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SOLVING IVPs IN ODEs BY USING SOME L-STABLE

METHODS IN VARIABLE STEP-SIZE FORMULATION
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ABSTRACT. In this paper, we propose a one-parameter family
of the L-stable modified trapezoidal method for solving numer-
ically initial value ordinary differential equations (ODEs). The
proposed family has second algebraic order of convergence and is
L-stable. Further, variable step-size formulation of the proposed
methods is considered as embedded-type methods. A compari-
son of numerical results made by the proposed methods and by
the existing classical ODE solver is given.
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1. Introduction

The present article is concerned with the following initial value prob-
lem (IVP)

y′(x) = f(x, y(x)); y(a) = y0, x ∈ [a, b], (1)

where we assume for now y, f ∈ R. It is assumed that the initial value
problem (1) is well-posed, that is, it has a unique continuously differen-
tial solution, say y(x). To solve numerically the given IVP (1), we pro-
ceed as usual by discretizing the interval [a, b] as follows: a = x0 < x1 <

x2 < · · · < xN = b, xn = x0 + nh, n = 0, 1, 2, 3, . . . , N, h = (b−a)
N .

Here h is called the step-size, grid-size or mesh-size, which may be con-
stant or variable along the integration interval. In this article, we first
derive the numerical methods with constant step-size and then consider
their variable step-size formulation.
Different codes are available in the literature to cope efficiently with

initial-value problems having different characters, for example, stiff, sin-
gular and singularly-perturbed etc. But, it is also true that a single
code cannot cope efficiently with each type of initial-value problems.
This is a major reason behind the continuous development of different
codes having different features according to the problem to deal with. In
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virtually, all modern codes for ODEs, the step-size is selected automat-
ically to achieve reliability and efficiency [1]. Practically speaking, any
discretization method with constant step-size performs poorly if the so-
lution varies rapidly in some parts of the integration interval and slowly
in other large parts of the integration interval. As some authors have
remarked, to be efficient, an integrator based on a particular formula
must be suitable for a variable step-size formulation [2-3].
There are different situations where low accuracy methods are needed,

for example, real time simulation and time integration of partial differ-
ential equations, etc. As Fehlberg has remarked in the NASA report
[4]
. . . low order Runge-Kutta formulas are of interest in some heat trans-

fer problems. It is well-known that the parabolic partial differential equa-
tions of such problems can be reduced to ordinary differential equations.
For instance, by a discretization of the space variable(s) of the problem,
we obtain a system of ordinary differential equations with the time as the
independent variable. Such a system can be integrated by Runge-Kutta
methods.
However, it is also well-known that the application of Runge-Kutta meth-
ods to such problems is often very time consuming. Higher order Runge-
Kutta formulas do not offer advantages in this respect, since stability
considerations, resulting from the exponential character of the solution,
exclude an increase of the intgration step-size that would make such
high order formulas meaningful. Therefore, low order Runge-Kutta for-
mulas (second or third order) can be expected to solve such system more
efficiently than any high order formula. On the other hand, they are
potentially more efficient than the standard difference formulas obtained
by discretization of the space variable(s) as well as the time variable.
For more details, see for references [4-6].
The aim of this article is to derive variants of the low accuracy modified

trapezoidal method [7] and to show their importance in variable step-size
mode. Some useful references can be found in [1-37].
The paper is organized as follows: In section 2, derivation of the meth-

ods is considered. In section 3. error analysis of proposed methods is
carried out and linear stability analysis is considered in section 4. Sec-
tion 5. is concerned with the formulation of the proposed methods in
variable step-size mode. Applicability of the proposed methods to a sys-
tem of first order ODEs is discussed in section 6. In section 7, some
implementation details of the methods are considered and numerical re-
sults are presented in section 8. Finally, some conclusions are given in
section 9.
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2. Derivation

