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AN EXPONENTIAL METHOD OF VARIABLE ORDER

FOR GENERAL NONLINEAR

(STIFF AND NONSTIFF) ODE SYSTEMS

C. C. JIBUNOH

ABSTRACT. In this paper, an explicit method, hereby called an
Exponential Method of variable order, is derived from the earlier
published Exponential Method of orders 2 and 3. The present
method of variable order commands higher accuracy since it
obtains numerical solutions which coincide with the exact theo-
retical solutions, to eight or more decimal places, in virtually all
stiff and nonstiff, (linear and nonlinear) ODE systems. Numer-
ical applications show that it has faster convergence and much
higher accuracy than many existing methods. New formats are
now introduced to make it easy to integrate any K × K sys-
tems. Other remarkable features include the use of the exact
Jacobians of nonlinear systems; implementation of a phase to
phase integration of stiff systems, with exact formulas for de-
termining the terminal points of phases; avoidance of matrix
inversions, LU decompositions and the cumbersome Newton it-
erations, since the method is explicit; solving oscillatory systems
without additional refinements and a straight forward applica-
tion of the method without starters. Implementations show that
any program of the Exponential Method of variable order (e.g
the QBASIC program) produces a very fast or instant output in
automatic computation.

Keywords and phrases: Jibunoh correction for continuity, Tran-
sient eigenvalues, Exact Jacobian, Component by component in-
tegration, Diagonal Z variables, Two phase integration, QBASIC
Codes.
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1. INTRODUCTION

An Exponential Method (EM) of a maximum of order 3, was de-
veloped in Jibunoh [2] for the accurate and automatic integration
of any nonlinear Ordinary Differential System (stiff or nonstiff),
represented generally by the IVP;

y′ = f(t, y), y(t0) = y0 (1)
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Although the EM gave satisfactory results in [2], its extension to
higher orders e.g to order p > 3, was hindered by the labour of
deriving successively higher powers of the general Jacobian, in the
traditional way.

Previous works on nonlinear ODE systems had centred more on the
applications of the fourth order RK method [3], Adomian decom-
position method [6], including that of Rach, Adomian and Meyers
[7]. Also in vogue was the spline collocation method, using integral
equation reformulations [4], which was closely followed by the Dif-
ferential Transform Method (DTM) in [5], for linear systems. Most
of these methods were methods of fixed orders and their accuracies
should need improvement.

A higher order method is expected to produce higher accuracy and
if the order p is a variable, the adjustments of order will be straight
forward during the integration of various forms of nonlinear ODE
systems.

In this paper, we shall develop an improved version of the Exponen-
tial Method, given in Jibunoh [2], which will be of variable order
and shall be applicable to the general nonlinear (stiff and nonstiff)
ODE systems, with simplicity of computations. The mathematical
simplicity of the method and its high accuracy will be evident from
its construction and implementations.

The method may, perhaps, be more attractive than the recent works
on Second Derivative Runge-Kutta Methods (SD-RKM) or the Sec-
ond Derivative General Linear Methods (SD-GLM) such as those of
[12] and [14], which are currently appearing in the literature, with
tedious derivations. The EM does not employ any starter methods.

Our first task in constructing the Exponential Method of variable
order for the system (1), is to find a simplified way of generating
successively the mth powers (m ≤ p− 1) of the general Jacobian.

2. FORMULAS FOR THE POWERS OF THE GENERAL JACOBIAN An,
IN TERMS OF THE ENTRIES

As proved in [2], the general offshoot of Jibunoh Spectral Decomposition
[1] of order p, where p ≥ 1 is an integer, can be deduced as

yn+1 = yn + (hI +
h2

2
An +

h3

6
A2

n + . . .+
hp

p!
Ap−1

n )fn (2)

where An is the general Jacobian at step n. This is an explicit one
step method of order p which is an exponential function of the exact
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Jacobian of the K ×K system. The form (2) is now defined as the ex-
ponential method of variable order (EM) since p is a variable. We shall
first demonstrate the procedure of obtaining the powers of An for any
K ×K system. Let

y′1 = f1 = f1(t, y1, y2, ..., yk), y1(t0) = y10

y′2 = f2 = f2(t, y1, y2, ..., yk), y2(t0) = y20

..........................................................

..........................................................
y′k = fk = fk(t, y1, y2, ..., yk), yk(t0) = yk0

(3)

be a general nonlinear K ×K system. Then we obtain the general Ja-
cobian at step n, as

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1
∂y1

∂f1
∂y2

...
∂f1
∂yk

∂f2
∂y1

∂f2
∂y2

...
∂f2
∂yk

... ... ... ...

∂fk
∂y1

∂fk
∂y2

...
∂fk
∂yk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

D1 D2 ... Dk

Dk+1 Dk+2 ... D2k

... ... ... ...
Dk2−k+1 Dk2−k+2 ... Dk2

⎞
⎟⎟⎠

(4)
where Dj, j = 1(1)k2, are, in general, functions of (tn, yn).
To find A2

n, we write

A2
n = AnAn (5)

Let Uj , j = 1(1)k2 be the entries of A2
n. Since we need to obtain

(U1, U2, ...Uk2)
T as easily as possible we shall use the Shortcut of Matrix

Transpositions (SMT), as follows
Define

(A2
n)

T = [Uj]
(An)

T = [Dj ]
(6)

Then, since A2
n = AnAn, it follows that (A

2
n)

T = AT
nA

T
n . Therefore

[Uj ] = [Dj ][Dj ] (7)

From examining the full matrix multiplication of (7), we find that the
product of the matrices has K partitions with K equations in each
partition. Each equation in each partition has K terms. The first
partition gives the vector (U1, U2, ...Uk)

T , the second partition gives
(Uk+1, Uk+2, ..., U2k)

T etc, and the Kth partition gives the vector
(Uk2−k+1, Uk2−k+2, . . . Uk2)

