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A DOUBLE EXPONENTIAL SINC COLLOCATION

METHOD FOR VOLTERRA-FREDHOLM INTEGRAL

EQUATIONS OF THE SECOND KIND
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ABSTRACT. A Sinc collocation method for numerical solution
of Volterra-Fredholm integral equations of the second kind is de-
veloped by incorporating a variable transformation of double ex-
ponential order into the Sinc function expansion technique. The
derived Sinc collocation formula is used to convert a Volterra-
Fredholm integral equation defined on a finite interval into a
set of algebraic equations. Numerical examples are presented
to show the rapid convergence and exceptional accuracy of the
method.
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1. INTRODUCTION

We consider integral equations of the form:

u(x) = λ1

∫ x

a

k1(x, t)u(t)dt+ λ2

∫ b

a

k2(x, t)u(t)dt+ g(x), (1)

where (a ≤ x ≤ b), λ1 and λ2 are constants, k1(x, t), k2(x, t) and
g(x) are given analytic functions, and u(x) is the solution to be
determined. Equation (1) is called a Volterra-Fredholm integral
equation of the second kind [1]. Integral equations of this type
arise from mathematical modelling of some physical and biological
situations, such as the spatio-temporal development of an epidemic
[2]. The existence of solution for equation (1) has been established
[3] but, in many cases, the equation defies analytical methods for
exact solution, making approximate solutions desirable. Some of
the well-known techniques for its solution include the Adomian de-
composition method ([2], [4]), the Taylor series method ([2], [5])
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and the Trapezoidal-Nystrom method [6]. Generally, the conver-
gence rate of these methods is of polynomial order with respect to
the number, N, of terms of the series approximation.
An issue of considerable interest concerns the development of

highly accurate methods for numerical solution of integral equa-
tions of type (1). It is well known that polynomials or associated
splines are traditionally used as basis functions in many numeri-
cal methods such as multistep methods, finite difference method
(FDM), boundary element method (BEM) and projection meth-
ods (e.g. Galerkin, collocation, finite element methods). Such
polynomial-based approximation methods have convergence rates
of polynomial order and are plagued by difficulty in handling prob-
lems that involve semi-infinite or infinite domains and singularities
[7]. Extensive studies by Stenger ([8] - [10]) have drawn sustained
attention to the use of Sinc functions, rather than polynomials, in
numerical approximation techniques. Unlike polynomial-based ap-
proximation methods, Sinc-based numerical methods are character-
ized by rapid convergence rates of exponential order. Also, they are
effective in handling problems with singularities and they are ap-
plicable over finite, semi-infinite as well as infinite domains. These
features distinguish Sinc methods from conventional polynomial-
based numerical methods.
On account of their high efficiency, Sinc numerical methods have

become valuable tools for numerical solution of integral equations.
In particular, the Sinc collocation method has been used to solve
Volterra integral equations ([11] - [13]), Hammerstein integral equa-
tions [14], Fredholm integral equations ([15] - [17]) and Volterra-
Fredholm integral equations ([18], [19]). Single exponential(SE)
Sinc approximations have been widely used in Sinc numerical meth-
ods for solution of integral equations (see, for example, ([12]-[16])).

Typically, the error in SE-Sinc method is O
(√

N exp
[
−c

√
N
])

,

where c > 0 and N represents the number of terms of the Sinc ex-
pansion. For further improvement of the convergence rate of Sinc
approximations, Muhammad and Mori [20] have proposed the use
of double exponential (DE) approximations, so called because they
have convergence rates of double exponential order. DE-Sinc meth-

ods, characterized by convergence rates of O
(
exp

[
−c1N
log c2N

])
, have

been successfully employed to solve Volterra integral equations of
first and second kind (see, for example, [21], [22]).
In this paper, we extend the application of the DE-Sinc numerical

method to the solution of Volterra-Fredholm integral equations of
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the second kind defined on a finite interval. We shall construct
a DE-transformation that maps the real line onto a finite interval,
and use it in conjunction with the Sinc function expansion technique
to derive a collocation formula for conversion of integral equations
of type (1) into a system of algebraic equations. We shall, also,
illustrate the efficiency and accuracy of the derived Sinc collocation
formula with some numerical examples.

