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FLEXURAL VIBRATION TO PARTIALLY DISTRIBUTED

MASSES OF NON-UNIFORM RAYLEIGH BEAM RESTING

ON VLASOV FOUNDATION WITH GENERAL BOUNDARY

CONDITIONS

O. K. OGUNBAMIKE 1 AND S. T. ONI

ABSTRACT. In this study, the dynamic response to partially
distributed moving masses of non-prismatic Rayleigh beam with
classical boundary conditions and resting on Vlasov elastic foun-
dation moving with variable velocities is investigated. A proce-
dure involving generalized Galerkin’s method, the use of the
expression of the Heaviside function in series form, a modifi-
cation of the Strubles asymptotic method and the use of the
Fresnel sine and Fresnel cosine functions is developed to solve
the dynamical problem and closed form solutions for both the
moving distributed force and moving distributed mass models
which is valid for all variants of classical boundary conditions
are obtained. The closed form solutions obtained are evaluated
numerically and results show that an increase in the values of
foundation stiffness, shear modulus, axial force and rotatory in-
ertia correction factor reduces the response amplitudes of both
clamped-clamped non-uniform Rayleigh beam and the clamped-
free non-uniform Rayleigh beam. Resonance conditions for the
dynamical systems are obtained for the illustrative end condi-
tions considered. Finally, useful conclusions are drawn from the
investigation of the flexural vibration of non-uniform beams rest-
ing on Vlasov foundation and under partially distributed masses
moving at varying velocities.

Keywords and phrases: Partially distributed masses, Rayleigh
beam, Vlasov foundation, Resonance.

1. INTRODUCTION

This paper is concerned with the problem of flexural motion of
non-uniform Rayleigh beam on Vlasov foundation and under par-
tially distributed masses moving at varying velocities for all vari-
ants of classical end supports. It is sequel to an earlier paper [1]
that considered the response to simply supported non-prismatic
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Rayleigh beam to travelling partially distributed loads. In particu-
lar, this paper is a generalization of the theory advanced in paper
[1]. Beams resting on elastic foundations are very often encoun-
tered in the analysis of building, geotechnical highways and railway
structures. However the vibration of Beam-like structures under
the action of moving loads on elastic foundation has been a subject
of technological importance and many papers have been published
on it during the past years. Among the earlier researchers into this
subject were Fryba [2], Oni [3], Andi and Oni [4], Oni and Awodola
[5], Omolofe and Ogunbamike [6], Alaa [7], Isede and Gbadeyan
[8] and Abdelghany [9]. The importance of this problem is mani-
fested in numerous applications in the field of transportation. For
instance, bridges, overhead cranes, cable ways, rails, roadways, tun-
nels and pipelines are examples of structural elements designed to
support moving loads. However, in most of the studies available in
literature, the scope has been limited to structural members hav-
ing uniform cross-section whether the inertia of the moving load is
considered or not. In most of the existing works in literature on
the vibration of elastic beam on moving load, the loads are sim-
plified by considering them as point loads or concentrated loads;
a problem which has continued to motivate a considerable number
of researchers [10-13]. Evidently, such single vector line segment
acting at a particular point as it moves does not model the forces
involved in the physical situation accurately. However, distributed
moving load problems have been the subject of recent investiga-
tion [14-15] being more practically realistic than the concentrated
problem. Esmailzadeh and Ghorashi [14] studied the problem of vi-
bration of beam traversed by uniform partially distributed masses.
The work was extended by the same authors by considering the
vibration of Timoshenko beams subjected to a travelling mass [15].
Recently, Oni and Ogunyebi [16] carried out the dynamic analysis
of prestressed Bernoulli-Euler beams with general boundary condi-
tions under travelling distributed loads. Furthermore, the analysis
of structures resting on elastic foundation is usually based on a rel-
atively simple model of the foundations response to applied load.
Generally, the analysis of vibration of beams on an elastic foun-
dation is developed on the assumption that the reaction forces of
the foundation are proportional at every point to the deflection of
the beam at that point. The vertical deformation characteristics of
the foundation are defined by means of continuous, closely spaced
strings. The constant of proportionality of these springs is known as
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the modulus of subgrade reaction K. This simple representation of
elastic foundation was introduced by Winkler in 1867. The Winkler
model (one parameter model) which has been originally developed
for the analysis of railroad tracks, is very simple but does not accu-
rately represents the characteristics of many practical foundations.
One of the most important deficiencies of the Winkler model is that
a displacement discontinuity appears between the loaded and the
unloaded parts of the foundation surface. In order to eliminate the
deficiency of Winkler model, improved theories have been intro-
duced on refinement of Winkler model, by visualizing various types
of interconnections such as shear layers and beams along the winkler
springs [17], Pasternak [18]. These theories have been attempted to
find an applicable and simple model of representation of foundation
medium. Also known as Vlasov foundation, two parameter founda-
tion model are more accurate than the one-parameter foundation
model. Thus, this paper presents the flexural vibration under par-
tially distributed masses of non-uniform Rayleigh beam resting on
Vlasov elastic foundation with general boundary conditions.

