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NUMERICAL COMPUTATION OF FRACTIONAL

PARTIAL DIFFERENTIAL EQUATIONS ARISING

IN PHYSICS

J. SINGH, D. KUMAR1, R. SWROOP AND S. KUMAR

ABSTRACT. In this article, we aim to propose a reliable numer-
ical algorithm based on homotopy analysis transform method
for solving various kinds of linear and nonlinear time-fractional
partial differential equations arising in physics. The method is
exemplified by linear and nonlinear time- fractional heat-like, in-
vicid Burgers and fifth orders KdV equations arising in the study
of thermodynamics, fluid mechanics and quantum mechanics
respectively. We investigate the influence of the convergence-
control parameter � that provides us, a simple way to guarantee
the convergence of series solution of linear and nonlinear prob-
lems. The proposed method may give better approximations
which are uniformly valid for either small and large parameters
or variables with highly accurate numerical solutions.

Keywords and phrases: Fractional heat-like equations, Frac-
tional invicid Burgers equation, Fifth orders KdV equations, Laplace
transform, Homotopy analysis transform method
2010 Mathematical Subject Classification: 34A08, 35A20, 35A22

1. INTRODUCTION

Fractional differential equations have garnered a lot of attention and
appreciation due to their ability to facilitate an exact description of
different linear and nonlinear phenomena’s. There are many books
and definitions that develop and investigate about the fractional or-
der integrations and differentiations [1-4]. During the last decades,
number of powerful computational techniques were introduced and
investigated by many research workers for obtaining exact and ap-
proximate solutions of fractional equations [5-11].
This paper adopts homotopy analysis transform method (HATM)
to solve higher dimensional initial value problems of constant and
variable coefficients, linear and nonlinear, partial fractional dif-
ferential equations occurring in scientific and technological fields.
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The HATM is in fact a coupling of well-known Laplace transform
method and homotopy analysis method (HAM) [12]. The HAM
is a general analytical approach to solve many types of nonlinear
differential equations of integer and fractional order [13-18].
The HATM contains the homotopy perturbation method [19-21]
and homotopy perturbation transform method [22-24] as special
cases. HATM provides us with a simple way to adjust and con-
trol the convergence region of the series solutions by introducing
the auxiliary parameter �, auxiliary function H(x,t) and the initial
guess u0(x, t). In order to assess the advantages and the accu-
racy of the homotopy analysis transform method (HATM), here we
used only fourth order approximate solution. Even then, however,
the proposed technique has been successfully applied in a realistic
and efficient way to several fractional partial differential equations,
which are rapidly converging to the exact solutions. We investigate
the validity of the auxiliary parameter � on the convergence of the
approximate series solution by plotting �-curves. We observed that
the properly chosen auxiliary parameter � can ensure the conver-
gence of series solution.

2. PRELIMINARY

Fractional Calculus: Fractional calculus deals with generalizations
of integer order derivatives and integrals to arbitrary order. There
exists literature on different definitions; the most popular once are
the Riemann-Liouville and the Caputo derivatives.
Definition 1. The Laplace transform of continuous (or an almost
piecewise continuous) function f(t) in [0,∞) is defined and repre-
sented as follows

F (s) = L[f(t)] =

∫ t

0

e−stf(t)dt, (1)

where s is indicating a real or complex number.
Definition 2. The Riemann- Liouville fractional integral operator
of order α > 0, of a function f(x) ∈ Cμ, μ ≥ −1 is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− τ)α−1f(τ)dτ, (α > 0) (2)

J0f(x) = f(x), (3)

for the Riemann- Liouville fractional integral we have the following
result:
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Jαxγ =
Γ(γ + 1)

Γ(γ + α + 1)
xα+γ . (4)

Definition 3. The fractional derivative of f(x)in the Caputo sense
is defined by [25] which is illustrated as follows

Dαf(x) = Jn−αDn

=
1

Γ(n− α)

∫ x

0

(x− τ)n−α−1fn(τ)dτ, (5)

for n− 1 < α ≤ n, n ∈ N, x > 0.
Definition 4. The Laplace transform of the Caputo derivative
[25-26] is given in the following form

L [Dαf(t)] = sαL [f(t)]−
n−1∑
k=0

sα−k−1f (k)(0+), n− 1 < α ≤ n. (6)

3. BASIC IDEA OF HATM

We take a general fractional nonlinear non-homogeneous partial
differential equation of the form:

Dα
t u(x, t) +Ru(x, t) + Nu(x, t) = g(x, t), n− 1 < α ≤ n. (7)

