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ABSTRACT. In this paper, we study a forward-backward split-
ting algorithm for fixed points of a quasi-Bregman nonexpansive
mapping, solution of equilibrium problem and zero points of the
sum of families of accretive operators and αi-inverse-strongly ac-
cretive operators. We proved weak convergence of the sequences
generated by this algorithm in reflexive Banach space. Our re-
sult extends and improves important recent results announced
by many authors.
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1. INTRODUCTION

Let E be a real Banach space and C a nonempty closed convex
subset of E. The normalized duality map from E to 2E

∗
(E∗ is the

dual space of E) denoted by J is defined by

J(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖||f ||, ‖x‖ = ‖f‖

}
,∀x ∈ E.

LetA : Dom(A) ⊂ E → 2E be a set-valued operator with Dom(A) ={
z ∈ E : Az 6= ∅

}
and the Ran(A) = ∪

{
Az : z ∈ D(A)

}
. A is said

to be accretive if for all λ > 0 and for each x, y ∈ D(A).

||λ(x′ − y′) + (x− y)|| ≥ ||x− y||,∀x′ ∈ Ax, y′ ∈ Ay.
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The accretive operators were introduced independently in 1967 by
Browder [10] and Kato [21]. An early fundamental result in the
theory of accretive operators, due to Browder, states that the initial
value problem

Au+
dv

dt
= 0, v(0) = v0

is solvable if A is locally Lipschitz and accretive on E; see Browder
[11] and the references therin. It follows from Kato [21] that A is
accretive if and only if, for x, y ∈ Dom(A), there exists j(x− y) ∈
J(x− y) such that
〈u − v, j(x − y)〉 ≥ 0, where u ∈ Ax and v ∈ Ay. A is α-inverse
strongly accretive if, for j(x− y) ∈ J(x− y)

〈Ax− Ay, j(x− y)〉 ≥ α||Ax− Ay||2 (1)

Let I denote the the identity operator on E. An accretive op-
erator A is said to be m−accretive if the range of (I + λA) is
the whole space E for all λ > 0. A fundamental problem is to
find a zero of accretive operator A in a real Banach space E: find
x ∈ E such that 0 ∈ Ax. This problem includes, as special cases,
nonsmooth convex optimization and convex-concave saddle point
problems. Hence this problem has many applications in scientific
fields such as image processing, machine learning and signal pro-
cessing. If A = ∇f , the gradient of a differentiable convex function
f , solving the problem is done via the following recursion: x0 ∈ E
and xn+1 = (I−λn∇f)xn, n ≥ 0, where

{
λn
}

is a positive number
sequence. The above scheme is called steepest descent method.

If A is a monotone operator (i.e accretive on a Hilbert space), the
above inclusion was investigated by Rockafellar [29] which was rec-
ognized as Rockaffelar’s proximal point algorithm: x0 ∈ E, xn+1 =
(I + λnA)−1xn, ∀n ≥ 0, where (I + λnA)−1 is called the resolvent
of A. Rockafellar proved weak convergence of the sequence

{
xn
}

when the regularization sequence
{
λn
}

is bounded away from zero.
In many problems the operator A can be written as the sum of two
accretive operators, i.e, A = M +N .
Many authors are constructing algorithms for solving fixed point
problems for nonlinear mappings using Bregman’s technique (see,
e.g [4, 14, 23] and the references therein).

Splitting method has recently received much attention because many
nonlinear problems arising in areas such as image processing, ma-
chine learning and signal processing are mathematically modeled as
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nonlinear operator equation. Recently, several authors have exten-
sively investigated zero points of monotone operators using splitting
technique; see [16, 34].

Numerous problems in optimization, economics and physics can be
reduced to finding solutions of some equilibrium problem. Various
methods have been studied for solutions of some equilibrium prob-
lems, see for example [2, 3, 8, 17, 18, 19, 30, 32] and the references
contained therein.

Ugwunnadi et al. [33] proved a new strong convergence theorem for
a finite family of closed quasi-Bregman strictly pseudocontractive
mappings and a system of equilibrium problems in a real reflexive
Banach space.

Motivated and inspired by above mentioned results, we study a
forward-backward splitting algorithm for finding a zero point of sum
of finite family ofm−accretive operators and α−inverse strongly ac-
cretive operators, solution of equilibrium problems and fixed points
problems of quasi-Bregman nonexpansive mappings.