2. MATHEMATICAL MODEL

The problem of the flexural vibrations of finite non-uniform Rayleigh
beam resting on elastic foundation and under partially distributed
loads moving when it is under the action of a moving load of mass
M which is moving with a variable velocity determined by the posi-
tion f(t) of the mass M at any time is governed by the fourth order
partial differential equation Fryba [2]

∂2

∂x2

[
EI(x)

∂2V (x, t)

∂x2

]
−N ∂2V (x, t)

∂x2
+ µ(x)

∂2V (x, t)

∂t2

− µ(x)R0∂
4V (x, t)

∂x2∂t2
−G∂

2V (x, t)

∂x2
+KV (x, t)

= MgH[x− f(t)]

[
1− 1

g

d2V (x, t)

dt2

]
(1)

where EI(x) is the variable flexural rigidity of the structure, N
is the axial force, R0 is the rotatory inertia factor, µ(x) is the
variable mass per unit length of the beam, V (x, t) is the transverse
displacement, x is the spatial coordinate, the time t is assumed to
be limited to that interval of time within which the mass on the
beam, that is

0 ≤ f(t) ≤ L (2)
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g is the acceleration due to gravity and d2

dt2
is a convective acceler-

ation operator defined in [3]

d2

dt2
=

∂2

∂t2
+ 2

d

dt
f(t)

∂2

∂x∂t
+

(
df(t)

dt

)2
∂2

∂x2
+

d2

dt2
f(t)

∂

∂x
(3)

The distance covered by the load on the same structure at any given
instance of time is given as

f(t) = x0 + ct+
1

2
at2 (4)

where x0 is the point of application of force P (x, t) at the instance
t = 0, c is the initial velocity and a is the constant acceleration of
motion and H[x− f(t)] is the Heaviside function defined as

H

[
x− f(t)

]
=

{
0 if x < f(t),

1 if x > f(t).
(5)

The boundary conditions of the structure under consideration is
arbitrary, while the initial conditions are

V (x, 0) = 0 =
∂V (x, 0)

∂t
(6)

Adopting the examples in [1],in the non-uniform Rayleigh beam
structure, I(x) and µ(x) are taken to be of the form

I(x) = I0

(
1 + sin

πx

L

)3

(7)

and

µ(x) = µ0

(
1 + sin

πx

L

)
(8)

Substituting equations (3), (4), (7) and (8) into equation (1) after
some simplifications and rearrangements one obtains

∂2

∂x2

[
EI0

(
1 + sin

πx

L

)3
∂2V (x, t)

∂x2

]
−N ∂2V (x, t)

∂x2
−G∂

2V (x, t)

∂x2

+µ0

(
1 + sin

πx

L

)
∂2V (x, t)

∂t2
− ∂

∂x

[
µ0R

0

(
1 + sin

πx

L

)
∂3V (x, t)

∂x∂t2

]

+KV (x, t) +MH

[
x−

(
x0 + ct+

1

2
at2
)]
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[
∂2V (x, t)

∂t2
+ 2(c+ at)

∂2V (x, t)

∂x∂t
+

(
c+ at2

)
∂2V (x, t)

∂x2
+ a

∂V (x, t)

∂x

]
= MgH

[
x−

(
x0 + ct+

1

2
at2
)]

(9)

