
Journal of the Vol. 38, Issue 1, pp. 45-54, 2019

Nigerian Mathematical Society c©Nigerian Mathematical Society

A GENERALIZED SEIR MATHEMATICAL MODEL
WITH INFECTIVITY IN EXPOSED PERIOD

A. O. SANGOTOLA 1 AND A. A. ONIFADE

ABSTRACT. In this paper, an SEIR model is presented with
infectivity in exposed period. Positivity and the boundedness of
solutions are established. We also determined the conditions of
existence and stability for the disease-free and endemic equilib-
ria. A threshold parameter R0 exists and the disease can persist
if and only if R0 exceeds 1. Local and global stabilities of the
disease free and endemic equilibria were also determined using
suitable Lyapunov function. Numerical simulation of the model
is also carried out to illustrate the dynamics of the model.
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1. INTRODUCTION

An infectious disease is a clinically evident illness resulting from
the presence of a pathogenic microbial agent. The microbial agent
causing the disease can be bacterial, viral, parasitic or fungal, pos-
ing a constant threat to human wellness[1]. Every individual on the
earth can be affected by a disease and that is why understanding
the dynamics of infectious disease is very important since emer-
gence and reemergence of infectious diseases have become a signif-
icant worldwide problem. The history of mathematical models in
epidemiology dates back to the eighteenth century (Bernoulli 1760).
Thereafter, theoretical epidemiology has witnessed numerous devel-
opments [3]. The popular epidemic dynamic models constructed by
Kermack and Mckendrick in 1927 is being developed by many other
bio mathematicians [4]. In epidemiological compartment models of
infectious diseases, transmission of infectious agents in the host
population is the fundamental process to be described. When a
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pathogen appears in a host community, it partitions individuals in
the community into categories depending on parasite density inside
them and the type of infection. These categories or compartments
are represented by standard notation of SEIR after the pioneering
work of Kermack and McKendrik. In a simple form they are as
follows: the first group consists of the fraction of host population
that is Susceptible (S) to infection; then comes the exposed (E)
class, the fraction of population whose individuals are infected by
the pathogen, but not capable of passing on the infection to others
during a latent period. The next is I class or infectious individu-
als, who give rise to more infected individuals through interaction
with the susceptibles. Finally, those individuals who recover from
the infection make up the R class [5]. The remaining sessions of
this work entails the dynamics and mathematical analysis for the
possibility of infectivity in the exposed stage.

2. MODEL FORMULATION

The model divides the total human population into susceptible
humans S(t), exposed humans E(t), infectious humans I(t) and re-
covered humans R(t). Thus we haveN(t) = S(t)+E(t)+I(t)+R(t).
The dynamics of the model is such that susceptible individual are
recruited into the human population by input rate Λ. Every class
of human population is decreased by natural death µ except for the
infectious class which has a per capita disease induced death rate
δ. After treatment, the exposed and infectious humans recover and
move to recovered class. However, the recovered humans develops
a temporary acquired immunity against the disease and later loses
this immunity to become susceptible again at per capita rate ω.
The model has the form

dS

dt
= Λ− βS(I + E)− µS + ωR (1)

dE

dt
= βS(I + E)− (µ+ σ + γ)E (2)

dI

dt
= σE − (δ + µ+ θ)I (3)

dR

dt
= θI + γE − (µ+ ω)R (4)

The parameters used in the model (1) - (4) are described in Table
1.
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Fig.1. Flow diagram of the model

Table 1. The description of the state variables and parameters of
model.

Definition Symbols
Recruitment term of the susceptible humans Λ
Progression rate of exposed human to infectious humans σ
Effective contact rate β
Effective treatment rate of exposed human γ
Effective treatment of infectious humans θ
Disease induced death rate of humans δ
Per capita transition rate of recovered humans ω
Natural death rate of humans µ

3. RESULTS AND DISCUSSIONS

Theorem 1: (Existence and positivity of solution). The feasible
region R defined by {S(t), E(t), I(t), R(t) ∈ R4

+ : N(0) ≤ N(t) ≤
Λ
µ
} with initial conditions S(0) ≥ 0, E(0) ≥ 0, I0) ≥ 0, R(0) ≥ 0 is

positive invariant for system (1)− (4).
Proof: If the total population size is given by N(t) = S(t) +

E(t) + I(t) +R(t).It is clear from (1)− (4) that

dN

dt
= Λ− µN − δI (5)

dN

dt
≤ Λ− µN (6)
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N ≤ CΛe−µt +
Λ

µ
(7)

As t→∞,we have

N ≤ Λ

µ
(8)

Thus R is a positivity invariant set under the model described by
(1) − (4). Hence it is sufficient to consider the dynamics of model
(1)− (4) in region R.