T . Let partition r, be denoted by p(r). Then
we have the following formulas for Uj in each partition;
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p(1) : Uj = DjD1 +Dk+jD2 +D2k+jD3 + · · ·+Dk2−k+jDk, j = 1(1)k

p(2) : Uk+j = DjDk+1 +Dk+jDk+2 +D2k+jDk+3 + · · ·+Dk2−k+jD2k , j = 1(1)k

p(3) : U2k+j = DjD2k+1 +Dk+jD2k+2 +D2k+jD2k+3 + · · ·+Dk2−k+jD3k , j = 1(1)k

p(k) : Uk2−k+j = DjDk2−k+1 +Dk+jDk2−k+2 +D2k+jDk2−k+3

+ · · ·+Dk2−k+jDk2 , j = 1(1)k

(8)

For a 2 × 2 system, for example, we have [Uj ] = [Dj ][Dj ], j = 1(1)4.
There are K = 2 partitions. Then applying the formulas (8) we obtain

p(1) : Uj = DjD1 +D2+jD2, j = 1(1)2
p(2) : U2+j = DjD3 +D2+jD4, j = 1(1)2

(9)

Taking j = 1(1)2, in each partition, we obtain the totality expansion
for Uj , i.e

U1 = D2
1 +D3D2

U2 = D2D1 +D4D2

U3 = D1D3 +D3D4

U4 = D2D3 +D2
4

(10)

Thus

A2
n =

(
U1 U2

U3 U4

)
(11)

For a 3 × 3 system, there are k = 3 partitions with 9 entries of the
Jacobian. Applying (8) to [Uj ] = [Dj ][Dj ] we have the following, in 3
partitions.

p(1) : Uj = DjD1 +D3+jD2 +D6+jD3, j = 1(1)3
p(2) : U3+j = DjD4 +D3+jD5 +D6+jD6, j = 1(1)3
p(3) : U6+j = DjD7 +D3+jD8 +D6+jD9, j = 1(1)3

(12)

Taking j = 1(1)3 in each partition, we obtain the totality expansion for
Uj,
i.e

U1 = D2
1 +D4D2 +D7D3

U2 = D2D1 +D5D2 +D8D3

U3 = D3D1 +D6D2 +D9D3

U4 = D1D4 +D4D5 +D7D6

U5 = D2D4 +D2
5 +D8D6

U6 = D3D4 +D6D5 +D9D6

U7 = D1D7 +D4D8 +D7D9

U8 = D2D7 +D5D8 +D8D9

U9 = D3D7 +D6D8 +D2
9

(13)

For any K × K system and for j = 1(1)k2, define the matrix or the
power of the matrix An, with its entries in brackets, as follows;
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An(Dj), A
2
n(Uj), A

3
n(Wj), A

4
n(Vj), A

5
n(Gj), . . . , A

p−1
n (Qj), where the ex-

ponent p, is the desired order of the method.

Now suppose Am
n = Am−1

n An for all integral m ≥ 1.
Then

(Am
n )T = AT

n (A
m−1
n )T = [Dj ](A

m−1
n )T (14)

Using the general notation [·] for transpose of matrices we have succes-
sively;

[Uj ] = [Dj ][Dj ] forA2
n

[Wj ] = [Dj ][Uj ] forA3
n

[Vj] = [Dj ][Wj ] forA4
n

[Gj ] = [Dj ][Vj ] forA5
n

.....................................

[Qj ] = [Dj ][Rj ] forAp−1
n

(15)

where Rj are the entries of Ap−2
n , and p is the desired order of the

method. Each matrix entries on the LHS of (15) is obtained by applying
the type of formulas (8) to the variables on the RHS in K partitions.

For example, Wj as the entries of A3
n for a 3× 3 system, are given in 3

partitions. Since [Wj ] = [Dj ][Uj ] in (15), we have the following;

p(1) : Wj = DjU1 +D3+jU2 +D6+jU3, j = 1(1)3
p(2) : W3+j = DjU4 +D3+jU5 +D6+jU6, j = 1(1)3
p(3) : W6+j = DjU7 +D3+jU8 +D6+jU9, j = 1(1)3

(16)

The totality expansions for Wj are obtained and retained in terms of
the Dj and Uj variables.

3. THE INTEGRATION FORMULAS

The EM of order p is given by

yn+1 = yn + (hI +
h2

2
An +

h3

6
A2

n + . . .+
hp

p!
Ap−1

n )fn (17)

where p ≥ 1, is any desired order. Let U1, U2, . . . , Uk2 be the variable
entries of A2

n and Q1, Q2, . . . , Qk2 be the variable entries of the matrix

Ap−1
n , whose values are obtained by the procedures described in Section

2. Then on component by component basis, (17) dissolves into the forms

y1,n+1 = y1n + Z1f1n + Z2f2n + · · ·+ Zkfkn

y2,n+1 = y2n + Zk+1f1n + Zk+2f2n + · · · + Z2kfkn
..............................................

yk,n+1 = ykn + Zk2−k+1f1n + Zk2−k+2f2n + · · ·+ Zk2fkn

(18)
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where

Z1 = h+
h2

2
D1 +

h3

6
U1 + ...+

hp

p!
Q1

Z2 =
h2

2
D2 +

h3

6
U2 + ...+

hp

p!
Q2

...............................................

...............................................

Zk+2 = h+
h2

2
Dk+2 +

h3

6
Uk+2 + ...+

hp

p!
Qk+2

Zk+3 =
h2

2
Dk+3 +

h3

6
Uk+3 + ...+

hp

p!
Qk+3

...............................................

...............................................

