A NOTE ON BIWEIGHT-PRESERVING MAPS OF PARTIAL *-ALGEBRAS

Abstract

YUSUF IBRAHIM ABSTRACT. Given two partial ${ }^{{ }^{*}}$-algebras \mathcal{U}_{1} and \mathcal{U}_{2} and a biweight φ on \mathcal{U}_{2}, if a ${ }^{*}$-linear map θ from \mathcal{U}_{1} into \mathcal{U}_{2} belonging to a family is given, we introduce the notion of a $\gamma{ }^{*}$-linear map and consider when the natural composition $\varphi_{\gamma}=\varphi \circ \gamma$ is a biweight on \mathcal{U}_{1}, where γ is not necessarily a ${ }^{*}$-homomorphism.

Keywords and phrases: partial *-algebras; *-homomorphism; biweights; *-representations; biweights-preserving Maps. 2010 Mathematical Subject Classification: 47L60

1. INTRODUCTION

Positive invariant sesquilinear form on a partial *-algebra extend the notion of a positive functional on a *-algebra. Biweights are positive sesquilinear forms that are invariant in some sense. In developing a representation theory for partial *-algebras there is need to provide an extension of the Gel'fand-Naimark-Segal (GNS) construction to the partial *-algebraic framework. Such construction will help in the concrete representation theory for partial *algebras, thus the need to generalized the notion of positive linear functionals on *-algebras to biweights on partial *-algebras. Biweights are sesquilinear forms that allow the GNS construction to be carried out. The difficuties encountered due to non-everywhere defined multiplication and also the lack of associativity of the partial multiplication of a partial *algebra is by-passed when biweights are used in the GNS- construction.
Biweights as sesquilinear forms exhibit unfamilar features, in particular the composition $\varphi_{\Phi}=\varphi \circ \Phi$ of a biweight φ on \mathcal{U}_{2} and a ${ }^{*}$-homomorphism Φ on \mathcal{U}_{1} into \mathcal{U}_{2} may fail to be a biweight. The problem of biweight-preserving maps has been considered in [1]. Biweight-preserving is the case for which the natural composition $\varphi \circ \Phi$ still gives a biweight on \mathcal{U}_{1}, then we call Φ a biweight- preserving map. In [1] conditions for a ${ }^{*}$-homomorphism Φ to be

[^0]biweight-preserving is given. This problem is important, since we know that every biweight is representable on a partial *-algebra, but if $\varphi \circ \Phi$ is not a biweight the representation may as well be trivial. Another important reason is with regard to physical applications, since biweights allows the GNS construction to be carried out in the partial *-algebraic framework which is crucial in developing a representation theory in statistical mechanics and quantum field theory [2] and [3]. In this paper,we examine the case when a composition $\varphi_{\gamma}=\varphi \circ \gamma$ is a biweight on \mathcal{U}_{1} and γ is a *-linear map that is not a ${ }^{*}$-homomorphism. We relax the the condition $\Phi(x) \Phi(y)=\Phi(x y)$ of a -homomorphism and state a similar result given in [1] for such map.
The paper is arranged as follows; In Section 1 we introduce the notion of a γ^{*}-linear map on partial ${ }^{*}$-algebras and definitions of *-homomorphism and *-representation. In Section 2 we introduce the notion of biweights and outline the GNS construction for a biweight and we also state a definition for a representable form of a biweight. In Section 3,following[1] we state and prove the condition for the composition to be a biweight, and hence the map γ a biweight-preserving map. We start with the following definition of a partial *-agebras;

2. PRELIMINARY

We define some basic results from [2]
Definition 1: A partial *-algebra is a vector space \mathcal{U} equipped with a vector space involution $*: \mathcal{U} \rightarrow \mathcal{U}: x \rightarrow x^{*}$ satisfying $x^{* *}=x$ and partial multiplication ' .' defined by a relation $\Gamma \subset \mathcal{U} \times \mathcal{U}$ such that
(1) $(x, y) \in \Gamma$ implies $\left(y^{*}, x^{*}\right) \subset \Gamma$;
(2) $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \Gamma$ and $\lambda, \mu \in \mathbb{C}$ imply $\left(x, \lambda y_{1}+\mu y_{2}\right) \in \Gamma$
(3) for every $(x, y) \in \Gamma$, a product $x y \in \mathcal{U}$ is defined, such that $x y$ depends linearly on y and satisfies the inequality $(x y)^{*}=y^{*} x^{*}$.

Whenever $(x, y) \in \Gamma$, we say that x is a left multiplier of y and y a right multiplier of x and we write $x \in L(y)$, respectively $y \in R(x)$, the product is distributive with respect to addition, that is, for $(x, v),(x, z),(y, z) \in \Gamma$ implies $(x, \alpha v+\beta z),(\alpha x+\beta z) \in \Gamma$, and then $(\alpha x+\beta y) \cdot z=\alpha(x . z)+\beta(y \cdot z)$ and $x .(\alpha v+\beta z)=\alpha(x . v)+\beta(x . z)$ for all $\alpha, \beta \in \mathbb{C}$, the complex numbers. In addition, if we asume the partial $*$-algebra \mathcal{U} contains a unit we denote this by e, and satisfies the following, $e^{*}=e,(e, x) \in \Gamma$, and $e . x=x . e=x, \forall x \in \mathcal{U}$. Given
any subset $A \subset \mathcal{U}$ we write $L A=\cap_{x \in A} L(x)$ and $R A=\cap_{x \in A} R(x)$ for the universal left and right multipliers of A respectively. The partial multiplication is not required to be associative in general, it said to be semi-associative if $y \in R(x)$ implies that $y . z \in R(x)$ for every $z \in R(\mathcal{U})$.

