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ON THE POISEUILLE FLOW OF A THIRD GRADE

FLUID IN AN HORIZONTAL CHANNEL

O. B. AYENI1 AND F. O. AKINPELU

ABSTRACT. The work presents an analysis of the Poiseuille
flow of a third Grade fluid in a horizontal channel. The di-
mensionless variable were used to dimensionalize the governing
equations of the flow using suitable variables. A semi-analytical
method in form of perturbation method was use to obtain a
solution of velocity distribution and temperature profile. The
graphical results were used to study the non-Newtonian, Electro-
kinetic separation distance based on plate height, specific inter-
nal energy parameter of the model.
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1. INTRODUCTION

Poiseuille flow in a steady axisymmetric flow in an infinitely long
circular pipe of radius. The scientists and engineers are very much
interested in the geometry of flows of such types of fluids are com-
pared to Newtonian fluids, the analysis of the behavior of the mo-
tion of such fluids is much more complicated and not easy to handle
because of non-linear relationship between stress and rate of slain.
In recent years, many non-Newtonian models have been proposed.
Among these models, model of fluids of differential type [1] have
received considerable attention. Fluid of third grade is a subclass
of fluids of differential type, which has been studied successfully in
various types of flow situation [2],[3],[4] and is known to capture
the non-Newtonian affects such as shear thinning, shear thickening
as well as normal stress.
Mebine [5] studied the effect of thermal radiation on Magneto-

Hydrodynamics (MHD) Couette flow with heat transfer between

Received by the editors October 27, 2016; Revised March 21, 2019 ; Accepted:
April 02, 2019

www.nigerianmathematicalsociety.org; Journal available online at https://ojs.ictp.
it/jnms/

1Corresponding author
123



124 O. B. AYENI AND F. O. AKINPELU

two parallel plates. Singh [6] considered the problem magneto hy-
drodynamics (MHD) of free convection flow of an optically thin
fluid bounded by two horizontal porous parallel plate Chaudhary
and Jain [7] worked on an exact solution to the unsteady free-
convection boundary layer flow past an impulsively started vertical
surface with Newtonian heating using Laplace transform method
to obtain solutions in a closed form. Akgul et. al [8] considered the
electro-osmotic flow of a third grade fluid between micro-parallel
plates. Approximately analytical solutions are obtained by pertur-
bation techniques. Constant viscosity and temperature dependent
viscosity cases are treated separately and they also obtained the
numerical solutions, also the influence of some parameters on the
velocity and temperature profiles are shown. Sharma and Khan
[9] have investigated the Magnetohydrodynamics flow of a viscous
fluid through a porous medium induced by torsionally oscillating
disk and presented approximate solutions of the flow characteristics.
Ahmad and Asghar [10] gave an exact solution for Magnetohydro-
dynamics boundary layer flow of a second grade fluid over a per-
meable stretching surface with arbitrary velocity and appropriate
wall transpiration. Ali et. al [11] analyzed the problem of unsteady
electrically conducting second grade fluid passing through a porous
space and established an exact solution for the transient flow due to
oscillating wall boundary using Laplace transform method. Abdul-
hameed et. al [12] studied the unsteady Magneto hydrodynamic
flow of incompressible viscous fluid over flat plates with impul-
sive and oscillating motions, and with wall transpiration through
a porous medium. They obtained results by applying an extension
of the variable separation technique combined with similarity ar-
guments. Among important studies on third grade fluidd model:
Aziz and Aziz [13] examined the analytical solution for unsteady
Magnetohydrodynamic flow of a third grade fluid past a porous
plate within a porous medium due to an arbitrary wall with suc-
tion/injection velocity. They obtained results by applying a Lie
symmetric and numerical methods. Aziz et. al [14] have presented
Group invariant solutions for steady Magnetodynamic flow of a
third grade fluid in porous medium due to the arbitrary velocity of
non-porous plate. Other important studies related to the second-
grade and third-grade fluids are [15]-[19]. Akinbobola and Okoya
[20] studied the flow of second grade fluid over a stretch sheet with
variable thermal conductivity and viscosity in the presence of heat
source/sink. In the aforementioned above studies, it is observed
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that no analysis on the combined effects electro-osmotic and Br in
the presence of heat source/sink, viscous dissipation, work done by
deformation and thermal radiation in a second grade fluid flow has
been carried out. In this paper, the Poiseuilles flow of a third grade
fluid in a horizontal channel is considered.