In [8], a one-parameter class of the implicit Euler’s method is proposed
for solving numerically initial value problems (1). We will use this class
of methods to modify the method given in [7]. Here, we briefly recall
derivation of the class of implicit Euler’s method [8].
Let yn denotes the numerical approximation to the theoretical solution

y(x) of (1) at the grid point x = xn and consider the following function

I(x) = eαx(βx+ γ), (2)

where α, β, γ ∈ R.
Since there are three unknowns in (2), therefore for obtaining a numer-
ical method with one free parameter, we impose the following interpo-
latory conditions

y(xn+1) = I(xn+1), y(xn) = I(xn), y′(xn+1) = I ′(xn+1). (3)

Using these interpolatory conditions, the following class of numerical
methods [8] is obtained

yn+1 = yn + h(1 − αh)y′n+1, (4)

where yn+1 � y(xn+1), yn � y(xn) and y′n+1 � f(xn+1, yn+1).
This is a one-parameter family of the implicit Euler’s method [8]. By
putting α = 0 in (4), the classical implicit Euler’s method can be ob-
tained.
Note. It must be corrected here that the above family of methods is
A-stable (also L-stable) for α ≤ 0. In this case, there is no restriction on
the step-size. This is the reason that such type of methods are suitable
for solving stiff systems. But, in the article [8], it is bad written that
this class of methods is L-stable for |αh| � 1.
In [7], the following modification of the classical trapezoidal method

is proposed

yn+1 = yn +
h

2
[f(xn, ŷn) + f(xn+1, yn+1)], (5)

where ŷn = yn+1 − hf(xn+1, yn+1) is obtained from the classical Euler’s
formula when applied backward at x = xn+1 in the negative x-direction.
The classical trapezoidal method has second algebraic order of conver-
gence and is A-stable. The modified trapezoidal method (5) has second
algebraic order of convergence and is L-stable, that is, in this way the
classical method switched from A-stable to L-stable.
We further modify the method given in (5) by using the modified value

of ŷn = yn+1 − h(1 − αh)y′n+1 obtained from (4) in (5). In this way, we
obtain the following expression

yn+1 = yn +
h

2
[f(xn, ŷn) + f(xn+1, yn+1)], (6)
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where ŷn = yn+1 − h(1 − αh)y′n+1.
This is a new one-parameter family of the modified trapezoidal method
(5) for solving (1) numerically. By putting α = 0 in (6), the classical
modified trapezoidal method (5) can be obtained.

3. Error Analysis

It is very practical and necessary to know how the local errors behave
in the implementation of any numerical method. In this section, we will
present error analysis of the proposed methods (6).
Consider the family given in (6) in the following difference operator

form

L[z(x);h] = z(x+ h)− z(x)− h

2

[
ẑ′(x) + z′(x+ h)

]
, (7)

where z(x) is an arbitrary analytic function defined on [a, b]. Expanding
the above expression by Taylor series about x and collecting terms in h,
after substituting z(x) by the solution y(x) of (1) and x by xn, one can
obtain the following local truncation error for the methods (6) as follows

LTE =

(
−y

(3)
n + (3y′′n − 6αy′n)gn

12

)
h3 +O(h4). (8)

where y′′n and y
(3)
n denote the numerical approximations to the second

and third order derivatives of y(x) at the grid point xn respectively and

gn = ∂f
∂y at xn. Hence, the family given in (6) has second algebraic order

of convergence.
The LTE given in (8) is not very practical due to the presence of sec-
ond and third order derivatives. But for the autonomous case y′(x) =
f(y(x)), it may be simplified yielding

LTE =
1

12

(
(3− 6α + fy)ffy − fyyf

2
)
h3 +O(h4) , (9)

where fy and fyy are the usual notations for partial derivatives of f w.r.t.
y at x = xn. The principal term in (9) could be used as an estimate of
the local truncation error.