In addition, if we asume the partial ${ }^{*}$-algebra \mathcal{U} contains a unit we denote this by e, and satisfies the following, $e^{*}=e,(e, x) \in \Gamma$, and $e . x=x . e=x, \forall x \in \mathcal{U}$. Given any subset $A \subset \mathcal{U}$ we write $L A=\cap_{x \in A} L(x)$ and $R A=\cap_{x \in A} R(x)$ for the universal left and right multipliers of A respectively. The partial multiplication is not required to be associative in general, it said to be semi-associative if $y \in R(x)$ implies that $y . z \in R(x)$ for every $z \in R(\mathcal{U})$.

A concrete partial*-algebras arises in the following way. Let \mathcal{H} be a complex Hilbert space and \mathcal{D} a dense subspace of \mathcal{H}. Denote $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ the set of all closable linear operators X such that the domain $\mathcal{D}(X)=\mathcal{D}$ and $\mathcal{D}\left(X^{*}\right) \supseteq \mathcal{D}$. The set $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is a partial *-algebra with respect to the following operations. The usual sum $X_{1}+X_{2}$, the scalar multiplication λX, the involution $X \rightarrow$ $X^{\dagger}=X^{*}$ upharpoonright \mathcal{D} restricted to \mathcal{D} and the (weak) partial multiplication $X_{1} \square X_{2}=X_{1}^{\dagger *} X_{2}$ defined whenever $X_{2} \in R^{w}\left(X_{1}\right)$ and $X_{1} \in L^{w}\left(X_{2}\right)$, that is, if and only if $X_{2} \mathcal{D} \subset \mathcal{D}\left(X_{1}^{\dagger *}\right)$ and $X_{1}^{*} \mathcal{D} \subset \mathcal{D}\left(X_{2}^{*}\right)$. When we regard $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ as a partial ${ }^{*}$-algebra with these operations, we denote it by $\mathcal{L}_{w}^{\dagger}(\mathcal{D}, \mathcal{H})$. $\mathrm{A}{ }^{*}$-subalgebra \mathcal{M} of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is called a partial O^{*}-algebra, that is, a subspace of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ such that $X^{\dagger} \in \mathcal{M}$ whenever $X \in \mathcal{M}$ and $X_{1} \square X_{2} \in \mathcal{M}$ for any $X_{1}, X_{2} \in \mathcal{M}$ such that $X_{2} \in R^{w}\left(X_{1}\right)$. In Antoine et al.[2] a theory for such algebras have been studied and a detailed literature provided.we now have the following definitions;
Definition 2: A *- Homomorphism of a partial ${ }^{*}$-algebra \mathcal{U}_{1} into another one \mathcal{U}_{2} is a linear map $\Phi: \mathcal{U}_{1} \rightarrow \mathcal{U}_{2}$ such that
(1) $\Phi\left(x^{*}\right)=\Phi(x)^{*}$ for every $x \in \mathcal{U}_{1}$
(2) whenever $x \in L(y)$ in \mathcal{U}_{1} then $\Phi(x) \in L(\Phi(y))$ in \mathcal{U}_{2} and $\Phi(x) \Phi(y)=\Phi(x y)$.
The map Φ is a ${ }^{*}$-isomorphism if it is a bijection and Φ^{-1} is also a *-homomorphism. The image $\Phi\left(\mathcal{U}_{1}\right)$ need not be a patial *- algebra of \mathcal{U}_{2} if Φ is not a ${ }^{*}$-isomorphism
Definition 3: We define a map, which we will call a $\hat{\gamma}{ }^{*}$-linear map.

Let \mathcal{U}_{1} and \mathcal{U}_{2} be partial ${ }^{*}$-algebras. A linear map of a partial *-algebra \mathcal{U}_{1} into \mathcal{U}_{2} satisfying the following properties
(1) $\hat{\gamma}\left(R\left(\mathcal{U}_{1}\right)\right) \subseteq R\left(\mathcal{U}_{2}\right)$
is called a $\hat{\gamma}$-linear map on \mathcal{U}_{1}.
Definition 4: A representation of a partial ${ }^{*}$-algebra \mathcal{U} is a ${ }^{*}$ homomorphism of \mathcal{U} into $\mathcal{L}_{w}^{\dagger}(\mathcal{D}, \mathcal{H})$ for some $\mathcal{D} \subset \mathcal{H}$, that is a linear map $\pi: \mathcal{U} \rightarrow \mathcal{L}_{w}^{\dagger}(\mathcal{D}, \mathcal{H})$ such that
(1) $\pi\left(x^{*}\right)=\pi(x)^{*}$ for every $x \in \mathcal{U}$
(2) $x \in L(y)$ in \mathcal{U} implies $\pi(x) \in L^{w}(\pi(Y))$ and $\pi(x) \square \pi(y)=$ $\pi(x y)$.