2. PRELIMINARIES

Throughout this paper, we shall assume f : E → (−∞,+∞] is
a proper, lower semi-continuous and convex function. We denote
by domf := {u ∈ E : f(u) < +∞} the domain of f . Let u ∈
int(dom(f)); the subdifferential of f at u is the convex set defined
by

∂f(u) = {u∗ ∈ E∗ : f(u) + 〈u∗, y − x〉 ≤ f(v), ∀v ∈ E},

where the Fenchel conjugate of f is the function f ∗ : E∗ → (−∞,+∞]
defined by

f ∗(u∗) = sup{〈u∗, u〉 − f(u) : u ∈ E}.

It is known that the Young-Fenchel inequality holds:

〈u∗, u〉 ≤ f(u) + f ∗(u∗), ∀u ∈ E.
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A function f on E is coercive [20] if the sublevel sets of f are
bounded; equivalently,

lim
‖u‖→+∞

f(u) = +∞.

A function f on E is said to be strongly coercive [36] if

lim
‖u‖→+∞

f(u)

‖u‖
= +∞.

For any u ∈ int(dom(f)) and v ∈ E, the right-hand derivative of f
at u in the direction v is defined by

f ◦(u, v) := lim
t→0+

f(u+ tv)− f(u)

t
.

The function f is said to be Gâteaux differentiable at u if

limt→0
f(u+tv)−f(u)

t
exists for any v. In this case, the gradient of f at

u is the function ∇f(u) : E → (−∞,+∞] defined by 〈∇f(u), v〉 =
f ◦(u, v) for any v ∈ E. The function f is said to be Gâteaux
differentiable if it is Gâteaux differentiable for any u∈ int(dom(f)).
The function f is said to be Fréchet differentiable at u if this limit
is attained uniformly in v, ‖v‖ = 1. The map f is said to be
uniformly Fréchet differentiable on a subset C of E if the limit
is attained uniformly for u ∈ C and ‖v‖ = 1. It is well known
that if f is Gâteaux differentiable (resp. Fréchet differentiable) on
int(dom(f)), then f is continuous and its Gâteaux derivative ∇f
is norm-to-weak∗ continuous (resp. norm-to-norm continuous) on
int(dom(f)) (see also [1, 9]). We will need the following results.
Lemma 1: [26] If f : E → R is uniformly Fréchet differentiable and
bounded on bounded subsets of E, then ∇f is uniformly continuous
on bounded subsets of E from the strong topology of E to the strong
topology of E∗.
Remark 1: If E is a reflexive Banach space, then we have the
following results:

(i) f is essentially smooth if and only if f ∗ is essentially strictly
convex (see [7] Theorem 5.4);

(ii) (∂f)−1 = ∂f ∗ (see [9])
(iii) f is Legendre if and only if f ∗ is Legendre (see [7],Corrolary

5.5)
(iv) If f is Legendre, then ∇f is a bijection satifying ∇f =

(∇f ∗)−1, ran∇f = dom∇(f ∗) = int(dom(f ∗)) and ran∇f ∗ =
dom(f) = int(dom(f)) (see [7], Theorem 5.10 ).
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Examples of Legendre functions were given in [7, 5] . One impor-
tant and interesting Legendre function is 1

p
‖ · ‖p (1 < p <∞) when

E is a smooth and strictly convex Banach space. In this case the
gradient ∇f of f is coincident with the generalized duality map-
ping of E, i.e. ∇f = Jp(1 < p <∞). In particular, a Hilbert spaces.

Let f : E → (−∞,+∞] be a convex and Gateaux differentiable
function. The function Df : domf× intdomf → (−∞,+∞], de-
fined as follows:

Df (u, v) := f(u)− f(v)− 〈∇f(v), u− v〉, (2)

is called the Bregman distance with respect to f (see [15] ). It is
obvious from the definition of Df that

Df (z, u) = Df (z, v) +Df (v, u) + 〈5f(v)−5f(u), z − v〉. (3)

A point p ∈ C is said to be an asymptotic fixed point of a map
T , if there exists a sequence {xn} in C which converges weakly to

p such that lim
n→+∞

‖xn − Txn‖ = 0. We denote by F̂ (T ) the set of

asymptotic fixed points of T . A point p ∈ C is said to be strong as-
ymptotic fixed point of a map T , if there exists a sequence {xn} in C
which converges strongly to p such that lim

n→+∞
‖xn − Txn‖ = 0. We

denote by F̃ (T ) the set of strong asymptotic fixed points of T . A
map T : C → C is called quasi-Bregman nonexpansive if F (T ) 6= ∅
and Df (p, Tx) ≤ Df (p, x) for all x ∈ C and p ∈ F (T ).

