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NON-EXISTENCE OF (155, 56, 20) DIFFERENCE SETS
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ABSTRACT. It is known that (155, 56, 20) abelian difference
set does not exist. Using methods in algebraic number theory
and representation theory, we conclude that there are no non-
abelian (155, 56, 20) difference sets.
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1. Introduction

Let D, the set consisting of k elements, be a subset of a multiplicative
group G of order v with k < v. If every non-identity element, g, of G
can be recovered λ times by the multi-set {g = d1d

−1
2 : d1, d2 ∈ D, d1 �=

d2}, then D is called a non-trivial (v, k, λ) difference set. The natural
number n := k − λ is known as the order of the difference set. If G is
abelian (resp. non abelian or cyclic) then D is known as abelian (resp.
non abelian or cyclic) difference set. The parameter set (155, 56, 20)
is one of 18 difference set parameters satisfying the algebraic equation
χ(D)χ(D) = 36, where χ is a non trivial representation of G[1]. Most of
the abelian difference sets in this category have been decided while most
of the non-abelian cases remain unsolved. In the case of (155, 56, 20)
parameter set, there are two groups of order 155 of which one is abelian.
Lander [2](Theorem 4.19) showed that abelian (155, 56, 20) difference
set does not exist. This paper explores the possibility of existence of
this parameter set in the non abelian group but our method applies to
both abelian and non abelian groups. We conclude the following:

Theorem 1.1. There are no (155, 56, 20) difference sets.

In this paper, G is a group of order 155. In section 2, we state basic
results and give a brief description of the method used in this paper.
While in sections 3 and 4, we establish the main theorem.
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2. Preliminary

We start with some background information.
We assume basic knowledge of representation and group theories.
Let G be a group of order v and D, a (v, k, λ) difference set in a group

G. We sometimes view the elements of D as members of the group ring
Z[G], which is a subring of the group algebra C[G]. Thus, D represents
both subset of G and element

∑
g∈G g of Z[G]. The sum of inverses of

elements of D is D(−1) =
∑

g∈G g
(−1). Consequently, D is a difference

set if and only if

DD(−1) = n+ λG andDG = kG. (2.1)

A C- representation of G is a homomorphism, χ : G → GL(d,C),
where GL(d,C) is the group of invertible d × d matrices over C. The
positive integer d is the degree of χ. A linear representation(character)
is a representation of degree one. The set of all linear representations of
G is denoted by G∗. G∗ is an abelian group under multiplication and if
G′ is the derived group of G then G∗ is isomorphic to G/G′. The positive
integer m is the exponent of the group G if gm = 1 for all g ∈ G. If

ζm := e
2πi
m is a primitive m-th root of unity, then Km := Q(ζm) is the

cyclotomic extension of the set of rational numbers, Q. Without loss of
generality, we may replace C by the fieldKm (known as the splitting field
of G). This field is a Galois extension of degree φ(m), (φ is the Euler

function) and a basis for Km over Q is S = {1, ζm, ζ2m, . . . , ζφ(m)−1
m }. S is

also the integral basis for Z[ζm]. Thus, the central primitive idempotents
in C[G] is

eχi =
χi(1)

|G|
∑
g∈G

χi(g)g
−1 =

1

|G|
∑
g∈G

χi(g)g (2.2)

where χi is an irreducible character of G and {eχi : χi ∈ G∗} is a basis
for C[G].

Primitive idempotents give rise to rational idempotents as follows: If
Km is the Galois over Q, then central rational idempotents in Q[G]
are obtained by summing over the equivalence classes Xi on the eχ’s
under the action of the Galois group of Km over Q. That is,

[eχi ] =
∑

eχj∈Xi

eχj , i = 1, . . . , s.

In particular, if G is a cyclic group of the form Cpm = 〈x : xp
m
= 1〉 (p

is prime) whose characters are of the form χi(x) = ζ ipm, i = 0, . . . ,m− 1
then the rational idempotents are

[eχ0 ] =
1

pm
〈x〉, (2.3)

and 0 ≤ j ≤ m− 1



NON-EXISTENCE OF (155, 56, 20) DIFFERENCE SETS . . . 13

[eχ
pj
] =

1

pj+1

(
p〈xpm−j 〉 − 〈xpm−j−1〉

)
. (2.4)

The following yields the general formula employed in the search of
difference set [3].