4. Linear stability analysis

The linear stability analysis of the above schemes is examined as usu-
ally by applying them to the Dahlquist’s test problem

y′(x) = λy(x), λ < 0. (10)

The true solution of this problem is y(x) = eλx and will be damped out
as x → ∞. It is expected that application of a given numerical method to
this problem has the similar behavior as the true solution of the problem.
Since, the family of methods (6) contains a one free parameter, therefore
it will be convenient to use the Routh-Hurwitz criterion to carry out the
linear stability analysis of the methods.
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Theorem 4.1. The family of modified trapezoidal method given in (6)
is L-stable for α ≤ 0.

Proof. By applying the family of methods given in (6) to the Dahlquist’s
test equation (10), the following difference equation is obtained

yn+1 = yn +
h̄

2

[
2− (1− αh)h̄

]
yn+1, (11)

where h̄ = λh and h̄ < 0.
Therefore, the stability function of the proposed family of methods

(6) is given by

R(h̄) =
2

2− 2h̄+ kh̄2
, (12)

where k = 1− αh.
Now, consider the corresponding characteristic equation

π(ξ) = (2− 2h̄+ kh̄2)ξ − 2 = 0. (13)

By using the substitution ξ =
1 + z

1− z
, we have the following transformed

equation
π̂(z) = (2− 2h̄+ kh̄2)(1 + z)− 2(1− z) = 0. (14)

After collecting the coefficients of z in (14), we have

π̂(z) = (4− 2h̄+ kh̄2)z + (kh̄2 − 2h̄) = 0. (15)

Then, the Routh-Hurwitz criterion will be satisfied for α ≤ 0. Hence,
the absolute stability interval of the proposed family of methods (6) is
(−∞, 0) for α ≤ 0.
Further, if we consider λ is a complex number with Re(λ) < 0, then

it can be verified that |R(h̄)| → 0 as Re(h̄) → −∞, for h̄ = λh and
Re(h̄) < 0. Therefore, the family of methods (6) is L-stable. �
Note. The class of methods given in (6) has one free parameter α ∈ R.
Following the stability considerations, one must have to choose the value
of the free parameter α such that α ≤ 0. In the numerical experiments,
the numerical methods for different values of the free parameter are
tested on several IVPs having different behavior of solutions.

5. Formulation in variable step-size mode

In the previous sections, the methods given in (6) have been considered
using a fixed step-size h. As some authors have remarked, to be efficient,
an integrator must be suitable in variable-step size formulation [2-3].
The formulation in variable step-size mode of the methods given in (6)
is considered as follows. The methods given in (6) may be formulated
as embedded pairs by combining with the forward Euler’s method. In
embedded pairs, the values needed by the method of less order must be
used by the other method also, and so there is no additional cost in the
computation of these values. The lower order method is just used to
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estimate the local error at each step and higher order method is used
to advance the integration process. We will follow Shampine et. al. [9]
to formulate the given methods (6) in variable step-size mode. Here, we
will discuss the process of variable step-size formulation in general, that
is, for methods of order p and order p + 1 as discussed in [9]. Assume
that the local error in using the method yn+1 of order p is given by

len = y(xn + h)− yn+1, (16)

where y(x) is the theoretical solution.
Now, if we apply a method of order p + 1 to compute a result y∗n+1 on
this step. Then we have

est = y∗n+1 − yn+1

= [y(xn + h)− yn+1]− [y(xn + h)− y∗n+1]

= len +O(hp+2).