In the above Eq. (7) Dα
t u(x, t) indicates the Caputo fractional

derivative of the function u(x, t), R denotes the linear differential
operator, N represents the general nonlinear differential operator
and g(x, t) is the source term.
By applying the Laplace transform on both sides of Eq. (7), we get

L [Dα
t u] + L [Ru] + L [Nu] = L [g(x, t)]. (8)

Employing the differentiation property of the Laplace transform,
we have

sαL[u]−
n−1∑
k=0

sα−k−1u(k)(x, 0) + L[Ru] + L[N u] = L[g(x, t)]. (9)

If we simplify the above equation, we have the following result
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L [u]− 1

sα

n−1∑
k=0

sα−k−1u(k)(x, 0)+
1

sα
[L[Ru] + L[N u]− L[g(x, t)]] = 0.

(10)
We define the nonlinear operator as

N[φ(x, t; q)] = L [φ(x, t; q)]− 1

sα

n−1∑
k=0

sα−k−1φ(k)(x, t; q)(0+)

+
1

sα
[L[Rφ(x, t; q)] + L[Nφ(x, t; q)]− L[g(x, t)]] . (11)

In the above expression q ∈ [0, 1] and φ(x, t ; q) is a real function
of x, t and q. We construct a homotopy as follows

(1− q)L [φ(x, t ; q)− u0(x, t)] = � qH(x, t) N [u(x, t )], (12)

where L denotes the Laplace transform operator, H(x, t) denotes a
nonzero auxiliary function, � �= 0 is an auxiliary parameter, u0(x, t)
is an initial guess of u(x, t) and φ(x, t ; q) is a unknown function.
Obviously, when the embedding parameter q = 0 and q = 1, it
holds

φ(x, t ; 0) = u0(x, t), φ(x, t ; 1) = u(x, t), (13)

respectively. Thus, as q increases form 0 to 1, the solution φ(x, t ; q)
varies from the initial guess u0(x, t) to the solution u(x, t). Expand-
ing φ(x, t ; q) in Taylor series with respect to q, we have

φ(x, t ; q) = u0(x, t) +
∞∑

m=1

um(x, t) q
m, (14)

where

um(x, t) =
1

m !

∂mφ(x, t ; q)

∂qm
|q=0. (15)

If the initial guess, the auxiliary parameter �, and the auxiliary
function are properly selected, the series (14) converges at q = 1,
then we have

u(x, t) = u0(x, t) +
∞∑

m=1

um(x, t), (16)
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which must be one of the solutions of the original nonlinear frac-
tional order differential equations. According to the definition (16),
the governing equation can be deduced from the zero-order defor-
mation (12).
Define the vectors

�um = {u0, u1, ..., um}. (17)

Differentiating the zeroth-order deformation Eq. (12) m-times with
respect to q and then dividing them by m! and finally setting q = 0,
we get the following mth-order deformation equation:

L [um(x, t)− χmum−1(x, t)] = �H(x, t)�m(�um−1). (18)

Applying the inverse Laplace transform, we have

um(x, t) = χmum−1(x, t) + �L−1[H(x, t)�m(�um−1)], (19)

where

�m(�um−1) =
1

(m− 1)!

∂m−1 N[φ(x, t ; q)]

∂qm−1
|q=0, (20)

and the value of χm is

χm =

{
0, m ≤ 1,
1, m > 1.

(21)

4. FRACTIONAL HEAT-LIKE EQUATIONS

Here we apply the HATM to study the two-dimensional and three-
dimensional fractional heat-like equations arising in electromag-
netic waves and thermodynamics studies. The fractional heat-like
equation describes the heat in a given region over time. The num-
ber of methods were used to obtain the approximate and exact
solutions of heat-like equations [27-30].
Example 4.1. Consider the following three-dimensional fractional
heat-like equation

∂αu

∂tα
= x4y4z4 +

1

36
(x2∂

2u

∂x2
+ y2

∂2u

∂y2
+ z2

∂2u

∂z2
), 0 < α ≤ 1, (22)

0 < x, y, z < 1, t > 0
with the initial conditions



444 J. SINGH, D. KUMAR, R. SWROOP AND S. KUMAR

u(x, y, z, 0) = u0 = 0. (23)

In the above Eq. (22) u(x, y, z, t) indicates the temperature.
Applying the Laplace transform subject to the initial condition, we
have

L [u(x, y, t)]−1

s
u0− 1

sα
L

[
x4y4z4 +

1

36
(x2∂

2u

∂x2
+ y2

∂2u

∂y2
+ z2

∂2u

∂z2
)

]
= 0.