Theorem 2.1. Let G be an abelian group and G∗/ ∼ is the set of equiv-
alence classes of characters. Suppose that {χ0, χ1, . . . , χs} is a system
of distinct representatives for the equivalence classes of G∗/ ∼.

Then for A ∈ Z[G], we have

A =

s∑
i=0

αi[eχi ], (2.5)

where αi is any χi-alias for A.

Equation (2.5) is known as the rational idempotent decomposi-
tion of A.

Now, suppose that ψ : G −→ G/N is a homomorphism then we can
extend ψ, by linearity, to the corresponding group rings. Given that D is
a (v, k, λ) difference set in G, a group of order v and H is a homomorphic
image of G with kernel N . Then the contraction of D with respect to the
kernel N is the multi-set D/N = ψ(D) = {dN : d ∈ D} (also called the
difference set image in H). If T ∗ = {1, t1, . . . , th} is a left transversal of

N in G then we write D̂ =
∑

tj∈G djtjN where the integer dj = |D∩tjN |
is known as the intersection number of D with respect to N . In this
work, we shall always use the notation D̂ for ψ(D), the difference set
image in a homomorphic image of G and denote the number of times di
equals i by mi ≥ 0. The following results follow immediately.

Lemma 2.2. Let D be a difference set in a group G and N , a normal
subgroup of G. Suppose that ψ : G −→ G/N be a natural epimorphism.
Then

(1) D̂D̂(−1) = n · 1G/N + |N |λ(G/N)

(2)
∑
d2i = n+ |N |λ

(3) χ(D̂)χ(D̂) = n · 1G/N , where χ is a non trivial representation of
G/N

The character value of χ(D̂) is given by the following lemma.

Lemma 2.3. Suppose that G is group of order v with normal subgroup
N such that G/N is abelian. If D̂ ∈ Z[G/N ] and χ ∈ (G/N)∗ then

|χ(D̂)| =
{
k, if χ is principal character G/N√
k − λ, otherwise.
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According to Turyn [4], an integer n is said to be semi-primitive mod-
ulo m if for every prime factor p of n, there is an integer i such that
pi ≡ −1 mod m. In this case, −1 belongs to the multiplicative group
generated by p. Furthermore, n is self conjugate modulo m if every
prime divisor of n is semi primitive modulo mp, mp is the largest divi-
sor of m relatively to p. This means that every prime ideals over n in
Z[ζm] are fixed by complex conjugation. Consequently, the construction
of elements of length n is trivial in Z[ζm]. To successfully obtain the dif-
ference set images, we need the aliases. The alias requires the knowledge
of how the ideal generated by χ(D̂) factors in the cyclotomic ring Z[ζm],
ζm is the mth root of unity and m is the exponent of G/N . For the

purpose of this paper, if χ is not a principal character then |χ(D̂)| = 6
and we need to know how the ideal generated by 2 and 3 factor in Z[ζm],
m = 5, 31. All the necessary algebraic numbers will be determined by
a theorem due to Kronecker that states that any algebraic integer all
whose conjugates have absolute value 1 must be a root of unity[5].

3. Abelian group of order 155 and it’s linear
representations

The group C155 = 〈x, y : x31 = y5 = [x, y] = 1〉 has a cyclic homomor-
phic image of order 31. Let N be the normal subgroup of G of order 5
such that G/N ∼= C31. So we explore difference set image in the cyclic
homomorphic image of order 31.

3.1. There are no difference set image in G/N ∼= C31. The linear
representations (characters) of the group G/N = 〈x : x31 = 1〉 are of

the form χj(x) = ζj31, j = 0, . . . , 30, χj(y) = 1. Thus, the rational
idempotents are

[eχ0 ] =
1

31
〈x〉 and [eχ1 ] =

1

31
(31 − 〈x〉)

with

D̂ = αχ0 [eχ0 ] + αχ1 [eχ1 ](using(2.5)),

where αχ0 ∈ Z+, αχ1 ∈ Z[ζ31]. The ideal generated by 3 does not
factor in Z[ζ31] while that generated by 2 has six factors[5]. Thus, we
need principal ideal π such that ππ̄ = 〈2〉 and π is a product of three
factors. An ideal is principal when the class number is zero. Smith,
Franklin and Sam [6] used a software, PARI to show that the class
number of each of the six factors of 〈2〉 are distinct and lies between 1
and 8. This implies that algebraic number 2 factors trivially in Z[ζ31]
and consequently, αχ1 ∈ {±6xj}, j = 0, 1, ..., 30. Hence,

D̂ = 56[eχ0 ]± 6xj [eχ1 ].