Zk2 = h+
h2

2
Dk2 +

h3

6
Uk2 + ...+

hp

p!
Qk2

(19)

Observe that each of Z1, Zk+2, , Zk2 has h, as a separate term. We shall
define such Z variables as Diagonal Z variables. They can be located by
inspection of (19). Otherwise the Diagonal Z variables, in the general
K ×K system, are located more precisely at the K points,

j = n(K + 1) + 1, n = 0, 1, 2, . . . , (K − 1) (20)

where K is the dimension of the system.
Hence for a 2× 2 system, K = 2, then j = 3n+1, for n = 0, 1.
Thus, j = 1 and j = 4 when n = 0, 1 respectively, which give Z1 and Z4

as the diagonal variables. Therefore more compactly, we write

Zj = h+
h2

2
Dj +

h3

6
Uj + ...+

hp

p!
Qj (21)

are diagonal variables which are located at the points
j = n(K + 1) + 1, n = 0, 1, 2, . . . , (K − 1)
and

Zj =
h2

2
Dj +

h3

6
Uj + ...+

hp

p!
Qj

are not diagonal variables located at other integral points of j ∈ (1,K2).

By QBASIC convention,

y1,n+1 = X1 y1n = Y 1 f1n = F1
y2,n+1 = X2 y2n = Y 2 f2n = F2

−−−−−−−−−−−−
yk,n+1 = XK ykn = YK , fkn = FK

(22)

Then, using y1(t0) = y10, y2(t0) = y20, . . . , yk(t0) = yk0 as the initial val-
ues (ie starting points) for Y 1, Y 2, . . . YK respectively, the integration
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formulas corresponding to (18) in QBASIC Codes become

X1 = Y 1 + Z1 ∗ F1 + + ZK ∗ FK

X2 = Y 2 + ZK+1 ∗ F1 + + Z2K ∗ FK

−−−−−−−−−−−−
−−−−−−−−−−−−

XK = YK + ZK2−K+1 ∗ F1 + · · ·+ ZK2 ∗ FK

(23)

which are programmed to obtain the automatic solutions of the K ×K
system.

4. PRELUDE TO THE INTEGRATION OF NONLINEAR
STIFF AND NONSTIFF (ODE) SYSTEMS

4.1 Autonomous and Non-Autonomous Systems

Briefly (or more formally) a non-autonomous system is of the form of
dy

dt
= f(t, y) where the differential equations of the system are functions

of t and y.
If they are functions of y only i.e

dy

dt
= f(y) (24)

the system is called an autonomous system.

4.2 Choice of Stepsize for a Non-linear Non-Stiff System

Definition 4.1:

Let A0 =
∂f

∂y
(t0, y0) be the constant Jacobian of the nonstiff system at

(t0, y0). Then, we define the stepsize h of the integration as follows;

• h = .0001, if each entry of A0 is a maximum of two digits or
less, to the nearest whole number or,

• h = 10−r−1, if the largest entry of A0, by absolute value, is a
real number of r digits such that r > 2, to the nearest whole
number. A nonstiff system having such r > 2 is said to be a
peculiar nonstiff system.

4.3 Choice of Stepsize for a Nonlinear Stiff System

We shall obtain a tentative initial stepsize h∗0, using the Jacobian A0

and a substantive initial stepsize h0 using the Jacobian A1.

Let a K-dim nonlinear stiff system be given by

y′ = f(t, y), y(t0) = y0 (25)
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such that the general Jacobian at step n, is

An =
∂f

∂y
(tn, yn) (26)

Definition 4.2(a):
The Jacobian (26) at the initial point (t0, y0) is given by

A0 =
∂f

∂y
(t0, y0) =

⎛
⎜⎜⎝

α11 α12 ... α1k

α21 α22 ... α2k

... ... ... ...
αk1 αk2 ... αkk

⎞
⎟⎟⎠ (27)

where the αij are real entries. For some i,j, let αij be such that |αij | is
the largest modulus of all the entries of A0.
Then we define the tentative initial stepsize h∗0 as follows:

• if |αij | < 1, then h∗0 = 0.001.

• if |αij | is an integer of r digits, to the nearest integer,

h∗0 = min(0.001, 10(−r−1)) (28)

if the system is autonomous or

h∗0 = min(0.0001, 10(−r−1)) (29)

if the system is non-autonomous

Definition 4.2(b)
Suppose A0 = 0 in Definition 4.2(a), and f0 �= 0. Let the function values
at (t0, y0) be given by f0 = (f10, f20, ...fk0)

T

Let fj0, 1 ≤ j ≤ K, be such that |fj0| is the largest of the modulus of the
components of f0, then we define the tentative initial stepsize as follows:

• If |fj0| < 1, then h∗0 = 0.001.
• If |fj0| is an integer of s digits, to the nearest integer,

then
h∗0 = min(0.001, 10−s−1) , if the system is autonomous

h∗0 = min(0.0001, 10(−s−1)) , if the system is non-autonomous

If A0 = A1 = ... = An = 0, i.e
∂f

∂y
= 0. and f0 �= 0, the EM integra-

tion formula reduces to a method of order one (which coincides with the
Euler Scheme) i.e yn+1 = yn + hIfn, where for the relevant system, we
define h = h∗0, as given by Definition 4.2(b) above. Also fn is always the
corrected fn, if the system is non-autonomous. The correction is done
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by applying Jibunoh correction for continuity [1]

In order to obtain the substantive initial stepsize h0 for the integration,
we apply the Exponential Method (EM) of order 2 say, to the nonlin-
ear stiff system (25), and solve for y1 using A0 and the tentative initial
stepsize h∗0.

From (2) the EM (order 2) gives the first step solution as

y1 = y0 +

(
h∗0I +

h∗0
2

2
A0

)
f0 (30)

Having obtained y1, then substituting (t1, y1) in the general Jacobian
(26), we obtain the constant Jacobian

A1 =
∂f

∂y
(t1, y1) =

⎛
⎜⎜⎝

β11 β12 ... β1k
β21 β22 ... β2k
... ... ... ...
βk1 βk2 ... βkk

⎞
⎟⎟⎠ (31)

where βij are real entries.