(17)

This is computable estimate of the local error of the lower order method
because len is O(hp+1) and so dominates in (17) for small enough values
of h. It must be mentioned here that we can estimate the error in yn+1

by comparing it to the more accurate solution y∗n+1. But the trick in
embedded pairs to make local error estimation practical is to find a pair
of methods that share as many function evaluations as possible. In this
way of proceeding, we do not know precisely how small the local error is
at each step of integration, but we believe that it is rather smaller than
the estimated local error [9].
A local error tolerance tol is specified and, if the estimated error is too
large relative to this tolerance, the step is rejected and another attempt
is made with a smaller step-size.
Now, we discuss the strategy that how to change the step-size. From
(16), we have

y(x+ h)− yn+1 = hp+1φ(xn) +O(hp+2). (18)

If we were try to take a step from xn with a new step-size σh, then the
error would be

(σh)p+1φ(xn) +O((σh)p+2) = σp+1hp+1φ(xn) +O(hp+2)

= σp+1est+O(hp+2).
(19)

The largest step-size that we predict will pass the error test corresponds
to choosing σ so that

|σp+1est| ≈ tol.

Then the new step-size is given by

h

(
tol

|est|
)1/(p+1)

. (20)
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Many authors, based on extensive numerical experimentations recom-
mend the inclusion of a safety factor ν in (20) as follows

hnew = νh

(
tol

|est|
)1/(p+1)

, (21)

where ν is a suitable adjustment factor ν ≈ 0.9 [10]. Here, p is the
order of the lower order method, and 0 < ν < 1 is a safety factor whose
purpose is to avoid failed steps.
Normally some restrictions must be considered in order to avoid large
fluctuations in step-size: The step-size is allowed to remain in the fol-
lowing limits

hmini ≤ hnew ≤ hmaxi,

where hmini and hmaxi are the allowed minimum and maximum step-
sizes, respectively. This strategy is applied successively to predict the
step-size for the next step after a successful step, i.e. when ‖est‖ < tol.
There are different strategies for selecting the size of the initial step,

that we call hini, (see [13-14]), we can simply take a very small starting
step value as in [22], and then the algorithm will correct this value if
necessary, according with the step-size strategy.

6. Applicability to differential systems

The above integrators may be applied to a system of first-order or-
dinary differential equations. Consider a system of m equations, which
may be written in vector form as

y′ = f(x,y) , y(a) = y0 , a ≤ x ≤ b

where
y = (y1, . . . , ym)T , f(x,y) = (f1(x, y1, . . . , ym), . . . , fm(x, y1, . . . , ym))T

and y0 = (y1,0, . . . , ym,0)
T .

The numerical integrators given in (6) for scalar equations being one-
step methods, may be written as

yn+1 = yn + hΦf (xn, yn, yn+1, h) ,

where Φf (xn, yn, yn+1, h) is the incremental function, and the subscript
f on the right-hand side indicates that the dependence of Φf on its
variables is through the function f . Applying this method to each of
the scalar equations in the differential system results in

yn+1 = yn + hΦ(xn,yn,yn+1, h)

where

Φ(xn,yn,yn+1, h) = (Φf1 , . . . ,Φfm)
T .

Here

Φfi = Φfi(xn, y1,n . . . , ym,n, y1,n+1 . . . , ym,n+1, h), i = 1, 2, . . . ,m.
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For the stability analysis of the methods given in (6) for the system of
first-order differential equations it is sufficient to consider the following
system (see [23])

y′ = Λy , Λ = diag(λ1, λ2, ..., λm) .

If we apply the integrator given in (6) to this test equation we get

yn+1 = Ryn , R = diag(R1, R2, ..., Rm).

This decouples into m independent numerical methods, one for each
component, where each Ri is a rational function of the type in (12). For
this reason the stability considerations can be restricted to a scalar test
equation.

7. Implementation details

The methods given in (6) are of implicit nature. They can be used as
an iteration method by using some form of Newton-Raphson’s iteration
method or by some of its variants for solving the resulting equation on
each step. But, generally it is more efficient to use the methods like
in (6) in predictor-corrector mode by using a suitable predictor. In
the present article, the forward Euler’s method is used as a predictor
and the methods given in (6) are used as correctors. Recall that, the
forward Euler’s method is also used to estimate the local error at step
of integration as we have formulated in section 5.