3. OPERATIONAL SIMPLIFICATION

This section seeks to obtain the analytical solution to the problem
of the dynamic response of a non-uniform Rayleigh beam resting on
Vlasov foundation for arbitrary boundary conditions. The Gener-
alized Galerkin method discussed in [1] is employed to simplify and
reduce equation (9) to a sequence of second order ordinary differen-
tial equations. This method requires that the solution of equation
(9) be of the form

Vn(x, t) =
∞∑
m=1

Zm(t)Um(x) (10)

where Um(x) is chosen such that the pertinent boundary conditions
are satisfied. Equation (10) is substituted into equation (9) and
after some simplifications and rearrangements one obtains

n∑
m=1

{[
EI0

µ0

(
5

2
U iv
m (x) +

15

4
sin

πx

L
U iv
m (x)− 1

4
sin

3πx

L
U iv
m (x)

−3

2
cos

2πx

L
U iv
m (x)

)
+

(
9π2

4L2
sin

3πx

L
U”
m(x)− 15π2

4L2
sin

πx

L
U”
m(x)+

+
6π2

L2
cos

2πx

L
U”
m(x)

)]
Zm(t)−

(
N +G

µ0

)
U”
m(x)Zm(t)+(

1 + sin
πx

L

)
Um(x)Z̈m(t)−R0

[(
1 + sin

πx

L

)
U”
m(x)Z̈m(t)

+
π

L
cos

πx

L
U”
m(x)Z̈m(t)

]
+
K

µ0

Um(x)Zm(t)

+
MH

µ0

[
x−

(
x0 + ct+

1

2
at2
)][

Um(x)Z̈m(t)

+(c+ at)U ′m(x)Żm(t) + (c+ at)2U”m(x)Zm(t)

+aU ′m(x)Zm(t)

]}
− PH

µ0

[
x−

(
x0 + ct+

1

2
at2
)]

= 0
(11)
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In order to determine Zm(t) , it is required that the expression on
the left hand side of the equation be orthogonal to the function
Uk() . Hence

∫ L

0

{
n∑

m=1

{[
EI0

µ0

(
5

2
+

15

4
sin

πx

L
− 1

4
sin

3πx

L
− 3

2
cos

2πx

L

)
U iv
m (x)

+

(
9π2

4L2
sin

3πx

L
− 15π2

4L2
sin

πx

L
+

6π2

L2
cos

2πx

L

)
U”
m(x)

]
Zm(t)

−
(
N +G

µ0

)
U”
m(x)Zm(t) +

(
1 + sin

πx

L

)
Um(x)Z̈m(t)

−R0

[(
1 + sin

πx

L

)
U”
m(x)Z̈m(t) +

π

L
cos

πx

L
U”
m(x)Z̈m(t)

]
+
K

µ0

Um(x)Zm(t) +
MH

µ0

[
x−

(
x0 + ct+

1

2
at2
)][

Um(x)Z̈m(t)

+(c+ at)U ′m(x)Żm(t) + (c+ at)2U”m(x)Zm(t)

+aU ′m(x)Zm(t)

]}
− PH

µ0

[
x−

(
x0 + ct+

1

2
at2
)]}

= 0

(12)

Further rearrangement of equation (12) yield

n∑
m

{[
D1(m, k)−R0(D2(m, k) +D3(m, k))

]
Z̈m(t)

+

[
α1(T0 + T1) + α2D4(m, k) + α3D5(m, k)

]
Zm+

M

µ0

[
D1(t)Z̈m(t) +D2(t)Żm(t) +D3(t)Zm

+D4(t)Zm(t)

]}
=
Mg

µ0

D5(t)

(13)

where

α1 =
EI0

µ0

; α2 =
G+N

µ0

; α3 =
K

µ0
(14)

T0 = D6 +D7 − (D8 +D9); T1 = D10 −D11 +D12 (15)
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D1(t) =

∫ L

0

H

[
x−

(
x0 + ct+

1

2
at2
)]
Um(x)Uk(m)dx;

D2(t) =

∫ L

0

2(c+ at)H

[
x−

(
x0 + ct+

1

2
at2
)]
U ′m(x)Uk(x)dx

D3(t) =

∫ L

0

(c+ at)2H

[
x−

(
x0 + ct+

1

2
at2
)]
Un
m(x)Uk(x)dx;