2. PRELIMINARIES

2.1. Sinc function and approximation on the real line. The
Sinc function is defined for all real numbers, t, by

Sinc(t) =

{
sinπt
πt

, (t �= 0)
1, (t = 0)

. (2)

The Sinc approximation of a function f(t) on the real line R is given
by

f (t) ≈
N∑

j=−N

f(jh)S(j, h)(t), t ∈ R, (3)

where S(j, h)(t) is the Sinc basis function defined by

S (j, h) (t) =
sin

[
π
(
t
h
− j

)]
π
(
t
h
− j

) , (j = 0, ±1, ±2, · · · ) (4)

and h > 0 is a step size suitably chosen for a given positive integer
N. At interpolating points tk = kh, the Sinc basis function takes
the form:

S(j, h)(kh) =

{
0, k �= j
1, k = j

. (5)

By integrating both sides of equation (3) over the entire real line,
the Sinc quadrature is obtained as∫ ∞

−∞
f(t)dt ≈

N∑
j=−N

f(jh)

∫ ∞

−∞
S(j, h)(t)dt = h

N∑
j=−N

f(jh). (6)

The general Sinc indefinite integration associated with equation (3)
is as follows: [23]∫ ∞

−∞
f(s)ds ≈

N∑
j=−N

f(jh)

∫ t

−∞
S(j, h)(t)dt = h

N∑
j=−N

f(jh)J(j, h)(t),

(7)
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where

J(j, h)(t) =
1

2
+

1

π
Si

(
πt

h
− jπ

)
, (8)

and Si(t) is the sine integral function defined by

Si(t) =

∫ t

−∞

sinu

u
du. (9)

2.2. DE-Sinc approximation on a finite interval Γ = [a, b].
Whereas the Sinc function (2) is defined for functions with do-
main on the entire real line, the domain of the integral equation (1)
which we need to solve is the finite interval Γ. For approximation
of a function f(t) on a finite interval, an appropriate variable trans-
formation which maps the real line onto the finite interval must be
incorporated into the Sinc series approximation (3). For our pur-
pose, we require a variable transformation of double exponential
(DE) order.
Tanaka et al. [24] have shown that a variable transformation

for successful double exponential (DE) Sinc approximation on an
interval can be constructed by appropriately modifying a compati-
ble single exponential (SE) transformation defined on that interval.
This procedure has been employed in the study of Volterra integral
equations ([22], [25]) and will be adopted here. For this purpose,
we consider the SE-transformation

x = σSE(t) =
a+ bet

1 + et
, t ∈ R, (10)

with the inverse transform as

t = σ−1
SE(x) = log

(
x− a

b− x

)
, x ∈ Γ.

The transformation (10) is frequently used in Sinc numerical meth-
ods for solution of integral equations (see, for example, ([12] - [16]).
We construct a DE-transformation which is compatible with the
SE-transformation (10) by replacing et with exp

(
π
2
sinh t

)
, in ac-

cordance with the function classes proposed by Tanaka et al. [24].
Then, our modified variable transformation of double exponential
order which maps the infinite interval (−∞,∞) onto the finite in-
terval [a, b] is

x = σDE(t) =
a + b exp

(
π
2
sinh t

)
1 + exp

(
π
2
sinh t

) , t ∈ R, (11)
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with the inverse transform as

t = σ−1
DE (x) = sinh−1

{
2

π
log

(
x− a

b− x

)}
, x ∈ Γ. (12)

= log

⎡
⎣ 2

π
log

(
x− a

b− x

)
+

√
2

π
log

(
x− a

b− x

)2

+ 1

⎤
⎦ , x ∈ Γ. (13)