Definition 4.3
For some i, j, let βij in (31) be such that |βij | is the largest modulus of
all the entries of A1. Then we define the substantive initial stepsize h0,
as follows:

• If |βij | < 1, then h0 = 0.001.
• If |βij | is an integer of r digits, to the nearest integer,

h0 = min(0.001, 10−r−1) (32)

if the system is autonomous, or

h0 = min(0.0001, 10−r−1) (33)

if the system is non-autonomous.
Thus h0, which is substantive, is the required initial stepsize for the
integration of the nonlinear system (25).
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4.4 The Most Transient Eigenvalue of A1

Definition 4.4
For the K-dim stiff system (25), let λ1, λ2, . . . , λk be the eigenvalues of
the constant Jacobian A1, defined by (31). Let Reλ1 say, be the most
negative of all the eigenvalues of A1 i.e
|Reλ1| > |Reλj | for all j = 2(1)K.

Then λ1 is said to be the most transient eigenvalue of the Jacobian A1.

4.5 A Good Substitute for the Most Transient Eigenvalue of
A1

The following definition is not intended to give the exact numerical value
of the most transient eigenvalue of A1. This is not necessary for our
purpose since the magnitude only is sufficient.

Definition 4.5
Let the constant Jacobian A1 be as defined by (31). A good substitute
or a good representative of the most transient eigenvalue of A1, is the
most negative entry i.e the negative entry βrs such that |βrs| is the
largest modulus of all the negative entries of A1.

This definition is best applicable for practical solutions of stiff systems,
using the Exponential Method, rather than evaluating for the exact
eigenvalues which are more of theoretical interest.

5. PHASE TO PHASE INTEGRATION OF STIFF SYSTEMS

Let a time interval, t0 ≤ t ≤ tN , be given for the integration of a stiff
system. Suppose that the interval is divided into two parts, defined as
[t0, tm] and (tm, tN ] respectively, such that we can carry out the integra-
tion in the first and second intervals separately. Then, the integration
is said to be a two-phase integration. The point tm is crucial, since it
has to be located mathematically between t0 and tN such that the first
interval [t0, tm] is the transient phase (Phase I) containing the transient
eigenvalues of the Jacobian, while the second interval (tm, tN ] is the
steady-state phase (Phase 2).

A phase to phase integration of more than two phases is possible, eg.
a three-phase integration. Our concern (in order to enhance stability
and convergence) is to vanish the transient eigenvalues in Phase I, by
integrating with a very small stepsize h0, obtained from Definition 4.3
and then using a larger stepsize h ≥ h0 from Definition 5.1 below for
phase 2 or other subsequent phases of the integration. Reference may
be made to the work in [2], for preliminary details.

Implementation of a phase to phase integration is illustrated in Examples
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1 and 2 (Section 7), for autonomous and non-autonomous stiff systems
respectively.

We note that if h0 = .001 or .0001, and the ultimate step is not consid-
ered too large, we can institute a one-phase integration and take h0 = h
directly. For a phase to phase integration the initial point of a new phase
is always the ultimate point of the last phase.

Definition 5.1
Let the initial stepsize h0 obtained from Definition 4.3, be applied in
phase I of the integration of a stiff system, then the required stepsize for
Phase 2 and any other subsequent phases is;
h= 0.001 or h = 0.0001, if the system is autonomous,
h = 0.0001, if the system is non-autonomous
In general, h0 ≤ h.

5.1 Exact Formulas for Determining the Ultimate Step m and
the Corresponding Timepoint tm of Phase I

While developing the logic in Jibunoh [2], we first assumed for simplic-
ity that the system under consideration is 2-dimensional (i.e, K = 2)
with λ1 and λ2 as the eigenvalues of the constant Jacobian A0 (now A1)
such that λ1 is transient and λ2 is not, and λ1 is seen to vanish at the
ultimate step m, of Phase I, at the corresponding point tm. The work
in Jibunoh [2], may be consulted for the background logic.

By λ1 vanishing at step m of Phase I we mean that we can select a
smallest positive integer m, possibly of high magnitude, such that

eRe(λ1)h0m = 0 exactly, (34)

where λ1 is the most transient eigenvalue of the Jacobian A1. Practically
we replace Re(λ1) in (34), by the most negative entry of the Jacobian
A1, according to Definition 4.5.

In the general case in which dim K > 2, there may be other transient
eigenvalues of A1 apart from the most transient. The most transient
eigenvalue λ1 as defined, is usually vanished when

eRe(λ1)h0m = b× 10−r = 0 approximately, (35)

where 0 < b ≤ 10 and r ≥ 14, at a step m << m, in (34). Therefore, in
the remaining steps m −m , of Phase I, other transient eigenvalues of
smaller magnitudes are assumed to have vanished. Hence (34) is global
for vanishing all transient eigenvalues.

To determine the number m, in (34), we define -λ1 as the most negative
entry of the Jacobian A1.
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If (34) must hold exactly, two simultaneous equations must be solved,
i.e

m =
tm − t0

h0
e−λ1h0m = 0

(36)

Solving, we have

mh0 = tm − t0.

Then
e−λ1h0m = e−λ1(tm−t0) = e−λ1tmeλ1t0 = 0

i.e
e−λ1tm = 0

or
e−λ1tm = 10−100(10r ) (37)

where r ≥ 0, is an integer.

It follows that

−λ1tm log10 e = −100(10r)

Therefore

tm =
100(10r)

|λ1| log10 e
(38)

where r ≥ 0 is the integral index called the adjusting index, meant for
approximating tm to any number of decimal places.
Knowing tm, we now obtain

m =
tm − t0

h0
(39)

We define tm as a real number which will comply with any of the fol-
lowing conditions.
If the system is autonomous, tm must be approximated to 3 decimal
places, by adjusting the index r to r ≥ 0, or simply by approximating
tm directly to 3 decimal places and making r = 0, whichever case ap-
plies.
If the system is non-autonomous, we adopt the same procedure as
above to approximate tm to 4 decimal places.