3. Biweights

In this Section we will state the definition of a biweight given in Antoine et al [3], but first we will give an outline of the GNSconstruction for a biweight as may be found in [2]and [3].
Let φ be a positive sesquilinear form on $\mathcal{D}(\varphi) \times \mathcal{D}(\varphi)$ where $\mathcal{D}(\varphi)$ is a subspace of a partial ${ }^{*}$-algebra \mathcal{U}. Then we have $\varphi(x, y)=\overline{\varphi(y, x)}$ $\forall x, y \in \mathcal{D}(\varphi)$ and $|\varphi(x, y)|^{2} \leq \varphi(x, x) \varphi(y, y)$
$\forall x, y \in \mathcal{D}(\varphi)$.The kernel $\mathcal{N}_{\varphi}=\{x \in \mathcal{D}(\varphi): \varphi(x, y)=0, \forall y \in$ $\mathcal{D}(\varphi)\}$ of φ is a vector subspace of $\mathcal{D}(\varphi)$. We define the map $\lambda_{\varphi}: \mathcal{D}(\varphi) \rightarrow \mathcal{D}(\varphi) \backslash \mathcal{N}_{\varphi}$ by $\lambda_{\varphi}(x)=x+\mathcal{N}_{\varphi}$. This give the coset containing x and thus $\mathcal{D}(\varphi) \backslash \mathcal{N}_{\varphi}$ is a pre-Hilbert space with respect to the inner product $\left\langle\lambda_{\varphi}(x), \lambda_{\varphi}(y)\right\rangle=\varphi(x, y)$. We denote the completion of $\mathcal{D}(\varphi) \backslash \mathcal{N}_{\varphi}$ with respect to the inner product by \mathcal{H}_{φ}.
Definition 5: Let φ be a sesquilinear form on $\mathcal{D}(\varphi) \times \mathcal{D}(\varphi)$. A subspace $\mathcal{B}(\varphi)$ of $\mathcal{D}(\varphi)$ is said to be a precore for φ if
(1) $\mathcal{B}(\varphi) \subseteq R \mathcal{U}$
(2) $\{a x: a \in \mathcal{U}, x \in \mathcal{B}(\varphi)\} \subseteq \mathcal{D}(\varphi)$
(3) $\varphi(a x, y)=\varphi\left(x, a^{*} y\right) \forall a \in \mathcal{U}, x, y \in \mathcal{B}(\varphi)$
(4) $\varphi\left(a^{*} x, b y\right)=\varphi(x,(a b) y) a \in L(b), \forall x, y \in \mathcal{B}(\varphi)$

The subspace $\mathcal{B}(\varphi)$ is called a core if in addition
(5) $\lambda_{\varphi}(\mathcal{B}(\varphi))$ is dense in \mathcal{H}_{φ}

We denote by \mathcal{P}_{φ} the set of all precores for φ and \mathcal{B}_{φ} the set of all cores $\mathcal{B}(\varphi)$ for φ
Definition 6: A positive sesquilinear form φ on $\mathcal{D}(\varphi) \times \mathcal{D}(\varphi)$ such that $\mathcal{B}_{\varphi} \neq \emptyset$ is called a biweight.

We put $\mathcal{D}\left(\pi_{\varphi}\right)=\left\{\lambda_{\varphi}(x): x \in \mathcal{B}(\varphi)\right\}$ and $\pi_{\varphi}(a) \lambda_{\varphi}=\lambda_{\varphi}(a x) \forall a \in \mathcal{U}, x \in \mathcal{B}(\varphi)$. This is a well-defined linear map and from conditions (2)and(5) is a *-representation [1]
and [3]. We denote by π_{φ} its closure. We have the following
Remark[1] ; The triple $\left(\pi_{\varphi}, \lambda_{\varphi}, \mathcal{H}_{\varphi}\right)$ is called the GNS construction for the biweight φ.
Definition 7: A positive sesquilinear form φ on $\mathcal{D}(\varphi) \times \mathcal{D}(\varphi)$ is called a representable form if there exist a precore $\mathcal{B}(\varphi)$ for φ and a *-representation π_{φ} defined on a dense subspace $\mathcal{D}\left(\pi_{\varphi}\right)$ of \mathcal{H}_{φ} with $\lambda_{\varphi}(\mathcal{B}(\varphi)) \subseteq \mathcal{D}(\varphi)$ such that $\varphi(a x, b y)=\left\langle\pi_{\varphi}(a) \lambda_{\varphi}(x), \pi_{\varphi}(b) \lambda_{\varphi}(y)\right\rangle$.
Definition 8: Let $\mathcal{U}_{1}, \mathcal{U}_{2}$ be partial *-algebras, and φ a biweight on \mathcal{U}_{2} with domain $\mathcal{D}(\varphi)$ and core $\mathcal{B}(\varphi)$, a ${ }^{*}$-linear map $\theta: \mathcal{U}_{1} \rightarrow \mathcal{U}_{2}$ is said to be biweight- preserving if φ_{θ} is a biweight on \mathcal{U}_{1} with core $\mathcal{B}\left(\varphi_{\theta}\right)$, where φ_{θ} is given by $\varphi_{\theta}=\varphi \circ \theta$

4. Biweights-Preserving Maps

In this Section we introduce the notion of γ^{*} - linear map which is not a *-homomorphism and state condition for the composition $\varphi_{\gamma}=\varphi \circ \gamma$ to have a nonzero subspace that satisfies the condition of a precore for φ_{γ} and we also state the conditon for the map φ_{γ} to be representable and a biweight on \mathcal{U}_{1}. We start with the following,