The map σDE carries R onto Γ, such that σDE(−∞) = a, σDE(∞) =
b and, for h > 0, the collocation points in Γ are xj = σDE(jh), (j =
0,±1,±2, · · · ). When incorporated with the DE transformation
(11), the Sinc approximation (3) can be applied to a function f(x)
defined on the interval Γ to obtain the DE-Sinc approximation as
follows:

f (x) ≈
N∑

j=−N

f (σDE(jh))S(j, h)
(
σ−1
DE(x)

)
, x ∈ Γ. (14)

Then, the DE-Sinc indefinite integration on the finite interval Γ is
given by∫ x

a

f(s)ds ≈
N∑

j=−N

f (σDE(jh))
(
σ

′
DE(x)

)
J(j, h)

(
σ−1
DE(x)

)
. (15)

2.3. Convergence Theorems for DE-Sinc Approximation.
The convergence theorems for the DE-Sinc approximation (14) re-
quire the specification of appropriate function spaces which are de-
fined below with reference to the complex plane.
Definition 1: [24] Let D be a bounded and simply connected do-
main. Then, H∞(D) denotes the family of functions f ∈ Hol(D)
such that ‖.‖H∞(D) is finite, where

‖f‖H∞(D) = sup
z∈D

|f (z)| . (16)

Definition 2: [24] Let α > 0 be a constant, and let D be a bounded
and simply-connected domain which satisfies (a, b) ⊂ D. Then,
Lα(D) denotes the family of functions f ∈ H∞(D) for which there
exists a constant C such that, for all z ∈ D,

|f(z)| ≤ C|Q(z)|α, (17)

where Q(z) = (z − a)(b− z).
Definition 3: [17] Let D be a bounded and simply connected
domain, and let HC(D) denote the family of all functions f ∈
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Lipα
(
D
) ∩Hol(D). Then, the function space HC(D) is complete

with norm ‖.‖HC(D) defined by

‖f‖HC(D) = max
z∈D

|f(z)| . (18)

Definition 4: [26] Let D be a bounded and simply connected do-
main that satisfies (a, b) ⊂ D and let α ∈ (0, 1] be a constant. Then,
Mα(D) denotes the class of functions f ∈ HC(D) which have finite
limits, f(a) and f(b), at the endpoints of (a, b) such that

f(x)− f(a) = O (|ρ (x)|α) as x → a

and

f(x)− f(b) = O
(|ρ(x)|−α) as x → b, (19)

where

ρ(x) = exp
(
σ−1(x)

)
.

For the purpose of DE-Sinc approximation addressed in this pa-
per, the function σ and domain D in Definitions 1 - 4 are replaced
by σDE and DDE(d), respectively, where for d > 0,

DDE(d) = {z ∈ σDE(w) : w ∈ Dd} (20)

is the image of the region

Dd = {z = x+ iy ∈ C : |y| < d} . (21)

in the complex plane C, under the DE-transformation σDE given by
equation (11). Then, similar to Stenger [9] and Tanaka et al. [24],
we state the convergence theorem for the DE-Sinc approximation
(14) as follows:
Theorem 1: Let f ∈ Lα(Dd), 0 < d < π

2
, and let h be given by

h =
log (4dN/α)

N
, (22)

where N is a positive integer. Then, there exists a constant C which
is independent of N , such that

max
x∈[a,b]

∣∣∣∣∣f (t)−
N∑

j=−N

f (σDE (jh))S (j, h)
(
σ−1
DE(x)

)∣∣∣∣∣
≤ C exp

{
−πdN

log
(
4dN
α

)
}
. (23)

By Definition 2 of the function space L(D), Theorem 1 holds only
for functions f(x) which vanish at the end points x = a and x = b.
The generalized DE-Sinc approximation that achieves exponential
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convergence without this restriction on f(x) is obtained by consid-
ering the function space Mα(D) specified by Definitions 3 and 4.
This is facilitated by defining a translated function