Recall that the Bregman projection [12] of u ∈ int(dom(f)) onto
nonempty, closed and convex set C ⊂ dom(f) is the unique vector
ΠC(x) ∈ C satisfying

Df (ΠC(x), x) = inf{Df (y, x) : y ∈ C}.

Concerning the Bregman projection, the following are well known.
Lemma 2: [14] Let C be a nonempty, closed and convex subset of
a reflexive Banach space E. Let f : E → R be a Gâteaux differen-
tiable and totally convex function and let u ∈ E. Then

(a) z = ΠC(x) if and only if 〈∇f(x)−∇f(z), y−z〉 ≤ 0, ∀y ∈
C;

(b) Df (y,ΠC(x)) +Df (ΠC(x), x) ≤ Df (y, x), ∀x ∈ E, y ∈ C.
Lemma 3: [25] Let E be a Banach space and f : E → R be
a Gâteaux differentiable function which is uniformly convex on
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bounded subset of E. Let {xn}n∈N and {yn}n∈N be bounded se-
quences in E. Then

lim
n→∞

Df (xn, yn) = 0 if and only if lim
n→∞
||xn − yn|| = 0.

Lemma 4: [27] Let f : E → R be Gâteaux differentiable and to-
tally convex function. If x0 ∈ E and the sequence {Df (xn, x0)} is
bounded, then the sequence {xn} is bounded too.

The following definition is slightly different from that in Butnariu
and Iusem [13].
Definition 2:[22] Let E be a Banach space. A function f : E → R
is said to be a Bregman function if the following conditions are
satisfied:

(i) f is continuous, strictly convex and Gâteaux differentiable;
(ii) the set {y ∈ E : Df (x, y) ≤ r} is bounded for all x ∈ E and

r > 0.

The following lemma follows from Butnariu and Iusem [13] and
Zǎlinescu [36].
Lemma 5: Let E be a reflexive Banach space and f : E → R be
a strongly coercive Bregman function. Then

(i) ∇f : E → E∗ is one-to-one, onto and norm-to-weak∗ con-
tinuous;

(ii) 〈x− y,∇f(x)−∇f(y)〉 = 0 if and only if x = y;
(iii) {x ∈ E : Df (x, y) ≤ r} is bounded for all y ∈ E and r > 0;
(iv) dom f ∗ = E∗, f ∗ is Gâteaux differentiable and ∇f ∗ =

(∇f)−1.

The following two results are well known; see [36]
Theorem 1: Let E be a reflexive Banach space and let f : E → R
be a convex function which is bounded on bounded subsets of E.
Then the following assertions are equivalent:

(1) f is strongly coercive and uniformly convex on bounded
subsets of E;

(2) domf ∗ = E∗, f ∗ is bounded on bounded subsets and uni-
formly smooth on bounded subsets of E∗;

(3) domf ∗ = E∗, f ∗ is Frechet differentiable and ∇f ∗ is uni-
formly norm-to-norm continuous on bounded subsets of E∗.

Theorem 2: Let E be a reflexive Banach space and let f : E → R
be a continuous convex function which is strongly coercive. Then
the following assertions are equivalent:

(1) f is bounded on bounded subsets and uniformly smooth on
bounded subsets of E;



A FORWARD-BACKWARD SPLITTING ALGORITHM . . . 37

(2) f ∗ is Frechet differentiable and f ∗ is uniformly norm-to-
norm continuous on bounded subsets of E∗;

(3) domf ∗ = E∗, f ∗ is strongly coercive and uniformly convex
on bounded subsets of E∗.