Definition 9: Let $\mathcal{U}_{1}, \mathcal{U}_{2}$ be partial *-algebras, and let θ be a nonmultiplicative *-linear map $\theta: \mathcal{U}_{1} \rightarrow \mathcal{U}_{2}$, we denote the collection of all such maps by $\mathcal{L}\left(\mathcal{U}_{1}, \mathcal{U}_{2}\right)$ and $\forall a \in \mathcal{U}_{1}$ and $\theta \in \mathcal{L}\left(\mathcal{U}_{1}, \mathcal{U}_{2}\right)$ we define the map $\gamma: \mathcal{U}_{1} \times \mathcal{L}\left(\mathcal{U}_{1}, \mathcal{U}_{2}\right) \rightarrow \mathcal{U}_{2}$, with the following properties
(1) $\gamma(a, \theta)^{*}=\gamma\left(a^{*}, \theta\right)$
(2) $\gamma(a x, \theta)=\theta(a) \hat{\gamma}(x)$
(3) $\gamma\left(a^{*} x, \theta\right)=\theta\left(a^{*}\right) \hat{\gamma}(x), \forall a \in \mathcal{U}_{1}, x \in R\left(\mathcal{U}_{1}\right)$
γ is well-defined but is not a ${ }^{*}$-homomorphism since, we have $\gamma\left(x_{1} x_{2}\right) \neq \gamma\left(x_{1}\right) \gamma\left(x_{2}\right)$ but a $\hat{\gamma}^{*}$-linear map. In the sequel for any $x \in R\left(\mathcal{U}_{1}\right)$, we denote $\hat{\gamma}(x)$ by $\gamma(x, \theta) \in R\left(\mathcal{U}_{2}\right)$.

For a partial ${ }^{*}$-algebra \mathcal{U}_{2} with a biweight φ having domain $\mathcal{D}(\varphi)$ and \mathcal{U}_{1} a partial ${ }^{*}$-algebra, we define the map φ_{γ} on $\mathcal{D}\left(\varphi_{\gamma}\right)$ as follows; put $\mathcal{D}\left(\varphi_{\gamma}\right)=\left\{a \in \mathcal{U}_{1}: \gamma(a, \theta) \in \mathcal{D}(\varphi)\right\}$ for $\gamma(x, \theta), \gamma(y, \theta) \in$ $\mathcal{D}(\varphi)$ and $x, y \in \mathcal{D}\left(\varphi_{\gamma}\right)$ we have $\varphi_{\gamma}(x, y)=\varphi(\gamma(x, \theta), \gamma(y, \theta))$, define a subspace $\mathcal{B}\left(\varphi_{\gamma}\right)$ of $\mathcal{D}\left(\varphi_{\gamma}\right)$ as the subspace $\mathcal{B}\left(\varphi_{\gamma}\right)=\{x \in$ $\left.R\left(\mathcal{U}_{1}\right): \gamma(a x, \theta) \in \mathcal{D}(\varphi), \forall a \in \mathcal{U}_{1}\right\}$.
We note that $\varphi_{\gamma}(x, y)=\varphi(\gamma(x, \theta), \gamma(y, \theta))$ is a positive sesquilinear form on $\mathcal{D}\left(\varphi_{\gamma}\right) \times \mathcal{D}\left(\varphi_{\gamma}\right)$.
We have the following,

Proposition 1: The subspace $\mathcal{B}\left(\varphi_{\gamma}\right)$ is a precore for the positive sesquilinear form φ_{γ} given by $\varphi_{\gamma}(x, y)=\varphi(\gamma(x, \theta), \gamma(y, \theta))$ on $\mathcal{D}\left(\varphi_{\gamma}\right) \times \mathcal{D}\left(\varphi_{\gamma}\right)$.

Proof. We note that $\mathcal{B}\left(\varphi_{\gamma}\right)$ satisfies condition (i) that is, $\mathcal{B}\left(\varphi_{\gamma}\right) \subseteq$ $R\left(\mathcal{U}_{1}\right)$ for condition (ii) let $a \in \mathcal{U}_{1}$ such that $\gamma(a, \theta) \in \mathcal{D}(\varphi)$ and $x \in \mathcal{B}\left(\varphi_{\gamma}\right)$ such that $\gamma(a x, \theta) \in \mathcal{D}(\varphi)$ implies from the definition of φ_{γ} that the set $\left\{a x: a \in \mathcal{U}_{1}, x \in \mathcal{B}\left(\varphi_{\gamma}\right)\right\} \subseteq \mathcal{D}\left(\varphi_{\gamma}\right)$. As for condition (iii) and (iv) we apply the properties of γ stated in definition 3.1 and the defintion of φ_{γ}
condition (iii) we have;

$$
\begin{aligned}
\varphi_{\gamma}(a x, y) & =\varphi(\gamma(a x, \theta), \gamma(y, \theta)) \\
& =\varphi(\theta(a) \gamma(x, \theta), \gamma(y, \theta)) \\
& =\varphi\left(\gamma(x, \theta), \theta(a)^{*} \gamma(y, \theta)\right) \\
& =\varphi\left(\gamma(x, \theta), \gamma\left(a^{*} y, \theta\right)\right) \\
& =\varphi_{\gamma}\left(x, a^{*} y\right)
\end{aligned}
$$

and for condition (iv) we have

$$
\begin{aligned}
\varphi_{\gamma}\left(a^{*} x, b y\right) & =\varphi\left(\gamma\left(a^{*} x, \theta\right), \gamma(b y, \theta)\right) \\
& =\varphi\left(\theta\left(a^{*}\right) \gamma(x, \theta), \gamma(b y, \theta)\right) \\
& =\varphi\left(\theta(a)^{*} \gamma(x, \theta), \gamma(b y, \theta)\right) \\
& =\varphi(\gamma(x, \theta), \theta(a) \gamma(b y, \theta)) \\
& =\varphi(\gamma(x, \theta), \gamma((a b) y, \theta)) \\
& =\varphi_{\gamma}(x,(a b) y) .
\end{aligned}
$$

