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BOUND STATES OF PSEUDO-HARMONIC OSCILLATOR

IN THE PRESENCE OF MAGNETIC FIELD

K. J. OYEWUMI, E. O. TITILOYE, A. B. ALABI AND B. J. FALAYE1

ABSTRACT. In this paper, we study the effect of external
magnetic field on the bound state solution of the Schrödinger
equation with the pseudoharmonic oscillator potential. The for-
mula method has been applied in our calculations. The results
obtained by using different Larmor frequencies and potential
parameters are compared with the results of the absence of
magnetic field case. We find that the energy spectrum given
is mainly depending on dissociation energy and the magnetic
quantum numbers m = 0,±1,±2, . . . , which are influenced by
the magnetic field pointing along z-axis, split energy to maxi-
mum and minimum levels.
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1. INTRODUCTION

Potential represents a field with which many important physical
properties may be derived and understood. One of these poten-
tial field is called the pseudo-harmonic oscillator (PHO) potential,
which has been extensively used to describe the bound state of
the interaction systems and has been applied in both classical and
modern physics. It plays a basic role in chemical and molecular
physics by using it to calculate the molecular vibration-rotation
energy spectrum of linear and non-linear systems [11]. This poten-
tial is considered as an intermediate between harmonic oscillator
(HO) and Morse-type potentials which are more realistic anhar-
monic potentials. In the non-relativistic quantum mechanics, the
PHO is one of the exactly solvable potentials which has been stud-
ied in one-dimensional (1D), two-dimensional (2D), three dimen-
sional (3D) and even in D-dimensional space. The potential can be
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written in the standard form as [2]

V (r) = De

(
r

re
− re

r

)2

. (1)

The pseudoharmonic oscillator behaves asymptotically as a har-
monic oscillator, but has a minimum at r = re and exhibits a re-
pulsive inverse-square-type singularity at r = 0. The energy eigen-
values and the eigenfunctions of the pseudoharmonic oscillator can
be found exactly for any angular momentum. These wavefunctions
have reasonable behavior at the origin, near the equilibrium, and at
the infinity [3]. Its characteristics make it useful to model various
physical systems, including some molecular physical ones.
From the mathematical point of view, it resembles the harmonic

oscillator, from which it deviates by two correction terms depending
on the potential depth and the equilibrium distance parameter re:
the first one is an energy shift and the second one is a modified cen-
trifugal term. The latter can also be viewed as originating formally
from a non-integer orbital angular momentum [4]. The eigenfunc-
tions and energy eigenvalues are similar to those of the harmonic
oscillator, which can be obtained exactly in the limit re → 0.
In the recent years, there has been several worthy attempt in

solving both the relativistic and non-relativistic wave equations in
the presence of PHO. For arbitrary values n and � quantum num-
bers, Oyewumi and Sen present the solutions of the 3-dimensional
Schrödinger wave equation with the PHO via the SU(1, 1) Spec-
trum Generating Algebra (SGA) approach. They also obtained the
matrix elements r2 and r d

dr
directly from the creation and annihi-

lation operators [5].
The discrete (bound) and continuous (scattering) energy spectra

of the PHO have been investigated by the SU(1, 1) spectrum gen-
erating algebra [6]. The exact bound-state solutions of the KG and
the Dirac equations with equal scalar and vector PHO potential
have been obtained using the supersymmetric quantum mechanics,
shape invariance and other alternative methods [7]. The bound-
state solutions of the Dirac equation with PHO have been obtained
in the presence of spin and pseudospin symmetries [8].
The spectral properties in a 2D charged particle (electron or hole)

confined by a PHO potential in the presence of external strong uni-
form magnetic field along the z direction and Aharonov-Bohm (AB)
flux field created by a solenoid have been studied. The Schröodinger
equation is solved exactly for its bound states (energy spectrum
and wave functions) [9]. Ikhdair and Hamzavi study the effects of
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the perpendicular magnetic and Aharonov-Bohm (AB) flux fields
on the energy levels of a two-dimensional (2D) Klein-Gordon (KG)
particle subjects to equal scalar and vector pseudo-harmonic oscilla-
tor (PHO) [10]. They have also obtained the exact energy spectra
and corresponding wave functions of the spherical quantum dots
for any (n, �) state in the presence of a combination of pseudo-
harmonic, Coulomb and linear confining potential terms within the
exact analytical iteration method (EAIM) [11].