Disease-free equilibrium points is a steady-state solution where
there is no infection. Solving the system of equation (1) − (4) in
the absence of disease, we obtain the following equilibrium point,

π0 = (
Λ

µ
, 0, 0, 0) (9)

The differential of the disease states and transfer states evaluated
at the disease free equilibrium π0 = (Λ

µ
, 0, 0, 0) respectively give:

F =

(
βΛ
µ

βΛ
µ

0 0

)
V =

(
(µ+ σ + γ) 0
−σ (δ + µ+ θ)

)
The basic reproduction R0 is given by ρ(FV −1) where ρ is the
spectral radius. Thus,

R0 =
Λβ[(δ + µ+ θ + σ]

µ(µ+ σ + γ)(δ + µ+ θ)
(10)

Theorem 2: (Local stability of disease free equilibrium). The
disease-free equilibrium for the system (1) − (4) is locally asymp-
totically stable if a > 0 and R0 < 1.

Proof: The Jacobian matrix evaluated at the disease free is given
by

J(π0) =


−µ −βΛ

µ
−βΛ

µ
ω

0 βΛ
µ
− (µ+ σ + γ) βΛ

µ
0

0 σ −(δ + µ+ θ) 0
0 γ θ −(µ+ ω)


The roots of the characteristic equation are −µ and −(µ+ω). The
others roots can be obtained from the sub matrix given below.(

βΛ
µ
− (µ+ σ + γ) βΛ

µ

σ −(δ + µ+ θ)

)
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The characteristic equation of the matrix above is λ2 + aλ+ b = 0
where a = (2µ+σ+γ+δ+θ) and b = (µ+σ+γ)(δ+µ+θ)(1−R0)
According to Routh-Hurwitz criterion, The disease free equilibrium
is locally asymptotically stable if a > 0 and R0 < 1.

Theorem 3: (Local stability of endemic equilibrium). The
model (1) − (4) has no endemic equilibrium when R0 < 1, Re > 1
and a unique endemic equilibrium exist when R0 > 1, Re < 1.
Proof: Let E∗

e = (E∗, I∗, R∗) be a non trivial equilibrium of the
model (1) − (4) i.e all component of E∗

e are zero. Then the model
(1)− (4) at steady state becomes

E∗ =
BI∗

σ

R∗ =
(θ +Bγ)I∗

σ

I∗ =
σµ(R0 − 1)

β(σ +B)(1−Re)

where

A = (µ + σ + γ), B = (δ + µ + θ), Re =
ω(θ +Bγ)

AB

Theorem 4: (Global stability of disease free equilibrium). The
disease-free equilibrium, π0, of the model (1) − (4), is globally
asymptotically stable if R0 ≤ 1
Proof: Consider the following linear Lyapunov function

V = (δ + µ+ θ) + σ)E + (µ+ σ + γ)I (11)

V̇ = (δ + µ+ θ) + σ)[βS(I + E)− (µ+ σ + γ)E] + (µ+ σ + γ)

X[σE − (δ + µ+ θ)I] (12)

Simplifying gives

V̇ ≤ (µ+ σ + γ)(δ + µ+ θ)I[R0 − 1] (13)

Thus V̇ ≤ 0 for R0 < 1 with equality if and only if I = 0

Theorem 5: (Global stability of endemic equilibrium). The
unique endemic equilibrium, Ee, of the model (1) − (4) is globally
asymptotically stable if R0 > 1 .
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Proof: Let R0 > 1 so that a unique endemic equilibrium exists
and consider the following nonlinear Lyapunov function defined by

L = S − S∗∗ − S∗∗ ln

(
S

S∗∗

)
+ E − E∗∗ − E∗∗ ln

(
E

E∗∗

)
+

(µ+ σ + γ)

σ

[
I − I∗∗ − I∗∗ ln

(
I

I∗∗

)]
(14)

L̇ = Ṡ − S∗∗

S
Ṡ + Ė − E∗∗

E
Ė +

(µ+ σ + γ)

σ

[
İ − I∗∗

I
İ

]
(15)