(24)
The nonlinear operator is defined in the following manner

N [φ(x, y, z, t; q)] = L [φ(x, y, z, t; q)]− 1
s
u0 − 1

sα
L [x4y4z4

+ 1
36
(x2 ∂2φ(x,y,z,t;q)

∂x2 + y2 ∂
2φ(x,y,z,t;q)

∂y2
+ z2 ∂2φ(x,y,z,t;q)

∂z2
)
]
,

(25)
and thus

�(�um−1) = L(um−1)− (1 − χm) 1
s
u0

− 1
sα

L

[
(1− χm)x4y4z4 + 1

36
(x2 ∂2um−1

∂x2 + y2
∂2um−1

∂y2 + z2
∂2um−1

∂z2
)

]
(26)

The mth-order deformation equation is given by

L [um(x, y, z, t)− χmum−1(x, y, z, t)] = ��m(�um−1). (27)

Applying the inverse Laplace transform, we have

um(x, y, z, t) = χmum−1(x, y, z, t) + �L−1 [�m(�um−1)] . (28)

Solving the above equation (7), for m = 1, 2, 3, . . . , we get

u1 = −�x4y4z4
tα

Γ(α + 1)
,

u2 = (�+ 1)u1 + �
2x4y4z4

t2α

Γ (2α + 1)
,

u3 = (�+ 1)u2 + x4y4z4
[
�
2(�+ 1)

t2α

Γ (2α + 1)
− �

3 t3α

Γ (3α + 1)

]
,

u4 = (�+ 1)u3 + x4y4z4
[
�
2(�+ 1)2

t2α

Γ (2α+ 1)

−2�3(�+ 1)
t3α

Γ (3α + 1)
+�

4 t4α

Γ (4α + 1)

]
, (29)

...
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Proceeding in this manner, the rest of the components un(x, y, z, t)
for n > 4 can be completely obtained and the series solution is thus
entirely determined. Therefore, the approximate solution is

u(x, y, z, t) = u0(x, y, z, t) +
∞∑
n=1

un(x, y, z, t). (30)

If we select α = 1 and � = −1 then clearly, we can conclude that the
obtained solution

∑∞
n=0 un(x, y, z, t) converges to the exact solution

u = x4y4z4(et − 1), which is same as obtained by HDM [27]. We
observe that, properly chosen auxiliary parameter � can provide
more exact result, compared to HDM and perturbation method for
same term iterations as depicted by absolute error. From Figs. 1-
2, we can observe that as the value of space variable x and time
variable t increase, the value of temperature also increases. From
Fig. 3, we can observe that the results obtained with the aid of
HATM are very accurate. Fig. 4 shows the effect of the order of
fractional derivative on the temperature u(x, y, z, t). Fig. 5 presents
the �-curves that shows that the valid range of � is −2.0082 ≤ � <
0 and the absolute convergence range of � is the horizontal line
segments.
Example 4.2. In this example we consider the following two-
dimensional fractional heat-like equation

∂αu

∂tα
=

∂2u

∂x2
+

∂2u

∂y2
, 0 < x, y < 2π, t > 0, 0 < α ≤ 1 (31)

with the initial conditions

u(x, y, 0) = sin(x) sin(y) . (32)

In the above Eq. (31) u(x, y, t) represents the temperature.
We apply HATM for solving Eq. (31) subject to the initial condition
(32) and get the following components of the series solution

u0(x, y, t) = sin(x) sin(y), u1(x, t) = 2� sin(x) sin(y)
tα

Γ(α+ 1)
,

u2(x, y, t) = 2�(�+ 1) sin(x) sin(y)
tα

Γ(α+ 1)
+ 4�2 sin(x) sin(y)

t2α

Γ (2α+ 1)
,

u3(x, y, t) = sin(x) sin(y)

[
2�(�+ 1)2

tα

Γ(α+ 1)

+8�2(�+ 1)
t2α

Γ (2α+ 1)
+ 8�3

t3α

Γ (3α+ 1)

]
,
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u4(x, y, t) = sin(x) sin(y)
[
2�(�+ 1)3 tα

Γ(α+1) + 12�2(�+ 1)2 t2α

Γ(2α+1)

+24�3(�+ 1) t3α

Γ(3α+1) + 16 sin(x) sin(y)�4 t4α

Γ(4α+1) ,

(33)

...