2. CALCULATION AND RESULT

In this paper, we study the Schrödinger equation with the pseudo-
harmonic potential in the presence and absence of a constant mag-
netic field within the framework of the formula method [12]. The
results obtained by using different Larmor frequencies and poten-
tial parameters are compared with the results of the absence of the
magnetic field case. To begin, we write the two dimensional radial
Schrödinger equation for a charged particle moving in a constant
magnetic field as [13]

d2R(r)

dr2
+ 2 [E − Ueff.(r)]R(r) = 0, (2)

with the effective potential as

Ueff. = mωL +
1

2
ω2
Lr

2 +
m2 − 1

4

2r2
+ V (r), (3)

where ωL = B/2c, m and E denotes the Larmor frequency, the
eigenvalue of angular momentum and the energy eigenvalue of the
particle respectively. by taking the V (r) as the PHO, the effective
potential depending on the magnetic field strength can be written
as

Ueff. = mωL − 2De +

m2− 1
4

2
+Der

2
e

r2
+

(
ω2
L

2
+
De

r2e

)
r2. (4)

In Figure , we plot the effective potential for the case of low vibra-
tional (n = 0, 1, 2, 3) and rotational (m = 1) levels. It can be seen
from the Figure that when the magnetic field strength increases,
there is a corresponding increment in potential energy function as
well as the bound state energy eigenvalues. Now, by introducing a
new variable of the form s = r2, equation (2) can be easily trans-
formed to the following form
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Fig. 1. The effective potential energy function and corresponding
bound state energy levels (Enm) in case of the low vibrational

(n = 1, 2, 3) and rotational (m = 1) levels With De = 8 and re = 1.2.

s
d2R(s)

ds2
+

1

2

dR(s)

ds
+

1

4

[
2(E −mωL + 2De)−

(
ω2
L + 2

De

r2e

)
s

+
1
4
−m2 − 2Der

2
e

s

]
R(s) = 0. (5)

We solve equation (5) using the formula method. By following the
procedure describe in the appendix, it is straightforward to obtain
an explicit expression for the energy equation in the presence of the
external magnetic field as:

Enm = mωL − 2De +

√
ω2
L + 2

De

r2e

[
2n+ 1 +

√
m2 + 2Der2e

]
. (6)

Furthermore, we obtain the radial wave function as

Rnm(r) = Nnr
η exp

(√
mωL

2

4
+
De

2r2e

)

× 1F1

(
−n, 2η + 1

2
, s2

√
ωL

2 + 2
De

r2e

)
,

η =
1

4
+

1

2

√
m2 + 2Der2e . (7)
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Nn is the normalization constant. In Tables 1 & 2, we show the
effect of a varying magnetic field on the low vibrational and rota-
tional energy levels of the pseudoharmonic potential. It has been
shown that as the magnetic field strength increases, the energy lev-
els increases.

Table 1. For various Lamor frequency ωL, the en-
ergy eigenvalues Enm of a particle subjected to pseu-
doharmonic potential field with different De and re
and for m = 0