Hence $\mathcal{B}\left(\varphi_{\gamma}\right)$ is a precore for φ_{γ}
We now state the condition for φ_{γ} to be representable on \mathcal{U}_{1}. Let φ_{γ} be a positive sesquilinear form on \mathcal{U}_{1} from [2] this gives rise to a triplet $\left(\mathcal{H}_{\varphi_{\gamma}}, \mathcal{D}_{\varphi_{\gamma}}, \pi_{\varphi_{\gamma}}\right)$ which we outline as follows; define the set $\mathcal{N}_{\varphi_{\gamma}}=\left\{x \in \mathcal{U}_{1}: \varphi_{\gamma}(x, y)=0, \forall y \in \mathcal{D}\left(\varphi_{\gamma}\right)\right\}$ and we have the map $\lambda_{\varphi_{\gamma}}: \mathcal{D}\left(\varphi_{\gamma}\right) \rightarrow \mathcal{D}\left(\varphi_{\gamma}\right) \backslash \mathcal{N}_{\varphi_{\gamma}}$ defined by $\lambda_{\varphi_{\gamma}}(x)=x+\mathcal{N}_{\varphi_{\gamma}}, x \in$ $\mathcal{D}\left(\varphi_{\gamma}\right)$. The set $\mathcal{D}\left(\varphi_{\gamma}\right) \backslash \mathcal{N}_{\varphi_{\gamma}}$ is a pre-Hilbert space. The map $\lambda_{\varphi_{\gamma}}$ induces the inner product $\left\langle\lambda_{\varphi_{\gamma}}(x), \lambda_{\varphi_{\gamma}}(y)\right\rangle=\varphi_{\gamma}(x, y)$.Then $\mathcal{H}_{\varphi_{\gamma}}$ is the Hilbert space obtained by completing $\lambda_{\varphi_{\gamma}}\left(\mathcal{U}_{1}\right)$ in the norm topology determine by $\langle\cdot, \cdot \cdot\rangle$. Let \mathcal{U}_{φ} be a nonzero subspace of $R\left(\mathcal{U}_{1}\right)$ such that $\lambda_{\varphi_{\gamma}}\left(\mathcal{U}_{\varphi}\right)$ is dense in $\mathcal{H}_{\varphi_{\gamma}}$. Then we denote $\lambda_{\varphi_{\gamma}}\left(\mathcal{U}_{\varphi}\right)$ by $\mathcal{D}_{\varphi_{\gamma}}$. For $a \in \mathcal{U}_{1}$ we have the map $\pi_{\varphi_{\gamma}}: \mathcal{U}_{1} \rightarrow \mathcal{L}^{\dagger}\left(\mathcal{H}_{\varphi_{\gamma}}, \mathcal{D}_{\varphi_{\gamma}}\right)$ defined by $\pi_{\varphi_{\gamma}}(a) \lambda_{\varphi_{\gamma}}(x)=\lambda_{\varphi_{\gamma}}(a . x)$, for $a \in \mathcal{U}_{1}$ and $x \in \mathcal{U}_{\varphi}$.
From [4] this map is well-defined but may not be a *-representation
unless φ_{γ} is an invariant positive sesquilinear form given in the following;