Proceeding in this manner, the rest of the components un(x, y, t)
for n > 4 can be completely obtained and the series solutions are
thus entirely determined.

u(x, y, t) = u0(x, y, t) +
∞∑
n=1

un(x, y, t). (34)

If we select α = 1 and � = −1 then obviously, we can conclude
that the obtained solution

∑∞
n=0 un(x, y, t) rapidly converges to the

exact solution u = sin(x) sin(y) e−2t, which is same as obtained by
HDM [27]. Figs. 6-7 show the exact and approximate solutions ob-
tained by using HATM. From Fig. 8, we can notice that the results
obtained with the help of HATM are very accurate. Fig. 9 shows
the effect of the order of fractional derivative on the temperature
u(x, y, t). Fig. 10 depicts the �-curves that shows that the valid
range of � is −1.98 ≤ � < 0 and the absolute convergence range of
� is the horizontal line segments.

5. FRACTIONAL INVICID BURGERS & 5th ORDER KDV EQUATIONS

In this section, we apply the HATM algorithm to solve nonlinear
nonhomogeneous time-fractional invicid Burgers equation and the
time-fractional fifth order KdV equation. The nonlinear nonho-
mogeneous time-fractional invicid Burgers equation is a conserva-
tion equation arising in gas dynamics and traffic flow. The time-
fractional fifth order KdV equation is used in quantum mechanics
and nonlinear optics. The time-fractional fifth order KdV equation
describes the dispersive phenomena such as plasma waves when the
third-order contributions are small.
Example 5.1. Consider the nonlinear nonhomogeneous time-fractional
invicid Burgers equation [31]

∂αu(x, t)

∂tα
+ u(x, t)

∂u

∂x
= 1 + x+ t, 0 < α ≤ 1, t > 0 (35)

with the initial conditions

u(x, 0) = x. (36)
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In the above Eq. (35) u(x, t) denotes the density of the particles.
Solving the above equations, we get

u0(x, 0) = x,

u1(x, t) = −�

[
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

]
,

u2(x, t) = −�(�+ 1)

[
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

]

−�
2

[
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

]
,

u3(x, t) = −�(�+ 1)2
[

tα

Γ(α+1) +
tα+1

Γ(α+2)

]
−2�2(�+ 1)

[
t2α

Γ(2α+1) +
t2α+1

Γ(2α+2)

]
− �3

[
t3α

Γ(3α+1) +
t3α+1

Γ(3α+2)

]
,

u4(x, t) = −�(�+ 1)3
[

tα

Γ(α+1) +
tα+1

Γ(α+2)

]
−3�2(�+ 1)2

[
t2α

Γ(2α+1) +
t2α+1

Γ(2α+2)

]
−3�3(�+ 1)

[
t3α

Γ(3α+1) +
t3α+1

Γ(3α+2)

]
−�

4
[

t4α

Γ(4α+1) +
t4α+1

Γ(4α+2)

]
,

(37)

...
...

Proceeding in this manner, the rest of the components un(x, t) for n > 4
can be completely obtained and the series solutions are thus entirely
determined.

u(x, t) = u0(x, t) +
∞∑
n=1

un(x, t). (38)

Therefore, the solution for the Burgers equation Eq. (35), when α →
1, � = −1 is

u(x, t) =

∞∑
n=0

un(x, t)

= x+ t+
t2

Γ3
− t2

Γ3
− t3

Γ4
+

t3

Γ4
+

t4

Γ5
− t4

Γ5
· · · . (39)

It is obvious that the self-cancelling ‘noise’ terms appear between al-
ternative terms. Cancelling the noise terms and keeping the non-noise
terms in Eq. (39) yields the exact solution of Eq. (35) given as

u(x, t) = x+ t, (40)

which is same as obtained by HPSTM [31]. From Figs. 11-12, we can
see that as the value of space variable x and time variable t increase, the
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value of displacement u(x, t) also increases. From Fig. 13, we can ob-
serve that the results obtained with the aid of HATM are very accurate.
Fig. 14 demonstrates the effect of the order of fractional derivative on
the displacement u(x, t).
Example 5.2. Consider the time-fractional fifth order KDV equation

∂αu(x, t)

∂tα
+ u(x, t)

∂u

∂x
− u

∂3u

∂x3
+

∂5u

∂x5
= 0, 0 < α ≤ 1, t > 0 (41)

with the initial conditions

u(x, 0) = ex. (42)