8. Numerical results

In this section, some numerical experiments have been presented by
implementing the proposed methods (6) and the exiting classical method
(5). The numerical experiments have been performed on several IVPs
having different behavior of solutions. The computational work has been
done using Matlab version 7.9.0.529 (R2009b) on a personal computer
(32 bit operating-system). In the following tables, the notations Meth-
1 and Meth-2 are used to denote the new method (6) and the classical
method (5) respectively. Further, the notationMaxErr(y(x)) stands for
the maximum absolute error along the integration interval and whereas
E(xN ) denotes the absolute error at the final point of integration interval
in approximating the true solution y(x).

Implementation with constant step-size

Firstly, we present some numerical experiments by implementing both
the methods, that is, Meth-1 and Meth-2 with constant step-size.
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8.1. A nonlinear problem. First consider a nonlinear IVP given by

y′(x) = (cos(y(x)))2, x ∈ [0, 1]

with y(0) =
π

4
. The true solution of the problem is

y(x) = arctan(1 + x).

For this problem, the classical method (5) and a new proposed method

(6) for α =
−19

20
are considered for comparison. In Table 1, absolute

errors at the final point xN = 1 and maximum absolute errors along

the integration interval are considered. Different step-sizes h =
1

2j
, j =

8, 9, 10, 11 have been used for obtaining numerical results. It can be
observed from Table 1 that the proposed method (6) has a good perfor-
mance as compared with the existing method (5).

Table 1. Data for problem 8.1

h Method E(y(xN )) MaxErr(y(x))
1

28
Meth-1 3.4253 × 10−7 3.8191 × 10−7

Meth-2 1.6713 × 10−6 1.6744 × 10−6

1

29
Meth-1 8.4941 × 10−8 9.4790 × 10−8

Meth-2 4.1707 × 10−7 4.1783 × 10−7

1

210
Meth-1 2.1148 × 10−8 2.3611 × 10−8

Meth-2 1.0417 × 10−7 1.0436 × 10−7

1

211
Meth-1 5.2764 × 10−9 5.8921 × 10−9

Meth-2 2.6031 × 10−8 2.6078 × 10−8

8.2. A nonlinear problem. Now, again consider another nonlinear
IVP given by

y′(x) =
1

y(x)
, x ∈ [0, 2]

with y(0) = 1. The true solution of the problem is

y(x) =
√
2x+ 1.

For this problem, the classical method (5) and a new proposed method

(6) for α =
−1

2
are considered for comparison. In Table 2, absolute errors

at the final point xN = 2 and maximum absolute errors along the inte-

gration interval are considered. Different step-sizes h =
1

2j
, j = 8, 9, 10

have been used for obtaining numerical results. It can be observed from
Table 2 that the proposed method (6) performs better as compared with
the existing method (5).
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Table 2. Data for problem 8.2

h Method E(y(xN )) MaxErr(y(x))
1

28
Meth-1 5.1092 × 10−9 4.3323 × 10−7

Meth-2 1.3703 × 10−6 1.4749 × 10−6

1

29
Meth-1 1.6495 × 10−9 1.0777 × 10−7

Meth-2 3.4189 × 10−7 3.6790 × 10−7

1

210
Meth-1 4.5729 × 10−10 2.6878 × 10−8

Meth-2 8.5386 × 10−8 9.1871 × 10−8

Implementation in variable step-size mode

Now, we present some numerical experiments by implementing both the
methods, that is, Meth-1 and Meth-2 with variable step-sizes. For both
the methods, Meth-1 and Meth-2, the forward Euler’s method has been
used to estimate the local error at each step. At each step of integration,
the local error E(i) in the ith component of the solution is estimated and
is required to be less than or equal to the acceptable tolerance, which
is a function of two user-defined tolerances RelTol (Relative error tol-
erance) and AbsTol (Absolute error tolerance). The following criterion
for controlling the local error at each integration step has been used for
both the methods

E(i) ≤ max(RelTol ∗ abs(y(i)), AbsTol),
where RelTol and AbsTol are positive real numbers.