As the sum on the right hand side must be divisible by 31, we choose
the alias −6 with j = 0. Thus, D̂ = −6 + 2〈x〉.
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However, the intersection numbers are non-negative, so D̂ is not a
viable difference set image. Hence, C31 has no difference set image.
Consequently, the group C155 does not admit (155, 56, 20) difference
sets.

4. Non abelian group of order 155 and it’s representations

The non abelian group of order 155 is G = C31 � C5 = 〈x, y : x31 =
y5 = 1, yxy−1 = x2〉. The derived(commutator) subgroup of this group
is G′ = 〈x〉 ∼= C31. Since any linear representation will have the derived
subgroup G′ in it’s kernel, it follows that G/G′ ∼= 〈y〉, a cyclic group of
order 5. This shows that G has five inequivalent linear representations
described as follows:

χj(x) = 1, χj(y) = ζj, j = 0, . . . , 4. (4.1)

Suppose that D̂ =
∑4

j=0 djy
j is the difference set image in group

G/G′ ∼= C5 = 〈y : y5 = 1〉. This set is viewed as a 1 × 5 matrix with
columns indexed by powers of y. By applying the linear representation
(4.1) to D̂, we get two rational idempotents:

[eχ0 ] =
1

5
〈y〉 and [eχ1 ] =

(5− 〈y〉)
5

.

Using the above idempotents, the difference set equation is D̂ = αeχ0
[eχ0 ]

+αeχ1
[eχ1 ] where , αeχ0

= 56 and αeχ1
= ±6yj , since ideals generated

by 2 and 3 are primes in Z(ζ5). We translate, if necessary, to obtain the
unique difference set image in G/G′ ∼= C5 as 6 + 10〈y〉.

Now, suppose that difference set exists in G. We take this object to
be D =

∑30
i=0

∑4
j=0 di,jx

iyj and view it as 5 × 31 matrix with columns
indexed by powers of x and rows indexed by powers of y. Furthermore,
suppose that ζ31 is the thirty first root of unity and consider the Ga-
lois automorphism σ(ζ31) = ζ231. This automorphism divides the basis
elements of Z[C31] into seven orbits. These are

1, the identity

ζ31 → ζ231 → ζ431 → ζ831 → ζ1631 → ζ31

ζ331 → ζ631 → ζ1231 → ζ2431 → ζ1731 → ζ331

ζ531 → ζ1031 → ζ2031 → ζ931 → ζ1831 → ζ531

ζ731 → ζ1431 → ζ2831 → ζ2531 → ζ1931 → ζ731

ζ1131 → ζ2231 → ζ1331 → ζ2631 → ζ2131 → ζ1131

ζ1531 → ζ3031 → ζ2931 → ζ2731 → ζ2331 → ζ1531
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These orbits are used to define the non linear representations of G by
inducing the non-trivial characters of G′. These correspond to six de-
gree five representations of G but they are all equivalent under a Galois
automorphism and one of them is given below:

χ : x �→

⎡
⎢⎢⎢⎢⎣
ζ 0 0 0 0
0 ζ2 0 0 0
0 0 ζ4 0 0
0 0 0 ζ8 0
0 0 0 0 ζ16

⎤
⎥⎥⎥⎥⎦ , y �→

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦

As this representation χ is irreducible and does not have the trivial
representation in its constituent, then χ(D) ·χ(D) = 36 ·I5. By applying
this degree five representation, χ to D we get

χ(D) =

⎡
⎢⎢⎢⎢⎣

A B C D E
σ(E) σ(A) σ(B) σ(C) σ(D)
σ2(D) σ2(E) σ2(A) σ2(B) σ2(C)
σ3(C) σ3(D) σ3(E) σ3(A) σ3(B)
σ4(B) σ4(C) σ4(D) σ4(E) σ4(A)

⎤
⎥⎥⎥⎥⎦ ,

where A = d0,0 + d1,0ζ + d2,0ζ
2 + d3,0ζ

3 + · · · + d30,0ζ
30;