De = 2.05, re = 1.781 De = 2.13, re = 1.694

n ωL = 0 ωL = 5 ωL = 10 ωL = 0 ωL = 5 ωL = 10

0 1.136915 19.51914 42.25924 1.218404 18.87975 41.03628

1 3.451075 29.77440 62.38808 3.655213 29.17237 61.18142

2 5.684575 40.02965 82.51693 6.092020 39.46499 81.33201

3 7.958410 50.28491 102.6458 8.528830 49.75761 101.4800

De = 2.25, re = 1.776 De = 4.56, re = 1.768

0 1.194437 20.00805 43.51353 1.708110 24.37474 55.19056

1 3.583311 30.28943 63.65569 5.124320 34.94217 75.48022

2 5.972190 40.57081 83.79785 8.540540 45.50960 95.76990

3 8.361060 50.85219 103.9400 11.95675 56.07703 116.0596

4. CONCLUDING REMARKS

In this paper, we have obtained the solution of two-dimensional ra-
dial Schrödinger equation with the pseudo-harmonic oscillator for
low vibrational and rotational energy levels with varying magnetic
field having arbitrary Larmor frequencies. We found that the po-
tential energy function and corresponding energy levels are raised
when the magnetic field strength increases. The details explanation
for this physical behaviors are as follows. Firstly, w define the Bohr
magneton as e�/2Mc, which has the value

μb =
|e| �
2Mc

= 0.927× 10−20erg/gauss. (8)
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Table 2. For various Lamor frequency ωL, the en-
ergy eigenvalues Enm of a particle subjected to pseu-
doharmonic potential field with different De and re
and for m = 1

De = 2.05, re = 1.781 De = 2.13, re = 1.694

n ωL = 0 ωL = 5 ωL = 10 ωL = 0 ωL = 5 ωL = 10

0 1.291627 25.21691 53.62882 1.389218 24.60123 52.44859

1 3.565457 35.47217 73.75766 3.826026 34.89385 72.59650

2 5.839287 45.72743 93.88650 6.262835 45.18647 92.74440

3 8.113117 55.98268 114.0153 8.699643 55.47909 112.8923

De = 2.25, re = 1.776 De = 4.56, re = 1.768

0 1.350259 25.67869 54.82737 29.27175 1.789920 64.46741

1 3.739134 35.96007 74.96953 39.79063 5.052863 84.73183

2 6.128008 46.24144 95.11169 50.30951 8.315805 104.9963

3 8.516882 56.52282 115.2539 60.82839 11.57875 125.2607

The relationship between Bohr magneton, magnetic field and Lar-
mor frequency is given by [10]

�ωL = μbB. (9)

Thus, For an electron, one finds the magnetic moment is directly
proportional to its spin angular momentum as follows

�μ = − e

Mc
�S = − e�

2Mc
�σ = −μb�σ. (10)

Let us now consider the problem of calculating the eigenstates and
eigenenergies of the present model, i.e., a spinning but otherwise
fixed electron in a constant uniform magnetic field that points in the
z direction. To solve this problem, we have used the Schrödinger
equation. In this regard, the following can be deduced

Ĥ = −�μ · �B = μb�σ · �B = μbBσz = �ωLσ̂z, σz =

(
1 0
0 −1

)
, �μ = −μb�σ.

(11)
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Now, let |ψ〉 =
(
f
g

)
, so that

Ĥ |ψ〉 = E |ψ〉 → �ωL

(
1 0
0 −1

)(
f
g

)
= E

(
f
g

)
, (12)

More explicitly, this can be written as

�ωLf = Ef, −�ωLg = Eg. (13)

If f �= 0, g = 0, then E = + �ωL = +μbB. If g �= 0, f = 0, then
E = − �ωL = −μbB. Thus we obtain the normalized eigenstates
and eigenenergies

α =

(
1
0

)
, E = +�ωL = +μbB, (14a)

β =

(
0
1

)
, E = −�ωL = −μbB. (14b)

In the state of lower energy, the spin of the electron is anti-parallel
to �B, so the magnetic moment is parallel to �B and the interaction
energy −�μ · �B is minimum the state of higher energy, the spin of the
electron is parallel to �B, so the magnetic moment is anti-parallel
to �B and the interaction energy −�μ · �B is maximum. The energy
spectrum given by equation (6) is mainly depending on dissociation
energy and the magnetic quantum numbers m = 0,±1,±2, . . . ,
which are influenced by the magnetic field pointing along z-axis,
split energy to maximum and minimum levels.
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