Lemma 6: [22] (see also [25]) Let E be a reflexive Banach space,
let f : E → R be a strongly coercive Bregman function and let Vf
be the function defined by

Vf (x, x
∗) = f(x)− 〈x, x∗〉+ f ∗(x∗), x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:

(1) Df (x,∇f ∗(x∗)) = Vf (x, x
∗) for all x ∈ E and x∗ ∈ E∗.

(2) Vf (x, x
∗) + 〈∇f ∗(x∗)− x, y∗〉 ≤ Vf (x, x

∗ + y∗) for all x ∈ E
and x∗, y∗ ∈ E∗.

Lemma 7: [25] Let E be a Banach space and f : E → R be
a convex function which is uniformly convex on bounded subsets
of E. Let r > 0 be a constant and ρr be the gauge of uniform
convexity of f . Then

(i) For any x, y ∈ Br and α ∈ (0, 1),

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− α(1− α)ρr(||x− y||).
(ii) For any x, y ∈ Br,

ρr(||x− y||) ≤ Df (x, y)

(iii) If, in addition, f is bounded on bounded subsets and uni-
formly convex on bounded subsets of E then, for any x ∈
E, y∗, z∗ ∈ B∗r and α ∈ (0, 1),

Vf (x, αy∗+(1−α)z∗) ≤ αVf (x, y∗)+(1−α)Vf (x, z∗)−α(1−α)ρ∗r(||y∗−x∗||).

In order to solve equilibrium problems, we shall assume that the
bifunction G : C × C → R satisfies the following conditions [8] :
(A1)G(x, x) = 0, ∀x ∈ C;
(A2) G is monotone, i.e., G(x, y) +G(y, x) ≤ 0 ∀x, y ∈ C;
(A3) lim sup

t→o
G(tz + (1− t)x, y) ≤ G(x, y), ∀x, y, z ∈ C;

(A4) the function y 7→ G(x, y) is convex and lower semi-continuous.

For r > 0 the resolvent of a bifunction G [35] is the operator

ResfG : E → C defined by

ResfG(x) =
{
z ∈ C : G(z, y)+

1

r
〈∇f(z)−∇f(x), y−z〉 ≥ 0 ∀y ∈ C

}
.

(4)
From Lemma 1, in [28] if f : (−∞,+∞]→ R is strongly coer-
cive and Gâteaux differentiable function, and G satisfies condition
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(A1)− (A4), then dom(ResfG)= E.
The following lemma gives some characterization of the resolvent
ResfG.
Lemma 8: [28] Let E be a real reflexive Banach space and C be
a nonempty closed convex subset of E. Let f : E → (−∞,+∞] be
a function. If the bifunction G : C × C → R satisfies the condition
(A1)-(A4), then the following hold:

(i) ResfG is singled-valued;

(ii) ResfG is a Bregman firmly nonexpansive operator

(iii) F (ResfG) =EP(G);
(iv) EP(G) is closes and convex subset of C; for all x ∈ E and

for all q ∈ F (ResfG)

Df (q, Res
f
G(x)) +Df (Res

f
G(x), x)≤Df (q, x). (5)

1. MAIN RESULT

It is easy to see that for each i = 1, 2, . . . , k

(Ni +Mi)
−1(0) = Fix

(
(I + λMi)

−1(I − λNi)
)
.

Lemma 9: Let Mi : D(M) ⊂ E → 2E, i = 1, 2, . . . , k and
Ni : C → E, i = 1, 2, . . . , k be finite family m−accretive op-
erators and αi−inverse strongly accretive respectively. Let π =(
(I +λMk)

−1(I −λNk)
)
◦
(
(I +λMk−1)

−1(I −λNk−1)
)
◦ · · · ◦

(
(I +

λM1)
−1(I − λN1)

)
. Then π is nonexpansive.