B = d0,1 + d1,1ζ + d2,1ζ
2 + d3,1ζ

3 + · · ·+ d30,1ζ
30;

C = d0,2 + d1,2ζ + d2,2ζ
2 + d3,2ζ

3 + · · ·+ d30,2ζ
30;

D = d0,3 + d1,3ζ + d2,3ζ
2 + d3,3ζ

3 + · · ·+ d30,3ζ
30 and

E = d0,4+d1,4ζ+d2,4ζ
2+d3,4ζ

3+· · ·+d30,4ζ30 with A,B,C,D,E ∈ Z[ζ].
Furthermore, as G/G′ ∼= C5, then

30∑
i=0

di,0 = 16,

30∑
i=0

di,1 = 10,

30∑
i=0

di,2 = 10, 10, (4.2)

30∑
i=0

di,3 = 10,
30∑
i=0

di,4 = 10, (4.3)

di,j ∈ {0, 1}, j = 0, 1, 2, 3, 4. Thus,

χ(D)χ(D) =

⎡
⎢⎢⎢⎢⎣
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

⎤
⎥⎥⎥⎥⎦

with

a11 = AĀ+BB̄ + CC̄ +DD̄ + EĒ = 36 (4.4)

a12 = Aσ(E) +Bσ(A) + Cσ(B) +Dσ(C) + Eσ(D) = 0 (4.5)
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a13 = Aσ2(D) +Bσ2(E) + Cσ2(A) +Dσ2(B) + Eσ2(C) = 0 (4.6)

a14 = Aσ3(C) +Bσ3(D) + Cσ3(E) +Dσ3(A) + Eσ3(B) = 0 (4.7)

a15 = Aσ4(B) +Bσ4(C) + Cσ4(D) +Dσ4(E) + Eσ4(A) = 0 (4.8)

a21 = σ(E)Ā+ σ(A)B̄ + σ(B)C̄ + σ(C)D̄ + σ(D)Ē = 0

a22 = σ(E)σ(E)+σ(A)σ(A)+σ(B)σ(B)+σ(C)σ(C)+σ(D)σ(D) = 36

a23 = σ(E)σ2(D)+σ(A)σ2(E)+σ(B)σ2(A)+σ(C)σ2(B)+σ(D)σ2(C) =
0
a24 = σ(E)σ3(C)+σ(A)σ3(D)+σ(B)σ3(E)+σ(C)σ3(A)+σ(D)σ3(B) =
0
a25 = σ(E)σ4(B)+σ(A)σ4(C)+σ(B)σ4(D)+σ(C)σ4(E)+σ(D)σ4(A) =
0
a31 = σ2(D)Ā+ σ2(E)B̄ + σ2(A)C̄ + σ2(B)D̄ + σ2(C)Ē = 0

a32 = σ2(D)σ(E)+σ2(E)σ(A)+σ2(A)σ(B)+σ2(B)σ(C)+σ2(C)σ(D) =
0
a33 = σ2(D)σ2(D)+σ2(E)σ2(E)+σ2(A)σ2(A)+σ2(B)σ2(B)+σ2(C)σ2(C) =
36
a34 = σ2(D)σ3(C)+σ2(E)σ3(D)+σ2(A)σ3(E)+σ2(B)σ3(A)+σ2(C)σ3(B) =
0
a35 = σ2(D)σ4(B)+σ2(E)σ4(C)+σ2(A)σ4(D)+σ2(B)σ4(E)+σ2(C)σ4(A) =
0
a41 = σ3(C)Ā+ σ3(D)B̄ + σ3(E)C̄ + σ3(A)D̄ + σ3(B)Ē = 0

a42 = σ3(C)σ(E)+σ3(D)σ(A)+σ3(E)σ(B)+σ3(A)σ(C)+σ3(B)σ(D) =
0
a43 = σ3(C)σ2(D)+σ3(D)σ2(E)+σ3(E)σ2(A)+σ3(A)σ2(B)+σ3(B)σ2(C) =
0
a44 = σ3(C)σ3(C)+σ3(D)σ3(D)+σ3(E)σ3(E)+σ3(A)σ3(A)+σ3(B)σ3(B) =
36
a45 = σ3(C)σ4(B)+σ3(D)σ4(C)+σ3(E)σ4(D)+σ3(A)σ4(E)+σ3(B)σ4(A) =
0
a51 = σ4(B)Ā+ σ4(C)B̄ + σ4(D)Ē + σ4(E)D̄ + σ4(A)Ē = 0