T [f ](x) = f(x)− f(a) + ρ(x)f(b)

1 + ρ(x)
. (24)

Then, f ∈ Mα(D) implies that T [f ] ∈ Lα(D). Therefore, we can
apply DE-Sinc approximation (14) to T [f ] and obtain

T [f ] (x) ≈
N∑

j=−N

T [f ] (σDE(jh))S(j, h)
(
σ−1
DE(xj)

)
. (25)

By equations (24) and (25),

f(x) ≈ PN [f ] (x) =
N∑

j=−N

T [f ] (σDE (jh))S (j, h)
(
σ−1
DE (xj)

)

+
f(a) + ρ(x)f(b)

1 + ρ(x)
. (26)

Thus, the generalized DE-Sinc approximation to f(x) may be ex-
pressed as

PN [f ](x) = f(a)wa(x) +
N∑

j=−N

T [f ] (σDE(jh))S(j, h)
(
σ−1
DE(xj)

)
+ f(b)wb(x), (27)

where wa and wb are auxiliary basis functions defined by

wa(x) =
1

1 + ρ(x)
, wb(x) =

ρ(x)

1 + ρ(x)
. (28)

Similar to Theorem 1, we state the convergence theorem for the
generalized DE-Sinc approximation (27) as follows:
Theorem 2: Let f ∈ Mα (σDE (Dd)), 0 < d < π

2
, and let h be

given by (22), where N is a positive integer. Then, there exists a
constant C which is independent of N , such that

‖f − PN [f ]‖C[a,b] ≤ C exp

{
−πdN

log
(
4dN
a

)
}
. (29)
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3. THE SINC-COLLOCATION METHOD

Let u(x) ∈ Mα (σDE (Dd)) be the exact solution of the Volterra-
Fredholm equation (1), and let uN(x) be the DE-Sinc approxima-
tion of u(x). Denote uN(xi) by ui , where

xi =

⎧⎨
⎩

a, i = −(N + 1),
σDE (ih) , i = −N, · · · , N,
b, i = N + 1.

(30)

are the collocation points. Then, by equation (27),

uN(x) = u−N−1wa(x) +
N∑

j=−N

ujS(j, h)
(
σ−1
DE(xj)

)
+ uN+1wb(x).

(31)
Noting that

S(j, h)
(
σ−1
DE(xj)

)
= S(j, h)

(
σ−1
DE (σDE(jh))

)
= S(j, h)(jh) = δij ,

(32)
the application of equation (31) to the integrals in equation (1)
yields the following approximations:∫ x

a

k1(x, t)u(t) dt ≈ Kv[wa](x)u−N−1

+h
N∑

j=−N

k1(x, tj)σ
′
DE(jh)ujJ(j, h)(x)

+ Kv[wb](x)uN+1 + O
(
he−

πd
h

)
, (33)

and∫ b

a

k2(x, t)u(t)dt ≈ KF [wa](x)u−N−1 + h

N∑
j=−N

k1(x, tj)σ
′
DE(jh)uj

+ KF [wb](x)uN+1 + O
(
he−

πd
h

)
. (34)

In equations (33) and (34),

Kv [F ] (x) = h

N∑
j=−N

k1(x, tj)f(xj)σDE
′(jh)J(j, h)(x), (35)

KF [F ] (x) = h
N∑

j=−N

k1 (x, tj) f (xj) σ
′
DE (jh) , (36)

J(j, h)(x) =
1

2
+

1

π
Si

(
πσ−1

DE(x)

h
− jπ

)
, (37)
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where σ
′
DE(x) is the derivative of σDE(x) and is given at the sinc

points by

σ
′
DE (jh) =

π

2
cosh (jh)σDE (jh) [1− σDE (jh)] , (38)

while Si(x) is the sine integral defined by equation (9). The substi-
tution of equations (33) to (38) into the integral equation (1) gives
its DE-Sinc collocation approximation as