Proof:
To show that π =

(
(I + λMk)

−1(I − λNk)
)
◦
(
(I + λMk−1)

−1

(I−λNk−1)
)
◦· · ·◦

(
(I+λM1)

−1(I−λNi)
)

is nonexpansive, consider
the mapping (I+λMi)

−1(I−λNi), for any i ∈ {1, 2, . . . , k} we have.

||(I + λMi)
−1(I − λNi)x− (I + λMi)

−1(I − λNi)y||q

≤ ||(I − λNi)x− (I − λNi)y||q

= ||(x− y)− λ(Nix−Niy)||q

= ||x− y||q − qλ〈Nix−Niy, j(x− y)〉+ dqλ
q||Nix−Niy||q

≤ ||x− y||q − qλα||Nix−Niy||q + dqλ
q||Nix−Niy||q

= ||x− y||q − λ(qα− dqλq−1)||Nix−Niy||q

≤ ||x− y||q.
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Hence, the mapping (I + λMi)
−1(I − λNi) is nonexpansive for any

i ∈ {1, 2, . . . , k}. This implies that π =
(
(I + λMk)

−1(I − λNk)
)
◦(

(I + λMk−1)
−1(I − λNk−1)

)
◦ · · · ◦

(
(I + λMi)

−1(I − λNi)
)

is also
nonexpansive as a composition of finite nonexpansive mappings.

We assume that the nonexpansive mapping π above is also Breg-
man nonexpansive with respect to f in the sequel.

Theorem 3: Let E be q−uniformly smooth space. C a nonempty
closed convex subset of E. Let f : E → R be a strongly coercive,
Legendre function, which is bounded, uniformly Fréchet differen-
tiable and totally convex on bounded subset of E. Let G be a
bifunction from C×C to R satisfying (A1)-(A4). Let Mi and Ni

be as in Lemma 9 above. Let T : C → C be a quasi-Bregman
nonexpansive mapping such that Ω := F (T )∩EP (G)∩ (∩ki=1(Ni +
Mi)

−1(0)) 6= ∅. Assume (I − T ) is demiclosed at the origin and let
{xn} be a sequence generated by



x0 ∈ C,
zn = ∇f ∗

(
βn∇f(Txn) + (1− βn)∇f(xn)

)
,

G(zn, y) + 1
rn
〈y − zn,∇f(zn)−∇f(un)〉 ≥ 0 ∀y ∈ C,

wn = ∇f ∗
(
αn∇f(xn) + (1− αn)∇f

(
πun

))
,

xn+1 = ΠCwn, n≥ 0.

(6)

Assume Fix(π) = ∩ki=1(Ni +Mi)
−1(0). Let α = min1≤i≤k{αi}, λ >

0, with λ ∈ (0, ( qα
dq

)
1

q−1 ) and {βn}, {αn} ⊆ [a, b] with 0 < a < b < 1,

let rn ∈ (0, 1). Then {xn} converges weakly to some point in Ω.

Proof:
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Let p ∈ Ω. Then we have

Df (p, zn) = Df

(
p,∇f∗

(
βn∇f(Txn) + (1− βn)∇f(xn)

))
= Vf

(
p, βn∇f(Txn) + (1− βn)∇f(xn)

)
= f(p)− 〈p, βn∇f(Txn) + (1− βn)∇f(xn)〉

+f∗(βn∇f(Txn) + (1− βn)∇f(xn))

= βnf(p) + (1− βn)f(p)− βn〈p,∇f(Txn)〉
−(1− βn)〈p,∇f(xn)〉
+βnf

∗(∇f(Txn)) + (1− βn)f∗(∇f(xn))

≤ βn(f(p)− 〈p,∇f(Txn)〉+ f∗(∇f(Txn)))

(1− βn)(f(p)− 〈p,∇f(xn)〉+ f∗(∇f(xn)))

= βnVf (p,∇f(Txn)) + (1− βn)Vf (p,∇f(xn))

= βnDf (p, Txn) + (1− βn)Df (p, xn)

≤ βnDf (p, xn) + (1− βn)Df (p, xn)

≤ Df (p, xn).

Since from (6) un = ResfG(zn) and using (5), we get

Df (p, un) ≤ Df (p, zn)−Df (un, zn)

≤ Df (p, zn)

= Df (p, xn).

But

Df (p, xn+1) ≤ Df (p, wn) = Df (p,∇f∗
(
αn∇f(xn) + (1− αn)∇f

(
πun

))
≤ αnDf (p, xn) + (1− αn)Df (p, πun)

≤ αnDf (p, xn) + (1− αn)Df (p, un)

≤ Df (p, xn) + (1− αn)Df (p, xn)

= Df (p, xn),

which implies that lim
n→∞

Df (p, xn) exists and consequently {Df (p, xn)}
is bounded. Furthermore, by Lemma 4 {xn} is bounded, hence
{wn}, {un} and {zn} are bounded.