a52 = σ4(B)σ(E)+σ4(C)σ(A)+σ4(D)σ(B)+σ4(E)σ(C)+σ4(A)σ(D) =
0
a53 = σ4(B)σ2(D)+σ4(C)σ2(E)+σ4(D)σ2(A)+σ4(E)σ2(B)+σ4(A)σ2(C) =
0
a54 = σ4(B)σ3(C)+σ4(C)σ3(D)+σ4(D)σ3(E)+σ4(E)σ3(A)+σ4(A)σ3(B) =
0
a55 = σ4(B)σ4(B)+σ4(C)σ4(C)+σ4(D)σ4(D)+σ4(E)σ4(E)+σ4(A)σ4(A) =
36.
We need the following lemma to continue.

Lemma 4.1. If F =
∑30

i=0 di,jζ
i ∈ Z[C31] has exactly m coefficients

di,0 that are equal to one and other are equal to zero, then the sum of

coefficients of FF is m2.
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Proof. Without loss of generality, we pick any of the coefficients of F
say d1,j and assume that d1,j = 0. Then for any coefficient di,j of

F , (d1,j)(di,j) = 0, i = 0, . . . , 30 and
∑30

i=0(d1,j)(di,j) = 0. On the

other hand, suppose that d1,j = 1, then for any coefficient di,j of F ,
(d1,j)(di,j) = 1 if di,j = 1 and (d1,j)(di,j = 0 if di,j = 0. By adding

these products together, we get
∑30

i=0(d1,j)(di,j) = m. As exactly m
coefficients of F are equal to one, then there are m such sums and con-
sequently, the sum of coefficients of FF is m2 �

Furthermore, since di,j is either 1 or 0 and the fact that the sum of the
coefficients of the algebraic numbers A, B, C, D and E are respectively
16, 10, 10, 10 and 10, by Lemma 4.1, the sum of the coefficients of
AĀ, BB̄, CC̄, DD̄ and EĒ are 162, 102, 102, 102 and 102 respectively.
Consequently, we can write each of these algebraic numbers as follows:

AĀ = 16 +

30∑
i=1

αiζ
i, BB̄ = 10 +

30∑
i=1

βiζ
i, CC̄ = 10 +

30∑
i=1

γiζ
i,

DD̄ = 10 +

30∑
i=1

δiζ
i and EĒ = 10 +

30∑
i=1

μiζ
i

with
30∑
i=1

αi = 240,

30∑
i=1

βi =

30∑
i=1

γi =

30∑
i=1

δi =

30∑
i=1

μi = 90, (4.9)

αi, βi, γi, δi, μi ∈ Z+, the set of non negative integers. Thus,

AĀ+BB̄ + CC̄ +DD̄ + EĒ = 36 + 20 +

30∑
i=1

αiζ
i +

30∑
i=1

βiζ
i +

30∑
i=1

γiζ
i

+

30∑
i=1

δiζ
i +

30∑
i=1

μiζ
i. (4.10)

From (4.4), difference set exists if and only if

20 +
30∑
i=1

αiζ
i +

30∑
i=1

βiζ
i +

30∑
i=1

γiζ
i +

30∑
i=1

δiζ
i +

30∑
i=1

μiζ
i = 0. (4.11)

This last equation implies that 20 +
∑30

i=1(αi + βi + γi + δi + μi)ζ
i = 0.

By the Kronecker Theorem,

αi + βi + γi + δi + μi = 20 (4.12)

for every i = 1, . . . , 30. This condition gives rise to 30 equations with 150
variables. We obtained all the possible values of (αi, βi, γi, δi, μi) (there
are 10626 such quintets) such that (4.12) is true. However, a search for
viable A, B, C, D and E using equations (4.2), (4.3),(4.4), (4.5), (4.6),
(4.7), (4.8), (4.9) and (4.12) produced no solution. Hence, there are no
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algebraic numbers A, B, C, D and E such that AĀ+BB̄+CC̄+DD̄+
EĒ = 36.

5. CONCLUDING REMARKS

Based on the above, we conclude that there are no (155, 56, 20)
difference sets.
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