D4(t) =

∫ L

0

aH

[
x−

(
x0 + ct+

1

2
at2
)]
U ′m(x)Uk(x)dx

D5(t) =

∫ L

0

H

[
x−

(
x0 + ct+

1

2
at2
)]
Uk(x)dx;

D1(m, k) =

∫ L

0

(
1 + sin

πx

L

)
Um(x)Uk(x)dx

D2(m, k) =

∫ L

0

(
1 + sin

πx

L

)
Un
m(x)Uk(x)dx;

D3(m, k) =

∫ L

0

cos
πx

L
U ′m(x)Uk(x)dx;

D4(m, k) =

∫ L

0

Un
m(x)Uk(x)dx;

D5(m, k) =

∫ L

0

Um(x)Uk(x)dx; D6(m, k) =
5

2

∫ L

0

U iv
m (x)Uk(x)dx;

D7(m, k) =
15

4

∫ L

0

sin
πx

L
U iv
m (x)Uk(x)dx

D8(m, k) =
1

4

∫ L

0

sin
3πx

L
U iv
m (x)Uk(x)dx;

D9(m, k) =
3

2

∫ L

0

cos
2πx

L
U iv
m (x)Uk(x)dx

D10(m, k) =
9π2

4L2

∫ L

0

sin
3πx

L
Un
m(x)Uk(x)dx;

D11(m, k) =
15π2

4L2

∫ L

0

sin
πx

L
Un
m(x)Uk(x)dx

D12(m, k) =
6π2

L2

∫ L

0

cos
2πx

L
Un
m(x)Uk(x)dx;

(16)
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In order to evaluate the integrals (16), use is made of the Fourier
sine series representation for the Heaviside unit step function namely;

H =
1

4
+

1

π

∞∑
n=0

sin(2n+ 1)π

[
x−

(
x0 + ct+ 1

2
at2
)]

2n+ 1
, 0 < x < L,

(17)
Thus, in view of (9), using (17) in equation (13) after some sim-

plifications and rearrangements one obtains

[
D1(k,m)−R

[
D2(k,m) +D3(m, k)

]]
Z̈m(t)

+

[
α1(T0 + T1) + α2D4(m, k) + α3D5(m, k)

]
Zm+

M

µ0

{[
D1A(k,m) +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D1B(k,m, n)

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D1C(n,m, k)

]
Z̈m(t)

+2(c+ at)

(
D2A(k,m) +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D2B(k,m, n)

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D2C(k,m, n)

)
Żm(t)

+(c+ at)2
(
D3A(k,m) +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D3B(k,m, n)

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D3C(k,m, n)

)
Zm(t)

+a

(
D4A(k,m) +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D4B(k,m, n)

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D4C(k,m, n)

)
Żm(t)

}
=

PL

µoλkΩ1(k,m)

[
− cosλk +Aksinλk +Bkcoshλk + C + ksinhλk+

cos
λk
L

(x0 + ct+
1

2
at2)−Aksin

λk
L

(x0 + ct+
1

2
at2)

−Bkcosh
λk
L

(x0 + ct+
1

2
at2)− Cksinh

λk
L

(x0 + ct+
1

2
at2)

]
(18)
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where

D1(k,m) = D11 +D12

D11 =

∫ L

0

Um(x)Uk(x)dx D12 =

∫ L

0

sin
πx

L
Um(x)Uk(x)dx

D1A(k,m) =
1

4

∫ L

0

Um(x)Uk(x)dx

D1B(k,m) =

∫ L

0

sin(2n+ 1)πxUm(x)Uk(x)dx

D1C(k,m) =

∫ L

0

cos(2n+ 1)πxUm(x)Uk(x)dx

D2A(k,m) =
1

4

∫ L

0

U ′m(x)U ′k(x)dx

D2B(k,m) =

∫ L

0

sin(2n+ 1)πxU ′m(x)Uk(x)dx

D2C(k,m) =

∫ L

0

cos(2n+ 1)πxU ′m(x)Uk(x)dx

D3A(k,m) =
1

4

∫ L

0

U”m(x)Uk(x)dx

D3B(k,m) =

∫ L

0

sin(2n+ 1)πxU”m(x)Uk(x)dx

D3C(k,m) =

∫ L

0

cos(2n+ 1)πxU”m(x)Uk(x)dx

D4A(k,m) =
1

4

∫ L

0

U ′m(x)Uk(x)dx

D4B(k,m) =

∫ L

0

sin(2n+ 1)πxU ′m(x)Uk(x)dx

D4C(k,m) =

∫ L

0

cos(2n+ 1)πxU ′m(x)Uk(x)dx

(19)