Let ρ∗r : E → R be the guange function of uniform convexity of the
conjugate function f ∗, r > 0 (chosen appropriately). By Lemmas
6 and 7, we obtain

Df (p, zn) = Df

(
p,∇f ∗

(
βn∇f(Txn) + (1− βn)∇f(xn)

))
= Vf

(
p, βn∇f(Txn) + (1− βn)∇f(xn)

)
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≤ βnVf (p,∇f(Txn)) + (1− βn)Vf (p,∇f(xn))

−βn(1− βn)ρ∗r(||∇f(Txn)−∇f(xn)||)
= βnDf (p, Txn) + (1− βn)Df (p, xn)

−βn(1− βn)ρ∗r(||∇f(Txn)−∇f(xn)||)
≤ βnDf (p, xn) + (1− βn)Df (p, xn)

−βn(1− βn)ρ∗r(||∇f(Txn)−∇f(xn)||)
= Df (p, xn)− βn(1− βn)ρ∗r(||∇f(Txn)−∇f(xn)||) (7)

≤ Df (p, xn).

Df (p, xn+1) ≤ Df (p, wn) = Df (p,∇f∗
(
αn∇f(xn) + (1− αn)∇f

(
πun

))
= Vf (p, αn∇f(xn) + (1− αn)∇f(πun)

≤ αnVf (p,∇f(xn)) + (1− αn)Vf (p,∇f(πun))

−αn(1− αn)ρ∗r(||∇f(xn)−∇f(πun)||)
= αnDf (p, xn) + (1− αn)Df (p, πun)

−αn(1− αn)ρ∗r(||∇f(xn)−∇f(πun)||)
≤ αnDf (p, xn) + (1− αn)Df (p, un) (8)

−αn(1− αn)ρ∗r(||∇f(xn)−∇f(πun)||)
= Df (p, xn)− αn(1− αn)ρ∗r(||∇f(xn)−∇f(πun)||). (9)

From (8) we have

αn(1− αn)ρ∗r(||∇f(xn)−∇f(πun)||) ≤ Df (p, xn)−Df (p, xn+1)

and so using the property of ρ∗r we have

lim
n→∞

||∇f(xn)−∇f(πun)|| = 0, (10)

since∇f ∗ is uniformly norm-to-norm continuous on bounded subset
of E∗, we have

lim
n→∞

||xn − πun|| = 0. (11)

From (6) and (7) we have

Df (p, xn+1) ≤ αnDf (p, xn) + (1− αn)
[
Df (p, xn)

−βn(1− βn)ρ∗r(||∇f(Txn)−∇f(xn)||)
]

= Df (p, xn)− (1− αn)βn(1− βn)ρ∗r(||∇f(Txn)−∇f(xn)||),

which implies

(1− αn)βn(1− βn)ρ∗r(||∇f(Txn)−∇f(xn)||) ≤ Df (p, xn)−Df (p, xn+1)
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and so
lim
n→∞

||∇f(Txn)−∇f(xn)|| = 0. (12)

Since ∇f∗ is uniformly norm-to-norm continuous on bounded subset of E∗, we
have

lim
n→∞

||Txn − xn|| = 0. (13)

From (6) we have

||∇f(xn)−∇f(zn)|| = βn||∇f(xn)−∇f(Txn)||,
which implies from (11) that

lim
n→∞

||∇f(xn)−∇f(zn)|| = 0. (14)

Since ∇f∗ is uniformly norm-to-norm continuous on bounded subset of E∗, we
have

lim
n→∞

||xn − zn|| = 0. (15)

From (6) and Lemma 2 (b) we have

lim
n→∞

Df (zn, un) = lim
n→∞

Df (zn, Res
f
G(zn))

≤ lim
n→∞

(Df (zn, zn)−Df (ResfG(zn), zn))

≤ 0,

by Lemma 3 we have
lim

n→∞
||zn − un|| = 0. (16)

Since ∇f∗ is uniformly norm-to-norm continuous on bounded subset of E∗, we
have

lim
n→∞

||∇f(zn)−∇f(un)|| = 0. (17)

But
||un − xn|| ≤ ||un − zn||+ ||zn − xn||,

which from (14) and (15) implies

lim
n→∞

||un − xn|| = 0. (18)

Also,

||xn − πxn|| ≤ ||xn − πun||+ ||πun − πxn||
≤ ||xn − πun||+ ||un − xn||,

which from (10) and (17) implies

lim
n→∞

||xn − πxn|| = 0. (19)

Again, from (6) we have

||∇f(πun)−∇f(wn)|| = βn||∇f(πun)−∇f(xn)||,
which also implies from (9)

lim
n→∞

||∇f(πun)−∇f(wn)|| = 0.