To illustrate the above conditions of tm, for an autonomous system, we
have;

Condition I: Suppose from (38), tm = 0.00012578 × 10r. Taking r = 1,
we have, tm = 0.0012578 then to 3 decimal places tm = 0.001. Also
taking r = 2, tm = 0.012578. Then approximating to 3 decimal places,
we obtain tm = 0.013. It is also possible to have tm = 0.12578, by tak-
ing r = 3 and therefore obtaining tm = 0.126 to 3 decimal places. It is
often preferable to use the least tm possible in which case, we take
tm = 0.001, as the required tm, for the system, instead of 0.013 or 0.126.
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Condition 2: Suppose tm = 0.2275812× 10r . Then the approximation is
straightforward. In this case, we take tm = 0.228 to 3 decimal places,
with r = 0. Also if tm = 4.52 × 10r say, then we make r = 0 and write
tm = 4.520, to 3 decimal places.

The above conditions also applymutatis mutandis to non-autonomous
systems where tm must be approximated to 4 decimal places.

By Definition 5.1, the integration stepsize for Phase 2 or other subse-
quent phases is h = 0.001 or 0.0001, if the system is autonomous and h
= 0.0001, if the system is non-autonomous. Therefore, the restrictions
on the decimal numbers of tm, which are to conform to conditions 1 and
2 above, are meant to avoid fractional step-numbers in all phases of the
integration.

5.2 Locating a Numerical Solution Corresponding to the The-
oretical Solution y(t) for a given Real Number t, in any Phase
of the Integration

Defintion 5.2
Let there be a two-phase integration of a stiff system in the interval
t0 ≤ t ≤ tN , where the first and second phases of the integration oc-
cur in the subintervals [t0, tm] and (tm, tN ] respectively. Then, for any
t > t0, the bounds of t with the stepnumber formulas for points of t, in
each phase are defined as follows:

Phase I : t0 < t ≤ tm, n+ 1 =
t− t0
h0

Phase 2 : tm < t ≤ tN , n+ 1 =
t− tm

h

(40)

where tm is known in (38), and h0 and h are the stepsizes employed
for the integrations in Phase I and Phase 2 respectively, as obtained
from Definitions 4.3 and 5.1. The correspondence of the given t, with
step n+ 1, implies that the theoretical solution y(t) corresponds to the
numerical solution, yn+1.

The points to be noted here are as follows:

• The particular real number t, for which the stepnumber n+1, is
to be found should be approximated to no more than the number
of decimal places of h0 in phase I, or no more than the number
of decimal places of h in phase 2, depending on which of the
phases the point t, is located. The number of decimal places
could be less or much less than the maximum of that of h0 or h.
For example t, could be an integer such as 5, which has a zero
number of decimal places.
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Conversely, a given stepnumber n+1, could be used to determine
a corresponding t, by applying

t = t0 + (n+ 1)h0, in Phase I

or t = tm + (n+ 1)h, in Phase 2
(41)

• An r-phase integration (where r > 2) will have stepnumber for-
mulas determined for each phase by using the terminal points of
phases.

Remark 5.1

• For a NONSTIFF system, the general stepsize for all integration
is h = .0001 or the stepsize dictated in Definition 4.1, for peculiar
cases of nonstiff systems.
If the ultimate step of the integration for the nonstiff system
is very large, we may institute a two phase integration (not to
vanish any eigenvalue in Phase I) but to make the ultimate step
of each phase smaller for computer evaluation. In this case, the
terminal timepoint of Phase I is taken as t1, which may be chosen

arbitrarily, or by the rule t1 =
1

2
tN , where tN is the ultimate

timepoint of the integration. The point t1 should be a whole
number or approximated to no more than 4 decimal places, since
h = 0.0001 (or less for peculiar cases of nonstiff systems). For

an r-phase integration, we define t1 =
1

r
tN , where t1 is a whole

number or is approximated to at most 4 decimal places, being
that h = 0.0001. Then the terminal points of phases from Phase
I, shall be t1, 2t1, . . . , rt1 where rt1 = tN . For a stiff system,
the terminal points of phases are tm, t2, 2t2, . . . , (r − 1)t2 where
(r − 1)t2 = tN , since after Phase I, with the terminal point tm,

we define t2 =
1

r − 1
tN , where t2 is a whole number or is ap-

proximated as tm, by the procedures in section 5.1. The case r
= 2, corresponds to a two-phase integration.

• For a LINEAR system, the constant Jacobian A coincides with
the Jacobian A1 of the nonlinear system such that all definitions
pertaining to A1 applies to the Jacobian A, of the linear system.



AN EXPONENTIAL METHOD OF VARIABLE ORDER 189

6. OPTIMAL ORDERS FOR SYSTEMS

The choice of orders of the EM for the integration of any system may
not be arbitrary. From experiments, we are able to find the optimal
orders for categories of systems which are summarized in Table 6.1. The
optimal orders are verified but higher orders may be used at will.

Table 6.1 Optimal Orders for systems

Systems Optimal order

All Nonlinear/linear NONSTIFF systems. 3

Nonlinear/linear STIFF (autonomous) systems
with real eigenvalues. 4

Nonlinear/Linear STIFF (autonomous) systems
with complex eigenvalues 6

All other nonlinear/linear STIFF
non-autonomous systems,

including stiff oscillatory systems
and stiff systems with uncertain nature 6

7. NUMERICAL APPLICATIONS

EXAMPLE 1: Nonlinear Stiff System
y′1 = f1 = .01 − (.01 + y1 + y2)[1 + (1000 + y1)(1 + y1)]

y′2 = f2 = .01 − (.01 + y1 + y2)(1 + y22)

y1(0) = y2(0) = 0. 0 ≤ t ≤ 100

This stiff nonlinear 2× 2 autonomous system with real eigenvalues was
obtained from Lambert [10] and Fatunla [11] where it was integrated
by other numerical methods. No theoretical solution is available but
a theoretical solution at the terminal point t = 100, is deemed to be
found after a strenuous application of the Explicit Runge Kutta method
of order 4, with h = .0005, as reported in Lambert [10]. This problem
was also solved in Jibunoh [2], using the EM of order 3. Here we shall
solve by applying the EM of order 4.