2. PROBLEM FORMULATION

The fluid is assumed to be an incompressible laminar flow. The
equation of motion is given as continuity equation, momentum
equation, and the energy equation as follows:

∇.v∗ = 0, (1)

ρ
dv∗

dt
= ∇τ + ρb, (2)

where b = ρεE and

ρ
dς

dt
= τ.grad(v∗)−∇q + σE2

x, (3)

where v∗ is the velocity vector, ρ is the fluid density, τ is the stress
tensor, b is the body force consisting of the electrical field E only
with gravity not included, ρε is the net electric charge density, ς
is the specific internal energy, q is the heat flux vector, σ is the
permittivity of electric field and E2

xσ term represents Joule heating.
The electric field is in the y-direction only.

3. METHODOLOGY

The Poisson Boltzmann equation is related to the potential distri-
bution within the electric double layer which can be expressed in
the y-direction as follows;

d2Ψ∗

dy∗2
= −ρe

∈ , (4)

where Ψ∗ is the electrical potential, ∈ is the dielectric constant or
permitivity of the fluid and the ρe is the net electric charge density.
If we assume that the equilibrium Boltzmann equation is a uniform
dielectric constant, the numbers of type-i ions are of the form:

ni = ni0 exp

(−zeΨ∗

kbθ

)
, (5)

where ni0, z, e, kb and θ are the bulk ionic concentration, valence of
type-i ions elementary charge, Boltzmann’s constant and absolute
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temperature respectively. The net electric charge density can be
expressed assuming a symmetric electrolyte as follows:

ρe = −2zen0 sinh(Ψ). (6)

Substituting 5 and 6 in to 4 gives:

d2Ψ∗

dy∗2
=

2zen0

∈ sinh

(
zeΨ∗

kbθ∗

)
. (7)

Applying Debye-Huckel linear approximation sinh
(

zeΨ∗
kbθ∗

)
=

(
zeΨ∗
kbθ∗

)
.

Then 7 becomes

d2Ψ∗

dy∗2
∼= 2n0z

2e2Ψ∗

∈ kbθ∗
. (8)

When the electrical potential is small compared to the thermal
energy of the ions. Equation 8 can be written as

d2Ψ∗

dy∗2
= k2Ψ∗, (9)

where k = ze
√

2n0

∈kbθ∗ is the Debye-Huckel parameter and 1
k
is the

Debye length.

The boundary conditions are given as

dΨ

dy
(0) = 0, Ψ′(h) = ς∗. (10)

Introducing the following non-dimensional parameters

y =
y∗

h
, Ψ =

zeΨ

kbθ
, K = kh, ς =

zeς∗

kbθ∗
. (11)

On solving 9 subject to the boundary conditions 10 gives

Ψ =
ς cosh(Ky)

coshK
. (12)

The viscosity is said to be a constant and using the velocity
components, the momentum equation becomes:

μ
d2u∗

dy∗
+ 2β

d

dy∗

(
du∗

dy∗

)3

+ Exρe =
∂p∗

∂x∗ , (13)

where μ is the kinetic viscosity, β is the material constant, Ex is
the electrical field, ρe is the net electric charge density,

d

dy∗

[
(2α1 + α2)

(
du∗

dy∗

)2
]
=

∂p∗

∂y∗
, (14)
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along the y axis and ∂p∗
∂z∗ = 0 along the z axis.

If a modified pressure is defined as

p∗ = p∗ −
[
(2α1 + α2)

(
du∗

dy∗

)2
]
. (15)

Equation 14 reduces to

p∗ = p∗(x). (16)

Equation 13 gives

μ
d2u∗

dy∗
+ 2β

d

dy∗

(
du∗

dy∗

)3

+ Exρe =
dp∗

dx∗ . (17)

The pressure gradient is assumed to be constant and equation 16 is

μ
d2u∗

dy∗
+ 2β

d

dy∗

(
du∗

dy∗

)3

+ Exρe = c0. (18)

Introducing the non dimensionless parameters

u∗ = uU, y∗ = yh, (19)

d2u

dy2
+ 6Λ1

(
du

dy

)2
d2u

dy2
− Λ2

d2Ψ

dy2
= Λ3, (20)

where

Λ1 =
βU2

μh2
, Λ2 =

εkbθ
∗Ex

zeμU
, Λ3 =

h2c0
μU

, (21)

