$= \{ \alpha \in \mathcal{I}_{n} : \operatorname{dom}(\alpha) = \operatorname{im}(a) \cap \operatorname{dom}(\alpha) \}$$

$$= \{ \alpha \in \mathcal{I}_{n} : \operatorname{dom}(\alpha) \subseteq \operatorname{im}(a) \}.$$

iii.

$$P(\mathcal{I}_n) = P_1(\mathcal{I}_n) \cap P_2(\mathcal{I}_n)$$

= {\alpha \in \mathcal{I}_n : \alpha a \mathcal{R} \alpha and a \alpha \mathcal{L} \alpha}
= {\alpha \in \mathcal{I}_n : \in(\alpha) \sum dom(\alpha) \sum dom(\alpha) \sum dom(\alpha)
= {\alpha \in \mathcal{I}_n : (\dom(\alpha) \cup \in(\alpha)) \sum dom(\alpha))
= {\alpha \in \mathcal{I}_n : (\dom(\alpha) \cup \in(\alpha)) \sum dom(\alpha))

n	-	-	-	٦	
L					
L					
L				J	

Now, to characterise Green's relations in \mathcal{I}_n^a , we only need to apply Theorem 2.1, to the case when $S = \mathcal{I}_n^a$.

Theorem 2.3. Let $\alpha, \beta \in \mathcal{I}_n^a$. Then,

$$i. \ \alpha \mathcal{R}^{a} \beta \Longleftrightarrow \begin{cases} \operatorname{dom}(\alpha) = \operatorname{dom}(\beta) & \text{if } \alpha, \beta \in P_{1}, \\ \alpha = \beta & \text{if } \alpha, \beta \in \mathcal{I}_{n} \setminus P_{1}, \\ \operatorname{im}(\alpha) = \operatorname{im}(\beta) & \text{if } \alpha, \beta \in \mathcal{P}_{2}, \\ \alpha = \beta & \text{if } \alpha, \beta \in \mathcal{I}_{n} \setminus P_{2}, \\ \operatorname{dom}(\alpha) = \operatorname{dom}(\beta) & \text{if } \alpha, \beta \in \mathcal{P}, \\ \alpha = \beta & \text{if } \alpha, \beta \in \mathcal{I}_{n} \setminus P, \\ |\operatorname{im}(\alpha)| = |\operatorname{im}(\beta)| & \text{if } \alpha, \beta \in \mathcal{I}_{n} \setminus P, \\ \operatorname{dom}(\alpha) = \operatorname{dom}(\beta) & \text{if } \alpha, \beta \in \mathcal{S} \setminus P, \\ \operatorname{dom}(\alpha) = \operatorname{dom}(\beta) & \text{if } \alpha, \beta \in \mathcal{P}_{1} \setminus P_{2}, \\ \operatorname{im}(\alpha) = \operatorname{im}(\beta) & \text{if } \alpha, \beta \in \mathcal{P}_{2} \setminus P_{1}, \\ \alpha = \beta & \text{if } \alpha, \beta \in \mathcal{I}_{n} \setminus (P_{1} \cup P_{2}). \end{cases}$$

Proof. This is a combined effect of Theorem 2.1 and Lemma 2.2. \Box

M. BALARABE, G. U. GARBA AND A. T. IMAM

3. Abundant Semigroups of \mathcal{I}_n^a

Recall that the relations \mathcal{L}^* and \mathcal{R}^* on a semiigroup S are defined, by the rule that two elements $a, b \in S$ are \mathcal{L}^* and \mathcal{R}^* related if and only if the two elements are respectively \mathcal{L}^* and \mathcal{R}^* relations in some larger semiroup containing S as a subsemigroup. These relations also have the following more transparent characterisation.

$$\mathcal{L}^*(S) = \{(a,b) : (\forall x, y \in S^1) ax = ay \Leftrightarrow bx = by\}$$
(4)

and

$$\mathcal{R}^*(S) = \{(a,b) : (\forall x, y \in S^1) x a = y a \Leftrightarrow x b = y b\}.$$
 (5)

Our first result in this section characterises the relations \mathcal{L}^* and \mathcal{R}^* in \mathcal{I}_n^a .

Theorem 3.1. Let $\alpha, \beta \in \mathcal{I}_n^a$. Then

(i)
$$(\alpha, \beta) \in \mathcal{L}^*(\mathcal{I}_n^a)$$
 if and only if $\operatorname{im}(\alpha a) = \operatorname{im}(\beta a)$,
(ii) $(\alpha, \beta) \in \mathcal{R}^*(\mathcal{I}_n^a)$ if and only if $\operatorname{dom}(a\alpha) = \operatorname{dom}(a\beta)$.