Since ∇f∗ is uniformly norm-to-norm continuous on bounded subset of E∗, we
have

lim
n→∞

||πun − wn|| = 0.
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Also

||un − πun|| ≤ ||un − xn||+ ||xn − πun||,
which implies

lim
n→∞

||un − πun|| = 0.

Again,

||wn − un|| ≤ ||wn − πun||+ ||πun − un||,
which implies

lim
n→∞

||wn − un|| = 0.

We also have,

||wn − xn|| ≤ ||wn − un||+ ||un − xn||,
which implies

lim
n→∞

||wn − xn|| = 0.

Since {xn} is bounded and E is reflexive, there exists a subsequence {xni
} of

{xn} such that xni ⇀ p ∈ C. From (13) and the assumption (I − T ) is demi-
closed at the origin, we have p ∈ F (T ), also from (19) and the fact that (I−π)
is demiclosed at the origin, we have p ∈ ∩ki=1(Ni +Mi)

−1(0).

Next we show that p ∈ EP (G), from (6) we have

G(zn, y) +
1

rn
〈y − zn,∇f(xn)−∇f(un)〉 ≥ 0 ∀y ∈ C.

By applying (A2) we have for each n ≥ 1

1

rn
〈y − xn,∇f(zn)−∇f(un)〉 ≥ −G(zn, y) ≥ G(y, zn) ∀y ∈ C.

By (A4), (16) and xni
⇀ p as n→∞, we have

G(y, zni
) ≤ 0 ∀y ∈ C, which implies

G(y, p) ≤ 0 ∀y ∈ C.
Let vt = tv + (1 − t)p for t ∈ (0, 1) and v ∈ C. This yields G(v, p) ≤ 0. It
follows from (A1) and (A4) that

0 = G(vt, vt) ≤ tG(vt, v) + (1− t)G(vt, p) ≤ tG(vt, v).

This implies

0 ≤ G(vt, v).

From condition (A3), we obtain

G(p, v) ≥ 0, ∀v ∈ C.

This implies that p ∈ EP (G). Hence we have p ∈ Ω := F (T ) ∩ EP (G) ∩
(∩ki=1(Ni +Mi)

−1(0)).
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2. NUMERICAL EXAMPLE

We give the following nemerical example to justify Theorem 3
Example : Let E = R, C = [−1, 1] and G : C × C → R be a bifunction
defined by G(x, y) = y2 + yx − 2x2, ∀x, y ∈ C. Let Mi : R → R i = 1, 2, 3
defined by M1x = 2x, M2x = 4x, M3x = 6x ∀x ∈ R. Let the mapping
Ni : C → R i = 1, 2, 3 be defined by N1x = x

2 , N2x = x
4 , N3x = x

6 ∀x ∈ R.
Let T : C → C be defined by Tx = x. let f(x) = 2

3x
2, ∇f(x) = 4

3x, since

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ R}, then f∗(z) = 3
8z

2 and ∇f∗(z) = 3
4z.

Clearly G is a bifunction satisfying A1−A4, Mi is m-accretive operator, Ni is
1
2−inverse strongly accretive and T is quasi bregman nonexpansive mapping.
From the scheme we obtain the following

zn = xn

un = zn

wn = n
2n+1xn + (1− n

2n+1 ) 77
384un

xn+1 =


−1, if x < −1

1, if x > 1

wn, otherwise

(20)

where βn = n+1
4n , αn = n

2n+1 , rn = 1 and λ = 1. Then {xn} converges to

0 ∈ Ω = {0}.
Next, using Matlab software we have the following figures which shows that
the sequence {xn} converges to 0.
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