Equation (18) when further simplified and rearranged gives
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∞∑
n=0

{
Z̈m(t) +

Ω2(k,m)

Ω1(k,m)
Zm(t) +

Γ0L

Ω1(k,m)

[(
D1A(k,m)+

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D1B(k,m, n)

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D1C(n,m, k)

)
Z̈m(t)

+2(c+ at)

(
D2A(k,m) +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D2B(k,m, n)

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D2C(k,m, n)

)
Żm(t)

+(c+ at)2
(
D3A(k,m) +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D3B(k,m, n)

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D3C(k,m, n)

)
Zm(t)

+a

(
D4A(k,m) +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D4B(k,m, n)

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
D4C(k,m, n)

)
Żm(t)

]}

=
PL

µoλkΩ1(k,m)

[
− cosλk +Aksinλk +Bkcoshλk + C + ksinhλk

+cos
λk
L

(x0 + ct+
1

2
at2)−Aksin

λk
L

(x0 + ct+
1

2
at2)

−Bkcosh
λk
L

(x0 + ct+
1

2
at2)− Cksinh

λk
L

(x0 + ct+
1

2
at2)

]
(20)

where

Ω1(k,m) = D1(k,m)−R0

[
D2(k,m) +D3(k,m)

]
;

Ω2(k,m) = α1(T0 + T1) + α2D4(k,m) + α3D5(k,m)

and εo =
M

µoL

(21)

and εo =
M

µoL
(22)
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Equation (20) is the transformed equation governing the problem
of a non-uniform Rayleigh beam on a bi-Parametric Vlasov foun-
dation and traversed by uniform partially distributed masses. In
what follows, two cases of equation (20) are considered.

(a) Moving Force

If we neglect the inertia term in equation (20), we have the classical
case of a moving force problem. Under this assumption and equa-
tion (20) after some simplifications and rearrangement becomes

Z̈m(t) +
Ω2(k,m)

Ω1(k,m)
Zm(t) =

PL

µoλkΩ1(k,m)

[
− cosλk + Aksinλk+

Bkcoshλk + Cksinhλk + cos
λk
L

(x0 + ct+
1

2
at2)

−Aksin
λk
L

(x0 + ct+
1

2
at2)−Bkcosh

λk
L

(x0 + ct+
1

2
at2)

−Cksinh
λk
L

(x0 + ct+
1

2
at2)

]
(23)

where

Z̈m(t) + σ2
MFZm(t) = Qp

[
− cosλk + Aksinλk+

Bkcoshλk + Cksinhλk + cos
λk
L

(x0 + ct+
1

2
at2)

−Aksin
λk
L

(x0 + ct+
1

2
at2)−Bkcosh

λk
L

(x0 + ct+
1

2
at2)

−Cksinh
λk
L

(x0 + ct+
1

2
at2)

]
(24)

where

σ2
MF =

Ω2(k,m)

Ω1(k,m)
; Qp =

PL

µoλkΩ1(k,m)
(25)
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Solving equation (24) in conjunction with the initial conditions, the
solution is given by

Zm(t) =
PMF

σMF

{
SinσMF t

[
P11S

(
d11 + d10t

)
+ P12C

(
d11 + d10t

)
+P13S

(
d12 + d10t

)
+ P14C

(
d12 + d10t

)
+ P21C

(
d11 + d10t

)
+P22S

(
d11 + d10t

)
+ P23C

(
d12 + d10t

)
− P24S

(
d12 + d10t

)
−Q11erfi

(
d21 + d20t

)
−Q12erf

(
d21 + d20t

)
−Q13erfi

(
d22 + d20t

)
−

Q14erfi

(
d22 + d20t

)
+Q21erf

(
d21 + d20t

)
−Q22erfi

(
d21 + d20

)
t

−Q23erf

(
d22 + d20

)
t+Q24erfi

(
d22 + d20

)
t− 1

2σMF

[
sin(λk + σMF t)