Proof. (i) Suppose that $\alpha, \beta \in \mathcal{L}^*(\mathcal{I}_n^a)$ and choose any idempotent ξ in \mathcal{I}_n such that dom $(\xi) = \operatorname{im}(\alpha a)$. Then,

$$\alpha *_a \xi = \alpha a \xi = \alpha a = \alpha *_a 1_{X_n}$$

if and only if

$$\beta *_a \xi = \beta a \xi = \beta a = \beta *_a 1_{X_n},$$

which implies that $\operatorname{im}\beta a \subseteq \operatorname{dom}(\xi) = \operatorname{im}\alpha a$.

Similarly, if we choose any idempotent η in \mathcal{I}_n such that dom $(\eta) = im(\beta a)$. Then,

$$\beta *_a \eta = \beta a \eta = \beta a = \beta *_a 1_{X_n}$$

if and only if

$$\alpha *_a \eta = \alpha a \eta = \alpha a = \alpha *_a 1_{X_n},$$

which implies that $\operatorname{im} \alpha a \subseteq \operatorname{dom}(\eta) = \operatorname{im}(\beta a)$. Thus, we have $\operatorname{im}(\alpha a) = \operatorname{im}(\beta a)$.

Conversely, suppose that $\operatorname{im}(\alpha a) = \operatorname{im}(\beta a)$. Then, $(\alpha a, \beta a) \in \mathcal{L}^*(\mathcal{I}_n)$, and so, $(\alpha a)x = (\alpha a)y \iff (\beta a)x = (\beta a)y$, for all $x, y \in \mathcal{I}_n$. That is, $\alpha *_a x = \alpha *_a y \iff \beta *_a x = \beta *_a y$, for all $x, y \in \mathcal{I}_n$. Thus, $(\alpha, \beta) \in \mathcal{L}^*(\mathcal{I}_n^a)$.

244

(ii) Suppose that $(\alpha, \beta) \in \mathcal{R}^*(\mathcal{I}_n^a)$ and choose any idempotent ξ in \mathcal{I}_n such that $\operatorname{im}(\xi) = \operatorname{dom}(a\alpha)$. Then,

$$\xi *_a \alpha = \xi a \alpha = a \alpha = 1_{X_n} *_a \alpha$$

if and only if

$$\xi *_a \beta = \xi a\beta = a\beta = 1_{X_n} *_a \beta$$

which implies that $\operatorname{dom}(a\beta) \subseteq \operatorname{im}(\xi) = \operatorname{dom}(a\alpha)$.

Similarly, if we choose any idempotent η in \mathcal{I}_n such that $\operatorname{im}(\eta) = \operatorname{dom}(a\beta)$. Then,

$$\eta *_a \beta = \eta \beta a = a\beta = 1_{X_n} *_a \beta$$

if and only if

$$\eta *_a \alpha = \eta a \alpha = a \alpha = 1_{X_n} *_a \alpha,$$

which implies that $\operatorname{dom}(a\alpha) \subseteq \operatorname{im}(\xi) = \operatorname{dom}(a\beta)$. Thus, we have $\operatorname{dom}(a\beta) = \operatorname{dom}(a\beta)$.

Conversely, Suppose that dom $(a\alpha) = \text{dom}(a\beta)$, then by definition, it implies that $(a\alpha, a\beta) \in \mathcal{R}^*(\mathcal{I}_n)$. And so, by definition of \mathcal{R}^* , we have $x(a\alpha) = y(a\alpha) \iff x(a\beta) = y(a\beta)$, for all $x, y \in \mathcal{I}_n$. That is, $x *_a \alpha = y *_a \alpha \iff x *_a \beta = y *_a \beta$, for all $x, y \in \mathcal{I}_n$. Thus, $(\alpha, \beta) \in \mathcal{R}^*(\mathcal{I}_n^a)$.

Lemma 3.2. Let $\alpha \in \mathcal{I}_n^a$. Then, for some idempotents $e, f \in E_a(\mathcal{I}_n^a), (\alpha, e) \in \mathcal{L}^*(\mathcal{I}_n)$ and $(\alpha, f) \in \mathcal{R}^*(\mathcal{I}_n)$.