U is the reference veolcity, Λ1 is the non-Newtonian behaviour, λ2

is the electro-kinetic effects, γ1 is the Brinkman number, γ2 is the
Joule heating, θ∗m and θ∗s are mean and surface temperatures and c0
the constant pressure gradient. Substituting 12 into 19 to obtain

d2u

dy2
+ 6Λ1

(
du

dy

)2
d2u

dy2
− Λ2

ςK2 cosh(Ky)

cosh(K)
= Λ3. (22)

The energy equation is given by

μ

(
du∗

dy∗

)2

+ 2β

(
du∗

dy∗

)4

+Kth

(
d2θ∗

dy∗2

)
+ E2

xσ = c0, (23)

γ1 =
μU2

Kth(θ∗m − θ∗s)
, γ2 =

E2
xσh

2

Kth(θ∗m − θ∗s)
, θ =

θ∗ − θ∗s
θ∗m − θ∗s

, (24)

where Kth and σ are thermal conductivity of the fluid and the per-
mittivity of electricity respectively, also Eσ

x term represents Joule
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heating, ρ is density, θ∗m is the temperature along the x axis, θ∗s is
outer temperature and g is acceleration due to gravity.

Therefore, the non-dimensional form of 23 gives:

d2θ

dy2
+ γ

(
du

dy

)2

+ 2Λ1γ1

(
du

dy

)4

+ γ2 = 0. (25)

To solve equation 22 and 25, a solution in term of perturbation
method is assumed in the form

u = u0 + εu1 + ε2u2, θ = θ0 + εθ1 + ε2θ2, Λ1 = ελ1, Λ2 = ελ2, (26)

where ε is the perturbation parameter in a small quantity.
Substituting 26 into 20 gives

d2u0

dy2
+ ε

d2u1

dy2
+ ε2

d2u2

dy2
+ 6ελ1

(
du0

dy
+ ε

du1

dy
+ ε2

du2

dy

)

+

(
d2u0

dy2
+ ε

d2u1

dy2
+ ε2

d2u2

dy2

)
− ελ2ς cosh(Ky)K2

cosh(K)
= Λ3. (27)

Further simplification of 27 and arrange in order of ε, we have

6λ1

(
du2
dy

)2 (
d2u2
dy2

)
ε7+(

12λ1

(
du1
dy

)(
du2
dy

)(
d2u2
dy2

+ 6λ1

(
du2
dy

)2 (
d2u1
dy2

)))
ε6+

(
6λ1

(
2
(
d2u0
dy2

)(
du2
dy

))
+

(
du1
dy

)2
+ 12λ1

(
du1
dy

)(
du2
dy

)(
d2u1
dy2

))
ε5(

+6λ1

(
du2
dy

)2 (
d2u2
dy2

))
ε5 +

(
12λ1

(
du0
dy

)(
du1
dy

)(
d2u2
dy2

))

+

((
6λ1

(
2
(
du0
dy

)(
du2
dy

)
+

(
du1
dy

)2
)(

d2u1
dy2

)

+12λ1

(
du1
dy

)(
du2
dy

)(
d2u0
dy2

))
ε4+

(
6λ1

(
du0
dy

)2 (
d2u2
dy2

))
ε3(

+12λ1

(
du0
dy

)(
du1
dy

)(
d2u1
dy2

)

+6λ1

(
2
(
du0
dy

)(
du2
dy

)
+

(
du1
dy

)2
)((

d2u0
dy2

))
ε3

+

(
6λ1

(
du0
dy

)2 (
d2u1
dy2

)
+ 12λ1

(
du0
dy

)(
du1
dy

)(
d2u0
dy2

)
+

(
d2u2
dy2

))
ε2
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+

((
d2u1
dy2

)
− λ2ς cosh(Ky)K2

cosh(K) + 6λ1

(
du0
dy

)2 (
d2u0
dy2

))
ε (28)

+

(
d2u0

dy2

)
= Λ3.