By following the procedures outlined in sections 3, 4 and 5 the integra-
tion is carried out in two phases in the interval 0 ≤ t ≤ 100.

The inputs of the Phases are now as follows

PHASE I

t0 = 0, y0 = (0, 0)T , h0 = 0.00001
D1 = −1011.01 − 2002.02y1n − 3y21n − 1001y2n − 2y1ny2n
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D2 = −1001− 1001y1n − y21n

D3 = −1− y22n

D4 = −1− 0.02y2n − 2y1ny2n − 3y22n

f1n = .01− (.01 + y1n + y2n)[1 + (1000 + y1n)(1 + y1n)]

f2n = .01− (.01 + y1n + y2n)(1 + y22n)

Using the most negative entry of the Jacobian A1 as the most tran-
sient eigenvalue we obtain tm = 0.228, as the ultimate t of Phase I,
corresponding to step m = N1

Step: n+ 1 =
t− t0
h0

=
t

0.00001
, 0 < t ≤ 0.228.

Ultimate step N1 =
0.228

0.00001
= 22, 800 = m

Steps of integration: n = 0 to 22,799 i.e n = 0 to N1 − 1, since when n
= N1 − 1, yn+1 = yN1 .

PHASE 2

Initial point of Phase 2 is the ultimate point of Phase I,
i.e t0 = tm = .228, y0 = ym = y22,800 of Phase I, h = .001
D1,D2,D3,D4 and f1n, f2n remain unchanged as in Phase I, since the
system is autonomous.

Step: n+ 1 =
t− tm

h
=

t− .228

0.001
, .228 < t ≤ 100

Ultimate step N2 =
100 − .228

.001
= 99, 772

Steps of integration: n = 0 to 99,771

Applying the automatic integration formulas (23) of order 4 to generate
the first and second phases respectively in the interval 0 ≤ t ≤ 100, the
automatic numerical solutions are obtained and compared with those of
EM(order 3) and Fatunla [11], in Table 7.1(a).

Table 7.1(b) compares the solutions of different methods at the terminal
point t = 100, with that of y(t) as found.
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Table 7.1(a): Comparing EM solutions of Example I with those of
Fatunla [11] (Given EM solutions are domiciled in Phase 2 of the

integration)

t n+ 1 =
t− .228

.001
EM (order 4) EM(Order 3) Fatunla [11]

10 9772 -0.1097544 -0.1100537 -0.1131583

0.0997768 0.1000761 0.1031919

20 19772 -0.2095082 -0.2098074 -0.2140978

0.1995334 0.1998327 0.2041358

50 49772 -0.5084115 -0.5087100 -0.5177467

0.4984520 0.4987505 0.5078083

100 99772 -0.9916421 -0.9918163 -0.9990020

0.9833364 0.9835357 0.9940184

Table 7.1(b) Comparing Solutions of different methods at the
terminal point of Example I

t y(t) EM (order 4) EM(Order 3) Fatunla [11] Lambert [10]

(As found)

100 -0.9916 -0.9916 -0.9918 -0.9990 -0.9990

0.9833 0.9833 0.9835 0.9940 0.9940

The EM solutions are far superior to the solutions of Fatunla [11] in
Table 7.1(a) especially when the solutions at the terminal point t = 100
are compared to four decimal places in Table 7.1(b) with the theoretical
solutions, y(t) as found. The solutions of EM (order 4) coincide with
the exact theoretical solutions at t = 100. The solutions of Fatunla [11]
and Lambert [10] are largely in error.

We, therefore, conclude that the EM (order 4) produced the exact the-
oretical solutions in the whole interval 0 ≤ t ≤ 100.

The sample programs in QBASIC Codes with automatic outputs for this
problem, at Phase I and Phase 2 integrations respectively, are given in
Appendices A1 and A2.
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EXAMPLE 2: Linear Stiff Oscillatory System

y′1 = f1 = 9y1 + 24y2 + 5cost− 1

3
sint

y′2 = f2 = −24y1 − 51y2 − 9cost+
1

3
sint

y1(0) =
4

3
, y2(0) =

2

3

This is a moderately stiff non-homogeneous and oscillatory linear system
from Burden and Faires [15], p. 314 which has trigonometric functions
on the RHS. It has been solved also in [1], using Jibunoh Spectral De-
composition.

The theoretical solutions are given by

y1(t) = 2e−3t − e−39t +
1

3
cost

y2(t) = −e−3t + 2e−39t − 1

3
cost

Now the Jacobian is the constant matrix

A =

⎛
⎝ D1 D2

D3 D4

⎞
⎠ =

⎛
⎝ 9 24

−24 −51

⎞
⎠

with real eigenvalues λ1 = -39, λ2 = -3. The most negative entry of the
Jacobian is -51.
Since the system is non-autonomous, the initial step-size h0 = min(0.0001
, 10−3) = 0.0001, where we have taken h0 directly (without first obtain-
ing h∗0) because the Jacobian is a constant matrix which does not change
at all points of the integration. See also Remark 5.1.

A two-phase integration is carried out in the interval 0 ≤ t ≤ 10.75.
The inputs of the phases are now as follows;

PHASE 1:

t0 = 0, y0 =

(
4

3
,

2

3

)T

, h0 = 0.0001, by Definition 4.3.