Proof. Let $a = \begin{pmatrix} a_1 & \cdots & a_r \\ a_1 & \cdots & a_r \end{pmatrix}$. Since $\operatorname{im}(a) = \{a_1, a_2, \dots, a_r\}$ and $\operatorname{im}(\alpha a) \subseteq \operatorname{im}(a)$, then suppose without loss of generality, that $\operatorname{im}(\alpha a) = \{a_1, \dots, a_k\}$, where $1 \leq k \leq r$. Then, the map $e = \begin{pmatrix} a_1 & \cdots & a_{k-1} & a_k \\ a_1 & \cdots & a_{k-1} & a_k \end{pmatrix}$ is such that ea = e. Then, since e is an idempotent, that is, $e^2 = e *_a e = eae = ee = e$ and $\operatorname{im}(ea) = \operatorname{im}(e) = \{a_1, \dots, a_k\} = \operatorname{im}(\alpha a)$, we have that $e \in E_a(\mathcal{I}_n^a)$ and $(\alpha, e) \in \mathcal{L}^*(\mathcal{I}_n^a)$.

Similarly, if we suppose, without loss of generality, that dom(αa) = $\{a_1, \ldots, a_k\}$, where $1 \le k \le r$. Then, the map $f = \begin{pmatrix} a_1 & \cdots & a_{k-1} & a_k \\ a_1 & \cdots & a_{k-1} & a_k \end{pmatrix}$ is such that fa = af = f. Thus, $f \in E_a(\mathcal{I}_n^a)$ and $(\alpha, f) \in \mathcal{R}^*(\mathcal{I}_n^a)$.

The above lemma shows that every \mathcal{L}^* and every \mathcal{R}^* in variant of \mathcal{I}_n^a contains an idempotent.

Thus, we have the following result;

Theorem 3.3. The variant semigroup \mathcal{I}_n^a is abundant.

REFERENCES

- [1] W. P. Brown, Generalized matrix algebra, Canad. J. Math. 7 188-190, 1955
- [2] J.B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc. 22 113-125, 1979.
- [3] J. B. Fountain, Abundant semigroups, Proc. London Math. Soc. 44 103-129, 1982.
- [4] J. A. Green, On the structure of semigroups, Semigroup forum, 54 163-172, 1951.
- [5] J. B. Hickey, Semigroups under a sandwich operation, Proc. Edinburgh Math. Soc. 26(3) 371-382, 1983.
- [6] P. Huisheng, S. Lei and Z. Hongcun, Green's relations for the variants of transformation semigroups preserving an equivalence relations, Communication in Algebra 35 1971-1986, 2007.
- [7] J. M. Howie, Fundamentals of semigroup theory, London Mathematical Society, New Series 12 (The Clarendon Press, Oxford University Press, 1995).
- [8] D. Igor and J. East, Variants of finite full transformation semigroups, International Journal of Algebra and Computation 25 1187-1222, 2015.
- [9] C. Karen, Sandwich semigroups of binary operation, Discrete Math. 28(3) 231-236, 1979.
- [10] G. M. Kuddryavtseva and G. Y. Tsyaputa, *The automorphism group of the sand-wich inverse symmetric inverse semigroup*, Bulletin of the university of Kiev, series: Mechanics and Mathematics; **13** 101-105, 2005.
- [11] E. S. Lyapin, Semigroups in Russian, Gosudarstv. Izdat. Fiz. Mat. Lit. Moscow. 1960
- [12] K. D. Magill, Semigroup structures for families of functions. I. Some homomorphism theorems, J. Austral. Math. Soc. 7 81-94, 1967.
- [13] K. D. Magill, Jr. and S. Subbiah, Green's relations for regular elements of sandwich semigroups I. General results, Proc. London Math. Soc. 31 194-210, 1975.
- [14] K. D. Magill, Jr. and S. Subbiah, Green's relations for regular elements of sandwich semigroups II. Semigroup of continues functions, J. Austral. Math. Soc. Ser. A., 25 45-65, 1978.
- [15] H. Pei and H. Zhou, Abundant semigroups of transformations preserving an equivalence relation, Algebra Colloq. 18 77-82, 2011.
- [16] L. Sun, A note on abundance of certain semigroups of transformations with restricted range, Semigroup Forum 87 681-684, 2013.
- [17] L. Sun and L. Wang, Abundance of the semigroup of all transformations of a set that reflect an equivalence relation, J. Algebra Appl. 13 135-144, 2014.
- [18] L. Sun and X. Han, Abundance of E-order-preserving transformation semigroups, Turk. J. Math. 40 32-37, 2016.
- [19] G. Y. Tsyaputa, Green's relation on the deform transformation semigroups, Algebra Descrete Math. 1 121-131, 2004.

246

DEPARTMENT OF MATHEMATICS, AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA

 $E\text{-}mail \ address: \texttt{abusaeed.musa@gmail.com}$

DEPARTMENT OF MATHEMATICS, AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA

 $E\text{-}mail\ address:\ \texttt{gugarba@yahoo.com}$

DEPARTMENT OF MATHEMATICS, AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA

 $E\text{-}mail \ address: \verb"imam.tanko@gmail.com"$