Using the same approach 24 for equation 25 arrange in order of ε

2λ1γ1
(

du2
dy

)4
ε9 + 8λ1γ1

(
du1
dy

)(
du2
dy

)3
ε8

+2λ1γ1

(
2
(
2
(

du0
dy

))(
du2
dy

)
+
(

du1
dy

)2)(
du2
dy

)
+ 4

(
du1
dy

)2 (
du2
dy

)2)
ε7

+2λ1γ1

(
4
(

du0
dy

)(
du1
dy

)(
du2
dy

)2
+ 4

(
2
(

du0
dy

)(
du2
dy

)
+
(

du1
dy

)2))
ε6((

du1
dy

)(
du2
dy

))
ε6

+2λ1γ1

(
2
(

du0
dy

)2 (
du2
dy

)2
+ 8

(
du0
dy

)(
du1
dy

)2 (
du2
dy

)
+

)
ε5((

2
(

du0
dy

)(
du2
dy

)
+
(

du1
dy

)2)2
)
ε5

+2λ1γ1

(
2
(

du0
dy

)2 (
du2
dy

)2 (
du1
dy

)(
du2
dy

)
+ 4

(
du0
dy

)(
du1
dy

)(
2
(

du0
dy

)(
du2
dy

)))
ε4

+2λ1γ1

(
2
(

du0
dy

)2 (
2
(

du0
dy

)(
du2
dy

)3
+
(

du1
dy

)2)
+ 4

(
du0
dy

)2 (
du1
dy

)2)
ε3

+

(
d2θ2
dy2 + γ

(
2
(

du0
dy

)(
du2
dy

)
+
(

du1
dy

)2)
+ 8λ1γ1

(
du0
dy

)(
du1
dy

))
ε2

+

(
d2θ1
dy2 + 2γ

(
du0
dy

)(
du1
dy

)
+ 2λ1γ1

(
du0
dy

)4)
ε

+ d2θ0
dy2 + γ1

(
du0
dy

)2
+ γ2 = 0.

(29)

On Solving (28) and (29) resulted into

u = Λ3y
2

2
− Λ3

2
y + 1

2
1

cosh(K)

(−λ1Λ
3
3 cosh(K)y4 + 2λ1Λ

3
3 cosh(K)y3−

3
2
2λ1Λ

3
3 cosh(K)y2 + 2λ2ς cosh(Ky)

)− 1
4

(
4λ2ς cosh(K)− λ1Λ

3
3

cosh(K) + 4λ2ς) y − λ2ς − 1
8

1
cosh(K)K2(

λ1Λ
2
3

{−12λ2ςK
2 − 96λ2ς − 16λ1Λ

3
3 cosh(K)y6K2

+48λ1Λ
3
3 cosh(K)y5K2 − 60λ1Λ

3
3 cosh(K)y4K2 − 98yλ2ς sinh(Ky)

+96λ2ς cosh(Ky) + 40λ1Λ
3
3 cosh(K)− 48yλ2 cosh(Ky)K2

+48λ2ςK sinh(Ky) + 16y3λ2ςK
2 − 16λ2ς cosh(K)y3K2
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−15λ1Λ
3
3 cosh(K)y2K2 + 12λ2ς cosh(Ky)K2 − 24y2λ2ςK

2(63)

+24λ2ς cosh(Ky)y2K2
})

+(λ1Λ
2
3(−20λ2ςK

2eK − 96λ2ςe
K + 48λ2ς + 48λ2ςe

2K

−3λ1Λ
3
3 cosh(K)K2eK + 6λ2ςK

2e2K + 6λ2ςK
2 − 24λ2ςK

2e2K

+8λ2ςK
2 cosh(K)K2eK)e−Ky).

(30)

θ = −γ1Λ2
3(2y−1)4

192
− γ2y2

2
+ γ2y

2
+

γ2Λ2
3

192
+ 1

240
1

K2 cosh(K)
(γ1Λ3(

+960λ2ς + 16λ1Λ
3
3 cosh(K)y6K2 − 48λ1Λ

3
3 cosh(K)y5K2

+60λ1Λ
3
3 cosh(K)y4K2 − 40λ1Λ

3
3 cosh(K)y3K2

−480yλ2ςK sinh(Ky) + 960λ2ς cosh(Ky)− 80y3λ2ςK
2

+80λ2ς cosh(K)y3K2 + 15λ1Λ
3
3 cosh(K)y2K2

+240λ2ς sinh(Ky) + 960λ2ς cosh(Ky)− 80y3λ2ςK
2

+80λ2ς cosh(K)y3K2 + 15λ1Λ
3
3 cosh(K)y2K2

+240λ2ς sinh(Ky) + 120y2λ2ςK
2 − 120λ2ς cosh(K)y2K2))

+ 1
240

1
K2 cosh(K)

(γ1Λ3(+960λ2ςe
K + 120λ2ςKe2K

−3λ1Λ
3
3 cosh(K)K2eK − 120λ2ςK − 40λ2ςK

2eK − 480λ2ςe
2K

+
1

3360

1

cosh(K)2K4
(γ1(−3360λ2ςK

3λ1Λ
3
3 cosh(K) sinh(Ky)