[wa(xk)−Kv[wa](xk)−KF [wa](xk)]u−N−1

+

N∑
j=−N

δkj − [hk1(xk, tj)J(j, h)(xk) + hk2 (xk, tj)]σ
′(jh)uj

+ [wb (xk)−Kv [wb] (xk)−KF [wb] (xk)] uN+1 = g (xk) . (39)

Equation (39) represents a (2N + 3) by (2N + 3) linear system of
algebraic equations, which may be expressed in matrix form as

Au = g, (40)

where
u = [u−N−1, u−N , · · · , uN , uN+1]

T ,

g = [g (a) , g (x−N) , · · · , g (xN ) , g (b)]
T ,

and the coefficients akj of the matrix A are given by

akj = ekj − vkj − skj (41)

with

ekj = wa (xk) +

N∑
j=−N

S(j, h)
(
σ−1
DE(xk)

)
+ wb(xk), (42)

vkj = KV [wa](xk)+h
N∑

j=−N

k(xk, tj)σ
′
DE(jh)J(j, h)(xk)+KV [wb](xk),

(43)

skj = KF [wa] (xk) + h
N∑

j=−N

k(xk, tj)σ
′
DE(jh) +KF [wb] (xk) . (44)

Consistent with the requirements for a well-conditioned linear
system of algebraic equations, the coefficient matrix of the sys-
tem (40) must be non-singular and the condition number, κ(A) =
‖A‖‖A−1‖, must not be very large. These conditions ensure the
consistency and stability of the system as well as the convergence
of its numerical solution. The approximate solution to the integral
equation (1) is obtained by solving the system (40) and substituting
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the result into equation (31). The error in the approximate solution
given by the Sinc collocation method is obtained by bounding the
difference u(xk)−uN(xk) in the maximum norm, where u(xk) is the
exact solution and uN(xk) is the approximate solution.

4. NUMERICAL EXAMPLES

Some examples are presented in this section to illustrate the effective-
ness of the DE-Sinc collocation formula (31). Numerical calculations

were carried out for α = 1 and d = π
4 so that the step size is h = log(πN)

N .
MATLAB was used for the computations and the condition of the coeffi-
cient matrix of the system (40) was watched through an estimate of the
condition number returned by the program. All the examples considered
have exact solutions, making it possible to compute the error of the ap-
proximate solution at the Sinc points. The criteria for interpreting the
error and accuracy of the DE-Sinc approximation are:

(1) The maximum absolute error |EN (h(σ))| between the exact solu-
tion u(x) and the approximate solution uN (x) at the sinc points
xk. This is defined, with respect to L∞ norm, by

|EN (h(σ))| = max
k=−N−1,N,··· ,N,N+1

|u(xk)− uN (xk)| . (45)

(2) The condition number κ(A) based on infinity norm and is given
by

κ(A) = ‖A‖∞‖A−1‖∞, (46)

where A is the coefficient matrix of the system (40).

Example 1. Consider the integral equation

u(x) =

∫ x

0
(x− t)u(t)dt+

∫ 1

0
xu(t)dt+2ex− 2x− 2, (0 ≤ x ≤ 1). (47)

Its exact solution, obtained by series method [2, page 266], is u(x) = xex.
The approximate solution obtained for this example by the DE-Sinc col-
location formula (31) with N = 10 is compared with the exact solution
in Figure 1. It is clearly seen that the computed results are remark-
ably accurate. Table 1 shows the maximum absolute error obtained at
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Exact Solution
Aproximate Solution

Fig. 1. Exact and approximate solutions of Example 1 when N = 10.

collocation points and the condition number of the coefficient matrix of
the system of equations solved, for various values of N . The tabulated
results show that the condition number κ(A) ≤ 16.5 for all values of N ,
confirming the stability of the system of equations given by the DE-Sinc
collocation method.