In the above Eq. (41) u(x, t) represents the wave function.
Solving the above equations in same manner we get the solution in series
form

u0(x, 0) = ex, u1(x, t) = �ex
tα

Γ(α+ 1)
,

u2(x, t) = �(�+ 1)ex
tα

Γ(α+ 1)
+ �

2ex
t2α

Γ(2α+ 1)
,

u3(x, t) = �(�+1)2ex
tα

Γ(α+ 1)
+2�2(�+1)ex

t2α

Γ(2α+ 1)
+�

3ex
t3α

Γ(3α + 1)
,

u4(x, t) = �(�+ 1)3ex tα

Γ(α+1) + 3�2(�+ 1)2ex t2α

Γ(2α+1)

+3�3(�+ 1)ex t3α

Γ(3α+1) + �
4ex t4α

Γ(4α+1) ,
(43)

...

Proceeding in this manner, the rest of the components un(x, t) for n > 4
can be completely obtained and the series solutions are thus entirely
determined.

u(x, t) = u0(x, t) +

∞∑
n=1

un(x, t). (44)

If we select α = 1 and � = −1 then clearly, we can conclude that the
obtained solution

∑∞
n=0 un(x, t) rapidly converges to the exact solution

u = ex−t, which is same as obtained by HPSTM [31]. Figs. 15-16
present the exact and approximate solutions derived by using HATM.
From Fig. 17, we can notice that the results obtained with the aid of
HATM are very accurate. Fig. 18 presents the effect of the order of
fractional derivative on the displacement u(x, t).
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6. CONCLUDING REMARKS

The theme of this paper is to extend the application of homotopy anal-
ysis transform method (HATM) for solving fractional differential equa-
tions. It is observed that the HATM is capable of reducing the size of
calculations and easy to apply in space of higher dimensions as well.
The supremacy of the proposed method over the perturbations methods
is that it provides series solutions for both small and large parameters,
freedom to choose the convergence-control parameter � and initial guess
u0(x, t). The proposed method gives more generalized series solution
which rapidly convergence to the exact solution and the solutions ob-
tained by HDM, HPSTM, HPM and VIM are special cases of HATM
solution. Hence, we can conclude that the HATM is a very efficient tech-
nique for strongly nonlinear differential equations of fractional order.
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Figure 1. The surface shows the exact solution
u(x, y, z, t) at y = z = 0.5 and α = 1 for Eq. (22).

Figure 2. The surface shows the 4th order HATM
approximate solution u(x, y, z, t) at y = z = 0.5,
� = −1 and α = 1 for Eq. (22).



452 J. SINGH, D. KUMAR, R. SWROOP AND S. KUMAR

Figure 3. The absolute error E4(u) = |uex − uapp|
when y = z = 0.5,� = −1 and α = 1 for Eq. (22).

Figure 4. For 4th order approximate solutions ver-
sus time t for different values of α at x = y = z =
0.5 and � = −1 for Eq. (22).
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Figure 5. �-curve at x = y = z = 0.5 and t =
0.005. for Eq. (22).

Figure 6. The surface shows the exact solution
u(x, y, t) at y = π

4
and α = 1 for Eq. (31).
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Figure 7. The surface shows the 4th order HATM
approximate solution u(x, y, t) at y = π

4
, � = −1 and

α = 1 for Eq. (31).

Figure 8. The absolute error E4(u) = |uex − uapp|
when y = π

4
, � = −1 and α = 1 for Eq. (31).
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Figure 9. For 4th order approximate solutions ver-
sus time t for different values of α at x = y = π

4
and

� = −1 for Eq. (31).

Figure 10. �-curve at x = y = π
4
and t = 0.005.

for Eq. (31).
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Figure 11. The surface shows the exact solution
u(x, t) at α = 1 for Eq. (35).

Figure 12. The surface shows the 4th order HATM
approximate solution u(x, t) at α = 1 and � = −1 for
Eq. (35).
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Figure 13. The absolute error E4(u) = |uex−uapp|
when α = 1 and � = −1 for Eq. (35).

Figure 14. For 4th order approximate solutions
u(x, t) versus time t for different values of α at
x = 0.5 and � = −1 for Eq. (35).
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Figure 15. The surface shows the exact solution
u(x, t) at α = 1 for Eq. (41).

Figure 16. The surface shows the 4th order HATM
approximate solution u(x, t) at α = 1 and � = −1 for
Eq. (41).
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Figure 17. The absolute error E4(u) = |uex−uapp|
when α = 1 and � = −1 for Eq. (41).

Figure 18. For 4th order approximate solutions
u(x, t) versus time t for different values of α at
x = 0.5 and � = −1 for Eq. (41).