D1 = 9
D2 = 24
D3 = −24
D4 = −51
Since the system is non-autonomous, we have at step n,

tn = t0+nh0 +
h0
2

= 0.0001n+0.00005, where
h0
2

is Jibunoh correction

for continuity [1]

Therefore, from the system,

f1n = 9y1n + 24y2n + 5R1n − 1

3
R2n
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f2n = −24y1n − 51y2n − 9R1n +
1

3
R2n

where
R1n = cos(0.0001n + 0.00005)
R2n = sin(0.0001n + 0.00005)

Let R1n = R1, R2n = R2, f1n = F1 and f2n = F2

The QBASIC program requires that trigonometric functions (or func-
tions of functions) be evaluated first, before substitution into equations.
Thus R1 and R2 will precede F1 and F2 in the program. tm = 4.5148,
is the ultimate t of Phase I, corresponding to step m = N1

Step: n+ 1 =
t− t0
h0

=
t

.0001
, 0 < t ≤ 4.5148

Ultimate step N1 =
4.5148

.0001
= 45, 148 = m

Steps of integration: n = 0 to 45,147

PHASE 2:

The inputs are as follows:
t0 = tm = 4.5148, y0 = ym = y45,148 of Phase I, h = 0.0001 by Defini-
tion 5.1, for Phase 2 of a non-autonomous stiff system.
D1,D2,D3,D4 remain unchanged as in Phase I, since they are constants
and independent of t
At step n, in this Phase,

tn = tm + nh+
h

2
= 4.5148 + 0.0001n + 0.00005 = 0.0001n + 4.51485

Thus,

f1n = 9y1n + 24y2n + 5R1n − 1

3
R2n

f2n = −24y1n − 51y2n − 9R1n +
1

3
R2n

where now in Phase 2
R1n = cos(0.0001n + 4.51485)
R2n = sin(0.0001n + 4.51485)

Step: n+ 1 =
t− tm

h
=

t− 4.5148

.0001
, 4.5148 < t ≤ 10.75

Ultimate step N2 =
10.75 − 4.5148

.0001
= 62, 352

Steps of integration: n = 0 to 62,351

Applying the integration formulas (23) of Order 6 to the system, at
Phase I and Phase 2 respectively, the automatic numerical solutions are
obtained to 8 decimal places and compared with the theoretical solutions
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in Table 7.2, in the interval 0 ≤ t ≤ 10.75. The table indicates the Phase
in which each numerical solution is obtained.

Table 7.2 Comparing the solutions of EM (order 6) with the
theoretical solutions of Example 2

t Phase n + 1 y(t) yn+1:EM (order 6)

0.001 1 10 1.36559145 1.36559145

0.59316376 0.59316376

1.0 1 10,000 0.27967491 0.27967491

-0.22988784 -0.22988784

1.6 1 16,000 0.00672632 0.00672632

0.00150343 0.00150342

4.5148 1 45,148 -0.06543264 -0.06543264

0.06543395 0.06543395

8.4561 2 39,413 -0.18879652 -0.18879652

0.18879652 0.18879652

10.75 2 62,352 -0.08103781 -0.08103781

0.08103781 0.08103781

Phase I: n + 1 =
t

0.0001
, 0 < t ≤ 4.5148, Phase 2: n+ 1 =

t− 4.5148

0.0001
, 4.5148 < t ≤

10.75

Clearly from Table 7.2, the EM solutions coincide with the exact theo-
retical solutions to 8 decimal places at all points of the integration. This
shows the efficiency of the EM in handling stiff oscillatory systems.

EXAMPLE 3: Nonlinear Nonstiff System

y′1 = f1 =
y1 − y2
y3 − t

, y1(0) = 4.693147181

y′2 = f2 =
y1 − y2
y3 − t

, y2(0) = 3.693147181

y′3 = f3 = y1 − y2 + 1, y3(0) = 2

This is a nonlinear nonstiff (non-autonomous) 3×3 system adapted from
Krasnov et al [9], p. 215.
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The theoretical solutions are given by
y1(t) = ln|t+ 2|+ 4
y2(t) = ln|t+ 2|+ 3
y3(t) = 2(t+ 1)

With the usual stepsize h = 0.0001 for a nonstiff system, a one phase
integration is carried out in the interval 0 ≤ t ≤ 10. The system is non-

autonomous. Therefore at step n, tn = t0+nh+
h

2
= 0.0001n+0.00005.

Applying the QBASIC integration formulas of order 3, the automatic
numerical solutions are obtained and compared with the theoretical so-
lutions in Table 7.3.

Table 7.3 Comparing the solutions of EM (order 3) with the
theoretical solutions of Example 3

t n+ 1 =
t

.0001
y(t) EM (order 3), yn+1

5.6 56000 6.02814820 6.02814820

5.02814820 5.02814820

13.20000000 13.20000000

7.835 78350 6.28594750 6.28594750

5.28594750 5.28594750

17.67000000 17.67000000

10 100000 6.48490670 6.48490670

5.48490670 5.48490670

22.00000000 22.00000000

We find from Table 7.3, that the numerical solutions coincide with the
theoretical solutions (to 8 decimal places or more) at all points of the
integration, which shows, as in [2], that the EM is, in general, efficient
for nonstiff nonlinear ODE systems.

EXAMPLE 4: The Robertson (Nonlinear stiff) Chemical Prob-
lem
y′1 = −.04y1 + 104y2y3, y1(0) = 1

y′2 = .04y1 − 104y2y3 − 3× 107y22, y2(0) = 0

y′3 = 3× 107y22, y3(0) = 0
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This is a stiff (nonlinear) autonomous 3 × 3 system obtained from [13]
p.51 and also from [12]. The interval of integration is 0 ≤ t ≤ 400. By
following the procedure in Example I, the system is integrated in two
phases with the EM (Order 4). The automatic outputs for selected
points of t are exhibited in Table 7.4 and compared with the results of
the Second Derivative GLM of order 4 of Butcher and Hojjati [12]. No
theoretical solution is available. We find from the entries of the Jacobian
A1 that h0 = 0.00001. Then applying (38) we obtain tm = 0.096, to 3
decimal places, since the system is autonomous. Therefore m = 9,600 is
the ultimate step of phase I

Table 7.4 Comparing solutions of EM (Order 4) with those of Butcher
and Hojjati [12] for the Robertson Chemical Problem

t Phase n + 1 EM(Order 4) Butcher and Hojjati [12]