−241920λ2ςλ1Λ
3
3 cosh(K) sinh(Ky)K + 40λ2ς cosh(K)K2eK

−480λ2ς)e
−Ky)− 40320λ2ςK

2λ1Λ
3
3 cosh(K) cosh(Ky)

−6720λ2
2ς

2K3 sinh(Ky)− 840λ2
2ς

2K4 cosh(Ky)2

+161280λ2ςK
2λ1Λ

3
3 cosh(K)y cosh(Ky)
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+26880λ2ςλ1Λ
3
3 cosh(K)K3y3 sinh(Ky)

+20160λ2ςλ1Λ
3
3 cosh(K)y sinh(Ky)

−40320λ2ςK
3λ1Λ

3
3 cosh(K)y2 sinh(Ky)

−161280λ2ςλ1Λ
3
3 cosh(K)K2y2 cosh(Ky)

+6720λ2
2ς

2 cosh(K)K3 sinh(Ky)

−645120λ2ςλ1Λ
3
3 cosh(K) cosh(Ky)

−2800Λ3
3λ1 cosh(K)2K4λ2ςy

3 − 3360Λ3
3λ1 cosh(K)K4y5λ2ς

+3360Λ3
3λ1 cosh(K)2K4λ2ςy

4 + 4480Λ3
3λ1 cosh(K)2K4λ2ςy

3

+840Λ3
3λ1 cosh(K)2K4λ2ςy

2 − 3360Λ3
3λ1 cosh(K)K4y2λ2ς

+3360Λ3
3λ1 cosh(K)2K4yλ2ς − 5040Λ6

3λ
2
1 cosh(K)2K4y6

−6720K4λ2
2ς

2 cosh(K)y − 1680λ2
2ς

2 cosh(K)2K4y2

+3360K4λ2
2ς

2 cosh(K)y2 + 5040Λ6
3λ

2
1 cosh(K)2K4y5

+2880Λ6
3λ

2
1 cosh(K)2K4y7 − 3150Λ6

3λ
2
1 cosh(K)2K4y4

+1260Λ6
3λ

2
1 cosh(K)2K4y3 − 315Λ6

3λ
2
1 cosh(K)2K4y2

−720Λ6
3λ

2
1 cosh(K)2K4y8 + 40320K2λ2ςλ1Λ

3
3 cosh(K)

+80640λ1Λ
3
3 cosh(K)yλ2ςK

2 − 840Λ3
3λ1 cosh(K)K4eKλ2ςy

3

−840Λ3
3λ1 cosh(K)K−4e−Kλ2ςy

3 + 13440λ1Λ
3
3 cosh(K)y3λ2ςK

2

−20160λ1Λ
3
3 cosh(K)y2λ2ςK

2 + 645120λ2ςλ1Λ
3
3 cosh(K)

+840K4λ2
2ς

2 + 6720K4λ2
2ς

2y + 840K6λ2
2ς

2y2 − 1680K4λ2
2ς

2y2

+1260Λ3
3λ1 cosh(K)K4e−Kλ2ςy

2 − 5040Λ3
3λ1 cosh(K)K3eKλ2ςy

2

+10080λ1Λ
3
3λ2ςe

KK2 cosh(K)y2 + 3360Λ3
3λ1 cosh(K)K3eKλ2ςy

3
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−3360Λ3
3λ1 cosh(K)K3e−Kλ2ςy