L̇ = Λ− βS(I + E)− µS − S∗∗

S
(Λ− βS(I + E)− µS)

+ βS(I + E)− (µ+ σ + γ)E − E∗∗

E
[βS(I + E)

− (µ+ σ + γ)E] +
(µ+ σ + γ)

σ
[σE − (δ + µ+ θ)I

− I∗∗

I
[σE − (δ + µ+ θ)I]] (16)

L̇ = Λ

(
1− S∗∗

S

)
− µS

(
1− S∗∗

S

)
+ βS∗∗(I + E)

− βS(I + E)E∗∗

E
+ (µ+ σ + γ)E∗∗ − (µ+ σ + γ)(δ + µ+ θ)I

σ

− (µ+ σ + γ)EI∗∗

I
+

(µ+ σ + γ)(δ + µ+ θ)I∗∗

σ
(17)

At the endemic equilibrium, it is seen from (1)− (4) that

Λ = βS∗∗(I∗∗ + E∗∗) + µS∗∗

(µ+ σ + γ) = βS∗∗(I∗∗+E∗∗)
E∗∗

(δ + µ+ θ) = σE∗∗

I∗∗

 (18)

Substituting (18) into (17) gives

L̇ = [βS∗∗(I∗∗ + E∗∗) + µS∗∗]

(
1− S∗∗

S

)
− µS

(
1− S∗∗

S

)
+ βS∗∗(I + E)− βS(I + E)E∗∗

E
+ βS∗∗(I∗∗ + E∗∗)

− βS∗∗(I∗∗ + E∗∗)I

I∗∗
− βS∗∗(I∗∗ + E∗∗)EI∗∗

E∗∗I
+ βS∗∗(I∗∗ + E∗∗)

(19)
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Further algebraic simplification gives

L̇ = µS∗∗
(

2− S∗∗

S
− S

S∗∗

)
+βS∗∗(I∗∗+E∗∗)

(
4− S∗∗

S
− EI∗∗

E∗∗I
− I(I∗∗ + E∗∗)

I∗∗(I + E)
− SE∗∗(I + E)

S∗∗E(I∗∗ + E∗∗)

)
+ βS∗∗(I∗∗ + E∗∗)

(
I + E

I∗∗ + E∗∗ −
I

I∗∗
+

(I∗∗ + E∗∗)I

(I+E)I∗∗
− 1

)
(20)

Since the arithmetic mean exceed the geometric mean, we have that
L̇ ≤ 0 for R0 > 1. Hence it follows from LaSalle’s invariant principle
that every solution of the equation of model (1) − (4) approaches
unique endemic equlibria of the model as t→∞ for R0 > 1.

4. NUMERICAL SIMULATION

In this section, we discus the simulation results for dynamics of
the model (1) − (4). The model (1) - (4) is simulated using the
parameters in Table 1 to illustrate some of the theoretical results
established in this study and by considering initial conditions S(0)
=100, E(0) = 20, I(0) = 5, R(0) = 0. The following values for the
parameters are used: Λ = 0.25, σ = 0.08, β = 0.12, γ = 0.011, θ =
0.06, δ = 0.016, ω = 0.143 and µ = 0.00005. The numerical simu-
lations are conducted using Maple 17 software and the results are
given in Figure 2, 3 ,4 and 5 to illustrate the system’s behaviour
for different values of the model’s parameters. In Figure 2, it is
observed that the susceptible population drops significantly as a
result of interaction with exposed and infectious class which leads
to an initial sharp increase in the exposed class before a steady
decline as seen in figure 3. The exposed class population decreases
when they progress to infected class or when they moves to re-
covered class. The infectious class also increases as exposed class
progresses to this class as shown in figure 4 before expressing de-
cline due to treatment and death. The decrease in the number of
infectious human population contribute to the increase in the num-
ber of recovered human population as shown in figure 5.
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Fig.2. Numerical simulation showing the dynamics of susceptible
population

Fig.3. Numerical simulation showing the dynamics of exposed
population

5. CONCLUDING REMARKS

In this paper, the basic reproduction number of a generalized
SEIR model with infectivity in exposed period is examined. We
also investigated the local and global stability of the disease free
equilibrium and the endemic equilibrium. The numerical simulation
helps to show how the disease progress from one stage to the other.
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Fig.4. Numerical simulation showing the dynamics of infectious
population

Fig.5. Numerical simulation showing the dynamics of recovered
population
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