0.09 1 9000 9.964630170502634 × 10−1 ——–

3.587457435343882 × 10−5 ——–

3.501108358154222 × 10−3 ——–

0.4 2 304 9.851721141312358 × 10−1 9.85172113862063 × 10−1

3.38639535827037 × 10−5 3.38639537959540 × 10−5

1.479402191935487 × 10−2 1.47940221359022 × 10−2

4 2 3904 9.05518679180256 × 10−1 9.05518678434419 × 10−1

2.240475689897206 × 10−5 2.24047569380437 × 10−5

9.44589160512483 × 10−2 9.44589159917086 × 10−2

40 2 39904 7.323942195485953 × 10−1 7.15827069891020 × 10−1

1.820462563171801 × 10−6 9.18553464163141 × 10−6

2.676039616552051 × 10−1 2.84163750795415 × 10−1

400 2 399904 7.214754660561276 × 10−1 4.50518690834087 × 10−1

−4.758033751248198 × 10−13 3.22290106126097 × 10−6

2.78525358013144 × 10−1 5.49478203523904 × 10−1

Phase I: n+1 =
t

0.00001
, 0 < t ≤ 0.096, Phase 2: n+1 =

t− 0.096

0.001
, 0.096 < t ≤ 400

There is a fair agreement between the EM (Order 4) and Butcher and
Hojjati results (of order 4) up to t = 4. At t = 40 and t = 400, the
disparity is evident.

Generally, there is a steady decrease of the first component solution for
the two methods, as t increases. However, the EM second component
solution converges rapidly to zero from t = 40 to t = 400. At t = 400,
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the EM solution is −4.758033751248198 × 10−13, which is essentially
zero.

In contrast, the Butcher and Hojjati second component solution at t =
400 is 3.2290106126097×10−6 which is not necessarily zero. The second
and third component solutions of the EM at t = 40 and t = 400 respec-
tively, are less in magnitude than the counterpart Butcher and Hojjati
solutions. The differences are much clearer at t = 400.

The antecedents of the Exponential Method, e.g obtaining exact theo-
retical solutions, up to the given number of decimal places, in Examples
1,2 and 3 now compel us to assert that the EM(Order 4) results should,
in all probability, be the exact theoretical solutions of the Robertson
equations.

8. CONCLUSION

The Exponential Method of variable order, developed in this paper, has
demonstrated its efficiency and simplicity of application. The variable
order of the method obviously paved the way for higher accuracy es-
pecially with reference to examples 1, 2, and 3 in section 7, in which
the numerical solutions coincided with the exact theoretical solutions,
to eight or more decimal places. The exactitude of the solutions in the
three cited examples leads to the obvious deduction that the solutions of
example 4 (Robertson chemical reaction problem), being given to more
than 15 decimal places, ought invariably to be the exact theoretical so-
lutions.

The remarkable features of the method include; the use of the exact
Jacobians of nonlinear systems; the phase to phase integration of stiff
systems, in which the transient eigenvalues are vanished in phase I;
avoidance of matrix inversions, LU decompositions and the cumbersome
Newton iterations, since the method is explicit; the easy handling of au-
tonomous and non-autonomous systems without any orchestrated show
of disparity; the solving of oscillatory systems without additional refine-
ments and a straightforward application of the method without starters.
It is evident from numerical applications that the Exponential Method
has faster convergence and much higher accuracy than many existing
methods. The method is also capable of solving small and large (stiff
and nonstiff) ODE systems which are nonlinear or linear.

A first order scalar ODE with initial point (t0, y0) can be solved by the
Exponential Method either singly or as a 2 × 2 system, after incorpo-
rating a dummy first order scalar ODE defined with the same initial
point (t0, y0). In particular, two or more independent first order scalar
equations with a common time point t0, in their initial values, can be
solved simultaneously. All scalar equations of higher orders are generally
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solved by the method after their simple reduction to first order systems.
Hence, we may declare that the Exponential Method of variable order
is omnibus.

Observe that the order of the EM can be changed easily in the program
for automatic computation. Suppose we have presently a method of or-
der 3. The variables of order 3, are Dj and Uj respectively, j = 1(1)k2,
as defined in section 2, as the entries of An and A2

n. These variables
appear as numbered lines of the program. To move to order 4, we derive
the Wj variables, which are entries of A3

n and type them into the pro-
gram to follow the Uj variables. For example, using (15), a 2× 2 system
has the following Wj variables;

W1 = D1U1 +D3U2

W2 = D2U1 +D4U2

W3 = D1U3 +D3U4

W4 = D2U3 +D4U4

(42)

We next include the term
h4

24
Wj as an additional term of order 4, in

the Zj variables, j = 1(1)k2. After this, the resulting method becomes
a method of order 4. Likewise, we can move from order 4 to order 5,
sequentially, etc, by copying and pasting (42) in the next lines. Since Vj

are the entries of A4
n and [Vj] = [Dj ][Wj ] by (15), we give command to

the computer to change W to V and U to W in the pasted lines. We then

increase the terms of the Zj variables by adding
h5

120
Vj ,j = 1(1)k2, to

finally create a method of order 5. Reducing the method from a higher
to a lower order is by deleting the relevant variables of the next higher
orders. Therefore, change of order is achieved without stress.

Implementations show that any program of the Exponential Method of
variable order (e.g the QBASIC program) produces a very fast or instant
output in automatic computation.

ACKNOWLEDGEMENTS

The author wishes to thank the referees for their incisive and useful
comments which contributed to the improvement of the original version
of this paper.



AN EXPONENTIAL METHOD OF VARIABLE ORDER 199

APPENDIX A1
EM ORDER 4: Sample Program and Automatic Output for Example I:

Phase 1



200 C. C. JIBUNOH

APPENDIX A2
EM ORDER 4: Sample Program and Automatic Output for Example I:

Phase 2
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