We now state the condition for φ_{γ} to be representable on \mathcal{U}_{1}. Let φ_{γ} be a positive sesquilinear form on \mathcal{U}_{1} from [2] this gives rise to a triplet $\left(\mathcal{H}_{\varphi_{\gamma}}, \mathcal{D}_{\varphi_{\gamma}}, \pi_{\varphi_{\gamma}}\right)$ which we outline as follows; define the set $\mathcal{N}_{\varphi_{\gamma}}=\left\{x \in \mathcal{U}_{1}: \varphi_{\gamma}(x, y)=0, \forall y \in \mathcal{D}\left(\varphi_{\gamma}\right)\right\}$ and we have the map $\lambda_{\varphi_{\gamma}}: \mathcal{D}\left(\varphi_{\gamma}\right) \rightarrow \mathcal{D}\left(\varphi_{\gamma}\right) \backslash \mathcal{N}_{\varphi_{\gamma}}$ defined by $\lambda_{\varphi_{\gamma}}(x)=x+\mathcal{N}_{\varphi_{\gamma}}, x \in$ $\mathcal{D}\left(\varphi_{\gamma}\right)$. The set $\mathcal{D}\left(\varphi_{\gamma}\right) \backslash \mathcal{N}_{\varphi_{\gamma}}$ is a pre-Hilbert space.The map $\lambda_{\varphi_{\gamma}}$ induces the inner product $\left\langle\lambda_{\varphi_{\gamma}}(x), \lambda_{\varphi_{\gamma}}(y)\right\rangle=\varphi_{\gamma}(x, y)$.Then $\mathcal{H}_{\varphi_{\gamma}}$ is the Hilbert space obtained by completing $\lambda_{\varphi_{\gamma}}\left(\mathcal{U}_{1}\right)$ in the norm topology determine by $\langle\cdot, \cdot \cdot\rangle$. Let \mathcal{U}_{φ} be a nonzero subspace of $R\left(\mathcal{U}_{1}\right)$ such that $\lambda_{\varphi_{\gamma}}\left(\mathcal{U}_{\varphi}\right)$ is dense in $\mathcal{H}_{\varphi_{\gamma}}$. Then we denote $\lambda_{\varphi_{\gamma}}\left(\mathcal{U}_{\varphi}\right)$ by $\mathcal{D}_{\varphi_{\gamma}}$. For $a \in \mathcal{U}_{1}$ we have the map $\pi_{\varphi_{\gamma}}: \mathcal{U}_{1} \rightarrow \mathcal{L}^{\dagger}\left(\mathcal{H}_{\varphi_{\gamma}}, \mathcal{D}_{\varphi_{\gamma}}\right)$ defined by $\pi_{\varphi_{\gamma}}(a) \lambda_{\varphi_{\gamma}}(x)=\lambda_{\varphi_{\gamma}}(a . x)$, for $a \in \mathcal{U}_{1}$ and $x \in \mathcal{U}_{\varphi}$.
From [4] this map is well-defined but may not be a *-representation unless φ_{γ} is an invariant positive sesquilinear form given in the following;
Definition 10:We call φ_{γ} invariant if there is nonzero subspace \mathcal{U}_{φ} be a nonzero subspace of $R\left(\mathcal{U}_{1}\right)$ such that
(1) $\lambda_{\varphi_{\gamma}}\left(\mathcal{U}_{\varphi}\right)$ is dense in \mathcal{H}_{φ}
(2) $\left\langle\pi_{\varphi_{\gamma}}(a)^{\dagger} \lambda_{\varphi_{\gamma}(x)}, \lambda_{\varphi_{\gamma}}(b . y)\right\rangle=\left\langle\lambda_{\varphi_{\gamma}(x)}, \lambda_{\varphi_{\gamma}}((a . b) \cdot y)\right\rangle$

Thus we will have $\pi_{\varphi_{\gamma}}(a) \square \pi_{\varphi_{\gamma}}(b) \lambda_{\varphi_{\gamma}}(y)=\pi_{\varphi_{\gamma}}(a . b) \lambda_{\varphi_{\gamma}}(y)$
We now give a definition for a representable form for φ_{γ};
Definition 11: A positive sesquilinear form φ_{γ} on $\mathcal{D}\left(\varphi_{\gamma}\right) \times \mathcal{D}\left(\varphi_{\gamma}\right)$ is called a representable form if there exist a precore $\mathcal{B}\left(\varphi_{\gamma}\right)$ for φ_{γ} and a ${ }^{*}$-representation $\pi_{\varphi_{\gamma}}$ defined on a dense subspace $\mathcal{D}\left(\pi_{\varphi_{\gamma}}\right)$ of $\mathcal{H}_{\varphi_{\gamma}}$ with $\lambda_{\varphi_{\gamma}}\left(\mathcal{B}\left(\varphi_{\gamma}\right)\right) \subseteq \mathcal{D}\left(\varphi_{\gamma}\right)$ such that $\varphi_{\gamma}(a x, b y)=\varphi(\gamma(a x, \theta), \gamma(b y, \theta))=\left\langle\pi_{\varphi_{\gamma}}(a) \lambda_{\varphi_{\gamma}}(x), \pi_{\varphi_{\gamma}}(b) \lambda_{\varphi_{\gamma}}(y)\right\rangle$ $\forall x, y \in \mathcal{B}\left(\varphi_{\gamma}\right)$ and $a, b \in \mathcal{U}_{1}$.
We now proof the condition for φ_{γ} to be representable
Proposition 2: Let \mathcal{U}_{1} and \mathcal{U}_{2} partial *-algebras. Let φ be a representable biweight with precore $\mathcal{B}(\varphi)$ and domain $\mathcal{D}(\varphi)$ in \mathcal{U}_{2}. Let $\hat{\theta}$ be a ${ }^{*}$-isomorphism from \mathcal{U}_{1} into \mathcal{U}_{2} then φ_{γ} is a representable form.