8.3. A stiff problem. Consider a stiff IVP

y′(x) = 49e−50x − y(x), x ∈ [0, 1]

with y(0) = 1. The true solution of the problem is

y(x) = 2e−x − e−50x.

For this problem, the classical method (5) and new proposed method

(6) for α =
−11

5
are considered for comparison. In Table 3, absolute

errors at the final point xN = 1 are considered. Different values for
hini = AbsTol = RelTol = k have been used for obtaining numerical
results. It can be observed from Table 3 that the proposed method (6)
has a good performance as compared with the existing method (5) in
terms of accuracy and less number of function evaluations.
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Table 3. Data for problem 8.3

k N Method E(y(xN ))
1

100
19 Meth-1 1.8106 × 10−3

20 Meth-2 1.1474 × 10−2

1

1000
58 Meth-1 2.8961 × 10−4

59 Meth-2 1.4933 × 10−3

1

10000
185 Meth-1 4.5201 × 10−5

187 Meth-2 1.7327 × 10−4

8.4. A stiff system. Here, we consider the following system of first
order ODEs

y′1(x) =
y1(x)

y2(x)
− 2y1(x)− e−x; y1(0) = 1

y′2(x) = −y2(x); y2(0) = 1.

on the interval [0, 1]. The true solution of the system is{
y1(x) = e−2x

y2(x) = e−x.
(22)

For this problem, the Meth-1, that is, the method for α =
−100

101
in (6)

is considered. Absolute errors at the final point xN = 1 are reported
in Table 4. For this problem, different values for hini = AbsTol =
RelTol = k have been used. Table 4 is a numerical evidence which
demonstrates the better performance of the proposed method compared
with the existing method.

Table 4. Data for problem 8.4

k N Method E(y1(xN )) E(y2(xN ))
1

100
12 Meth-1 9.7181 × 10−4 1.2416 × 10−3

13 Meth-2 4.0857 × 10−3 2.8583 × 10−3

1

1000
35 Meth-1 7.8214 × 10−5 9.4051 × 10−5

36 Meth-2 4.1005 × 10−4 3.0738 × 10−4

1

10000
105 Meth-1 7.5261 × 10−6 8.4913 × 10−6

105 Meth-2 4.0887 × 10−5 3.1712 × 10−5
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8.5. A linear system. As a last example, consider the following system
of first order ODEs

y′1(x) = −100y1(x) + 9.901y2(x); y1(0) = 1

y′2(x) = 0.1y1(x)− y2(x); y2(0) = 1.

on the interval [0, 1]. The theoretical solution of the system is{
y1(x) = e−0.99x

y2(x) = 10e−0.99x.
(23)

For this problem, Meth-1, that is, the method for α =
−13

14
in (6) is

considered. Absolute errors at final point xN = 1 are reported in Table
5. For this problem, different values for hini = AbsTol = RelTol = k
have been used. The numerical results given in Table 5 show the good
performance of the proposed method.

Table 5. Data for problem 8.5

k N Method E(y1(xN )) E(y2(xN ))
1

100
53 Meth-1 3.1162 × 10−2 6.5789 × 10−3

56 Meth-2 2.5854 × 10−2 1.4525 × 10−2

1

1000
79 Meth-1 1.5593 × 10−3 4.5270 × 10−4

79 Meth-2 2.0463 × 10−3 1.3188 × 10−3

9. Concluding Remarks

This article proposes some novel L-stable variable step-size methods
for solving numerically initial value problems (1). The aim of this article
is to provide alternatives of the existing L-stable method showing their
good performance in variable step-size formulation. A comparison of
numerical results obtained by the proposed methods and by the existing
ODE solver is presented. The numerical results show the good perfor-
mance of the proposed methods over the existing method considered
for comparison. These methods are good alternatives to the existing
method in the literature and may be used to solve numerically a scalar
ODE and a system of first order ODEs.
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