3 + 5040Λ3
3λ1 cosh(K)K3e−Kλ2ςy

2

−6720λΛ3
3 cosh(K)eKλ2ςK

2y3 + 1260Λ3
3λ1 cosh(K)K4eKλ2ςy

2

+1260Λ3
3λ1 cosh(K)K4e−Kλ2ςy

2 − 5040Λ3
3λ1 cosh(K)K3eKλ2ςy

2

+10080λ1Λ
3
3λ2ςe

KK cosh(K)y2 + 10080λ1Λ
3
3λ2ςe

KK2 cosh(K)y2

+3360Λ3
3λ1 cosh(K)K3eKλ2ςy

3 − 3360Λ3
3λ1 cosh(K)K3e−Kλ2ςy

3

+5040Λ3
3λ1 cosh(K)K3e−Kλ2ςy

2 − 6720λ1Λ
3
3 cosh(K)eKλ2ςK

2y3

+10080λ1Λ
3
3 cosh(K)e−Kλ2ςK

2y2))− 1
3360

1
cosh(K)2K4 (γ1(

−45λ2
1Λ

6
3 cosh(K)4e2Kλ2

2ς
2 cosh(K)K3e3kλ2

2ς
2 cosh(K)K3

−3360λ2
2ς

2 cosh(K)K4e2K − 1680λ2
2ς

2 cosh(K)K4e2K

+2464λ1Λ
3
3 cosh(K)λ2ς

2K4e2K + 56λ1Λ
3
3 cosh(K)2λ2ς

2K4e2K

+11424Λ3
3λ1 cosh(K)K2e2Kλ2ς + 420Λ3

3λ1 cosh(K)K4e3Kλ2ς

+120960Λ3
3λ1 cosh(K)Ke3Kλ2ςΛ

3
3λ1 cosh(K)K2e3Kλ2ς

−16800 − 120960Λ3
3λ2ςe

KK cosh(K)− 16800λ1Λ
3
3λ2ςe

KK2 cosh(K)

+5460K4λ2
2ς

2e2K − 210K4λ2
2ς

2e4K − 3360λ2
2ς

2K3e2K

+420Λ3
3λ1 cosh(K)K4eKλ2ς − 3360λ2

2ς
2 cosh(K)K3eK − 210K4λ2

2ς
2

+645120λ2ςe
2k cosh(K)K3e−Kλ1Λ

3
3 cosh(K)

−322560Λ3
3λ1 cosh(K)Ke3Kλ2ς − 322560λ1Λ

3
3λ1ςe

K

+3360λ2
2ς

2K3eK)e−2ky)).

(31)

4. RESULTS AND DISCUSSION

Figures (1, 2, 5 and 6) showed the dimensionless velocity profile
for different non-Newtonian, electro-kinetic, electro kinetic separa-
tion distance based on the height of plate and the specific internal
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energy parameters. It was discovered that the maximum veloc-
ity was attained as the non-Newtonian increases as electro kinetic
increases at the point 0.2 it started decreasing as electro kinetic
increases. 5 showed velocity profile for different elctro Kinetic sep-
aration distance based on the plate height K. At the upper layer,
the velocity reduces while at the lower layer, the reverse is the case.
This is due to the fact that electro kinetic separation distance af-
fects the movement of the fluid at both layers. It can be seen also
that the fluid velocity profile is parabolic in nature with the maxi-
mum magnitude along the channel center line and minimum at the
walls of the plate. 6 discussed the effect of different specific inter-
nal energy. As the specific internal energy increases, the velocity
reduces because of the internal heat produced within the fluid flow
and hence reduces the motion of the fluid. It can be seen that mag-
nitude along the channel centre line is maximum and minimum at
the walls.
Figure (3, 4, 7 shown the temperature distribution for different
Joule heating, Brinkman number and specific internal energy it
was observed that as these parameters increase the temperature
distribution is also increases. This is due to the heat within the
flow region.

5. CONCLUSION

This paper presents the Poiseuille flow of a third grade fluid in a hor-
izontal channel. The influence of electro-kinetic, Brinkman number
and the internal specific energy on the flow fluid is significant as
the electro kinetic parameters retarded the flow while Brinkman
number and internal specific energy enhances the temperature field
due to the thickness in boundary layer as the parameter increases.
The effect of non-Newtonian parameter, the electro kinetic param-
eter and Joule heating parameter on the velocity and temperature
profile are depicted.
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Figure 1. Velocity profile for different Non-
Newtonian parameter Λ1, ς = 1, K = 5, Λ2 = 0.2,
Λ3 = −2

Figure 2. Velocity profile for different Electro-
Kinetic parameter Λ2, (ς = 1, K = 5, Λ1 = 0.2,
Λ3 = −2)
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Figure 3. Temperature profile for different Joule
heating parameter γ2, (ς = 1, K = 5, Λ1 = 0.1,
Λ2 = 0.2, Λ3 = −2, γ1 = 2)

Figure 4. Temperature distribution for Brinkman
number γ1, (ς = 1, K = 5, Λ1 = 0.2, Λ2 = 0.2,
Λ3 = −2, γ2)
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Figure 5. Velocity profile for different Electro-
Kinetic separation K, (ς = 1, Λ1 = 0.1, Λ2 = 0.2,
Λ3 = −2)

Figure 6. Velocity profile for different values of spe-
cific internal energy ς, (K = 5, Λ1 = 0.1, Λ2 = 0.2,
Λ3 = −2, γ2 = 2 )
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Figure 7. Dimensionless Temperature distribution
for different values of specific internal energy ς, (K =
5, Λ1 = 0.1, Λ2 = 0.2, Λ3 = −2, γ2 = 2)