Proof. Let φ_{γ} be a positive sesquilinear form on $\mathcal{D}\left(\varphi_{\gamma}\right) \times \mathcal{D}\left(\varphi_{\gamma}\right)$ for the set $\mathcal{N}_{\varphi_{\gamma}}=\left\{x \in \mathcal{U}_{1}: \varphi_{\gamma}(x, y)=0, \forall y \in \mathcal{D}\left(\varphi_{\gamma}\right)\right\}$ we have the map $\lambda_{\varphi_{\gamma}}: \mathcal{D}\left(\varphi_{\gamma}\right) \rightarrow \mathcal{D}\left(\varphi_{\gamma}\right) \backslash \mathcal{N}_{\varphi_{\gamma}}$ defined by $\lambda_{\varphi_{\gamma}}(x)=x+\mathcal{N}_{\varphi_{\gamma}}, x \in \mathcal{D}\left(\varphi_{\gamma}\right)$. The set $\mathcal{D}\left(\varphi_{\gamma}\right) \backslash \mathcal{N}_{\varphi_{\gamma}}$ is a pre-Hilbert space. The map $\lambda_{\varphi_{\gamma}}$ induces the inner product $\left\langle\lambda_{\varphi_{\gamma}}(x), \lambda_{\varphi_{\gamma}}(y)\right\rangle=\varphi_{\gamma}(x, y)$.Thus we define
a $\operatorname{map} \hat{\theta}: \lambda_{\varphi_{\gamma}}\left(\mathcal{D}\left(\varphi_{\gamma}\right)\right) \rightarrow \lambda_{\varphi}(\mathcal{D}(\varphi))$ by $\hat{\theta}\left(\lambda_{\varphi_{\gamma}}(x)\right)=\lambda_{\varphi}(\theta(x))$, where $\theta(x)=\gamma(x, \theta)$. This map is well-defined, since if $\lambda_{\varphi_{\gamma}}(x)=0$, then $\varphi(x, x)=0$ which implies that $\varphi_{\gamma}(x, y)=0$, and if $\hat{\theta}$ is injective and $\lambda_{\varphi}(\theta(x))=0$ then this implies that
$\varphi(\gamma(x, \theta), \gamma(y, \theta))=\varphi_{\gamma}(x, y)=0$ and thus $\lambda_{\varphi_{\gamma}}(x)=0$.We have that $\hat{\theta}$ is an isometric map, that is, $\left\|\theta\left(\lambda_{\varphi_{\gamma}}(x)\right)\right\|^{2}=\left\|\lambda_{\varphi}(\theta(x))\right\|^{2}$ $=\varphi(\gamma(x, \theta), \gamma(x, \theta))=\varphi_{\gamma}(x, y)=\left\|\lambda_{\varphi_{\gamma}}(x)\right\|^{2}$. Now since $\hat{\theta}$ is injective it extends to a unitary operator, denote by the same symbol, from $\mathcal{H}_{\varphi_{\gamma}}$ onto \mathcal{H}_{φ}. Since φ is a representable form on \mathcal{U}_{2} there exists a dense domain $\mathcal{D}\left(\pi_{\varphi}\right) \subseteq \mathcal{H}_{\varphi}$ and a ${ }^{*}$-representation $\pi_{\varphi}: \mathcal{U}_{2} \rightarrow \mathcal{L}^{\dagger}\left(\mathcal{D}\left(\pi_{\varphi}\right), \mathcal{H}_{\varphi}\right)$ such that
$\varphi(\gamma(a x, \theta), \gamma(b y, \theta))=\left\langle\pi_{\varphi}(\theta(a)) \lambda_{\varphi}(\theta(x)), \pi_{\varphi}(\theta(b)) \lambda_{\varphi} \theta(y)\right\rangle, \forall \gamma(a x, \theta)$, $\gamma(b y, \theta) \in \mathcal{D}(\varphi)$.
We put $\mathcal{D}_{\varphi_{\gamma}}=\hat{\theta}^{-1} \mathcal{D}\left(\pi_{\varphi}\right)$ then $\mathcal{D}_{\varphi_{\gamma}}$ is a dense subspace of $\mathcal{H}_{\varphi_{\gamma}}$. Let $\mathcal{B}_{\varphi_{\gamma}} \subseteq \mathcal{D}\left(\varphi_{\gamma}\right)$ and the map $\hat{\theta}\left(\lambda_{\varphi_{\gamma}}\left(\mathcal{B}_{\varphi_{\gamma}}\right)\right) \subseteq \lambda_{\varphi}\left(\theta\left(\mathcal{B}\left(\varphi_{\gamma}\right)\right)\right) \subseteq \mathcal{D}\left(\pi_{\varphi}\right)$, where $\theta\left(\mathcal{B}\left(\varphi_{\gamma}\right)\right)=\gamma\left(\mathcal{B}\left(\varphi_{\gamma}\right), \theta\right)$, this implies that $\hat{\theta}\left(\lambda_{\varphi_{\gamma}}\left(\mathcal{B}_{\varphi_{\gamma}}\right)\right) \subseteq$ $\mathcal{D}\left(\pi_{\varphi}\right)$. Now put $\pi_{\varphi_{\gamma}}(a)=\hat{\theta}^{-1} \pi_{\varphi}(\theta(a)) \hat{\theta}$, then we have the following $\varphi_{\gamma}(a x, b y)=\varphi(\gamma(a x, \theta), \gamma(b y, \theta))=\varphi(\theta(a) \gamma(x, \theta), \theta(b) \gamma(y, \theta))$
$=\left\langle\pi_{\varphi}(\theta(a)) \lambda_{\varphi}(\gamma(x, \theta)), \pi_{\varphi}(\theta(b)) \lambda_{\varphi}(\gamma(y, \theta))\right\rangle$
$\left.=\left\langle\pi_{\varphi}(\theta(a)) \lambda_{\varphi}(\theta(x))\right), \pi_{\varphi}(\theta(b)) \lambda_{\varphi}(\theta(y))\right\rangle$
$=\left\langle\pi_{\varphi}(\theta(a)) \hat{\theta}\left(\lambda_{\varphi_{\gamma}}(x)\right), \pi_{\varphi}(\theta(b)) \hat{\theta}\left(\lambda_{\varphi_{\gamma}}(y)\right)\right\rangle$
$=\left\langle\hat{\theta}^{-1}\left(\pi_{\varphi} \theta(a)\right) \hat{\theta}\left(\lambda_{\varphi_{\gamma}}(x)\right), \hat{\theta}^{-1}\left(\pi_{\varphi} \theta(b)\right) \hat{\theta}\left(\lambda_{\varphi_{\gamma}}(y)\right)\right\rangle$
$\left.\left.\left.\left.=\left\langle\pi_{\varphi_{\gamma}}(a)\right) \lambda_{\varphi_{\gamma}}(x)\right), \pi_{\varphi_{\gamma}}(b)\right) \lambda_{\varphi_{\gamma}}(y)\right)\right\rangle$
Thus we have shown that φ_{γ} is a representable form.
Proposition 3: $\lambda_{\varphi_{\gamma}}\left(\mathcal{B}\left(\varphi_{\gamma}\right)\right)$ is dense in the Hilbert space $\mathcal{H}_{\varphi_{\gamma}}$.
Proof. Let φ be a biweight on \mathcal{U}_{2} and let $x \in \mathcal{D}(\varphi)$, for φ there exists a sequence $\left(z_{n}\right), z_{n} \in \mathcal{B}(\varphi)$, such that $\varphi\left(x-z_{n}, x-z_{n}\right) \rightarrow 0$. Thus we can define a map $\hat{i}: \mathcal{B}(\varphi) \rightarrow \mathcal{B}\left(\varphi_{\gamma}\right)$ by $\hat{i}\left(z_{n}\right)=\hat{z}_{n}$ and put $\lambda_{\varphi_{\gamma}}(\hat{x})=\hat{\theta}^{-1}\left(\lambda_{\varphi}(\theta(x))\right)$ where $\hat{\theta}$ is a *-isomorphism on $\lambda_{\varphi_{\gamma}}\left(\mathcal{D}\left(\varphi_{\gamma}\right)\right)$ into $\lambda_{\varphi}(\mathcal{D}(\varphi))$.Thus we have $\lambda_{\varphi_{\gamma}}(\hat{i}(x))=\hat{\theta}^{-1}\left(\lambda_{\varphi}(\gamma(\hat{x}, \theta))\right)$ and thus $\gamma(\hat{x}, \theta) \in \mathcal{D}(\varphi)$. Hence for $\hat{x} \in \mathcal{D}\left(\varphi_{\gamma}\right)$ we let $\gamma\left(\hat{x}-\hat{z}_{n}\right)=\left(x-z_{n}\right)$, hence we have
$\left\|\lambda_{\varphi_{\gamma}}\left(\hat{x}-\hat{z_{n}}\right)\right\|^{2}=\left\langle\lambda_{\varphi_{\gamma}}\left(\hat{x}-\hat{z_{n}}\right), \lambda_{\varphi_{\gamma}}\left(\hat{x}-\hat{z_{n}}\right)\right\rangle$
$=\varphi_{\gamma}\left(\left(\hat{x}-\hat{z_{n}}\right),\left(\hat{x}-\hat{z_{n}}\right)\right)$
$=\varphi\left(\left(\gamma\left(\hat{x}-\hat{z}_{n}\right),\left(\gamma\left(\hat{x}-\hat{z}_{n}\right)\right)=\varphi\left(x-z_{n}, x-z_{n}\right) \rightarrow 0\right.\right.$.
This shows that $\lambda_{\varphi_{\gamma}}\left(\mathcal{B}\left(\varphi_{\gamma}\right)\right)$ is dense in the Hilbert space $\mathcal{H}_{\varphi_{\gamma}}$ and we can summarized the above disscusion with the following;