Table 1. Maximum absolute error (|EN (h(σ))|) and condition number
(κ(A)) for Example 1

N h |EN (h(σ))| κ(A)

10 0.3447 5.1770 × 10−6 1.62 × 101

15 0.2569 6.1644 × 10−8 1.65 × 101

20 0.2070 1.1732 × 10−9 1.65 × 101

25 0.1745 2.8807 × 10−11 1.65 × 101

30 0.1515 6.7413 × 10−13 1.65 × 101

35 0.1343 1.6875 × 10−14 1.65 × 101

40 0.1208 1.7764 × 10−15 1.65 × 101

45 0.1100 1.7764 × 10−15 1.65 × 101

50 0.1101 2.2204 × 10−15 1.65 × 101

Also, from Table 1 and Figure 2, it is seen that the maximum absolute
error in the approximate solution decays rapidly as the number N of
terms in the DE-Sinc approximation increases. For example, its value
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Fig. 2. Variation of maximum absolute error |EN (h(σ))| with N for
Example 1.

drops from 5.1770 × 10−6 to 1.7764 × 10−15 as N increases from 10 to
40. Therefore, we can say that the DE-Sinc collocation method is quite
stable and rapidly convergent for this example.

Example 2. Consider the integral equation

u(x) =

∫ x

0
(x− t)u(t) +

∫ 1

0
(x+ t)u(t)dt− 1

12
x4 + x2 − 1

3
x− 1

4
(48)

where 0 ≤ x ≤ 1. Wazwaz [2, page 268] used the modified Adomian
decomposition method to obtain the exact solution for this problem as
u(x) = x2. Figure 3 shows a comparison of the exact solution with the
approximate solution obtained by the DE-Sinc collocation formula (31)
with N = 10. The exceptional accuracy of the derived formula is evi-
dent. The maximum absolute error and condition number for different
values of N are presented in Table 2 while the variation of the maximum
absolute error with N is shown in Figure 4. Similar to results obtained
for Example 1, the tabulated results show that the condition number
κ(A) ≤ 39.6 for all values of N , confirming the stability of the system
of equations given by the DE-Sinc collocation method for this example.

Also, from Table 2 and Figure 4, it is seen that the maximum absolute
value of the error of the numerical solution decays rapidly as N increases.
In this case, its value drops from 2.0033 × 10−6 at N = 10 to 9.9920 ×
10−16 at N = 40.
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Fig. 3. Exact and approximate solutions of Example 2 when N = 10.

Table 2. Maximum absolute error (|EN (h(σ))|) and condition number
(κ(A)) for Example 2

N h |EN (h(σ))| κ(A)

10 0.3447 2.0033 × 10−6 3.96 × 101

15 0.2569 1.9647 × 10−8 3.96 × 101

20 0.2070 4.1832 × 10−10 3.96 × 101

25 0.1745 1.0587 × 10−11 3.96 × 101

30 0.1515 2.2882 × 10−13 3.96 × 101

35 0.1343 0.5511 × 10−15 3.96 × 101

40 0.1208 0.9920 × 10−16 3.96 × 101

45 0.1100 0.8818 × 10−16 3.96 × 101

50 0.1101 5.5551 × 10−16 3.96 × 101

5. CONCLUDING REMARKS

In this paper, a double exponential (DE) Sinc collocation formula has
been derived for numerical solution of Volterra-Fredholm integral equa-
tion of the second kind defined on a finite interval. The rapid con-
vergence and exceptional accuracy of the derived DE-Sinc scheme were
clearly illustrated with numerical examples. This paper extends the
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Fig. 4. Variation of maximum absolute error |EN (h(σ))| with N for
Example 2.

work of Muhammad et. al. [21] on numerical solution of integral equa-
tions to Volterra-Fredholm equations. A rigorous theoretical conver-
gence analysis is necessary to establish the error bounds for Sinc collo-
cation methods for Volterra-Fredholm integral equations of the second
kind. This aspect will be considered in a subsequent work.
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