Theorem 1:Let $\mathcal{U}_{1}, \mathcal{U}_{2}$ be partial ${ }^{*}$-algebras, and φ is a biweight on \mathcal{U}_{2} then a γ^{*}-linear map from \mathcal{U}_{1} into \mathcal{U}_{2} is a biweight-preserving map if it satisfies the properties [1-3] in definition(9) and $\varphi \circ \gamma$ is a biweight on \mathcal{U}_{1}.

ACKNOWLEDGEMENTS

The author would like to thank Prof G.O.S. Ekhaguere and the anonymous referee whose comments improved the original version of this manuscript.

REFERENCES

[1] J.P. Antoine,C. Trapani,F. Tschinke, , Biweights and *-Homomorphism of Partial *-Algebras, , Int. J. Mathematics and Mathematical Sciences 158 Art.ID 54793,120, 2006.
[2] J.P. Antoine, A. Inoue, C. Trapani, Partial *- algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002.
[3] J.P. Antoine, A. Inoue, C. Trapani, J.P. Antoine, A. Inoue, C. Trapani, Biweights on Partial *- algebras, Journal of Mathematical Analysis and Applications,242, 164-190, 2000.
[4] G.O.S. Ekhaguere, Some characterization of Partial Algebras, Journal of Mathematical Analysis and Applications 337,1295-1301, 2008.

DEPARTMENT OF MATHEMATICAL SCIENCES, NIGERIAN DEFENCE ACADEMY, KADUNA, NIGERIA
E-mail address: yusufian68@yahoo.com

[^0]: Received by the editors August 02, 2017; Accepted: January 30, 2019
 www.nigerianmathematicalsociety.org; Journal available online at https://ojs.ictp. it/jnms/