−sin(λk − σMF t) +Ak

(
cos(λk − σMF t)− cos(λk + iσMF t)

)
−iBk

(
sinh(λk + iσMF t)− sinh(λk + σMF t)

)
−iCk

(
cosh(λk + iσMF t)− cosh(λk − iσMF t)

)]
− F ∗2

]
−CosσMF t

[
P12S

(
d11 + d10t

)
− P11C

(
d11 + d10t

)
+ P13C

(
d12 + d10t

)
−P14C

(
d12 + d10t

)
+ P21S

(
d11 + d10t

)
+ P22C

(
d11 + d10t

)
− P23S

(
d12 + d10t

)
−P24C

(
d12 + d10t

)
+ iQ11erfi

(
d21 + d20t

)
− iQ12erf

(
d21 + d20t

)
−iQ13erf

(
d22 + d20t

)
− iQ14erf

(
d22 + d20t

)
+

1

2σMF

[
cos(λk − σMF t) + cos(λk + σMF t)

−Ak

(
sin(λk − σMF t) + sin(λk + σMF t)

)
−Bk

(
cosh(λk + iσMF t) + cosh(λk − iσMF t)

)
−Ck

(
sinh(λk + iσMF t)− sinh(λk − iσMF t)

)]
+ F ∗1

]}
(26)

Thus using (26) in (10), one obtains
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V (x, t) =
1

ρm(x)

∞∑
m=1

PMF

σMF

{
SinσMF t

[
P11S

(
d11 + d10t

)
+ P12C

(
d11 + d10t

)
+P13S

(
d12 + d10t

)
+ P14C

(
d12 + d10t

)
+ P21C

(
d11 + d10t

)
+P22S

(
d11 + d10t

)
+ P23C

(
d12 + d10t

)
− P24S

(
d12 + d10t

)
−Q11erfi

(
d21 + d20t

)
−Q12erf

(
d21 + d20t

)
−Q13erfi

(
d22 + d20t

)
−

Q14erfi

(
d22 + d20t

)
+Q21erf

(
d21 + d20t

)
−Q22erfi

(
d21 + d20

)
t

−Q23erf

(
d22 + d20

)
t+Q24erfi

(
d22 + d20

)
t− 1

2σMF

[
sin(λk + σMF t)

−sin(λk − σMF t) +Ak

(
cos(λk − σMF t)− cos(λk + iσMF t)

)
−iBk

(
sinh(λk + iσMF t)− sinh(λk + σMF t)

)
−iCk

(
cosh(λk + iσMF t)− cosh(λk − iσMF t)

)]
− F ∗2

]
−CosσMF t

[
P12S

(
d11 + d10t

)
− P11C

(
d11 + d10t

)
+ P13C

(
d12 + d10t

)
−P14C

(
d12 + d10t

)
+ P21S

(
d11 + d10t

)
+ P22C

(
d11 + d10t

)
− P23S

(
d12 + d10t

)
−P24C

(
d12 + d10t

)
+ iQ11erfi

(
d21 + d20t

)
− iQ12erf

(
d21 + d20t

)
−iQ13erf

(
d22 + d20t

)
− iQ14erf

(
d22 + d20t

)
+

1

2σMF

[
cos(λk − σMF t) + cos(λk + σMF t)

−Ak

(
sin(λk − σMF t) + sin(λk + σMF t)

)
−Bk

(
cosh(λk + iσMF t) + cosh(λk − iσMF t)

)
−Ck

(
sinh(λk + iσMF t)− sinh(λk − iσMF t)

)]
+ F ∗1

]}(
sin

λmx

L
+Amcos

λmx

L

+Bmsinh
λmx

L
+ Cmcosh

λmx

L

)
(27)

where
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P11 = 1
2
√
a

√
π
2
Cos

(
b21
4a
− c0

)
; P12 = 1

2
√
a

√
π
2
Sin

(
b21
4a
− c0

)

P13 = 1
2
√
a

√
π
2
Sin

(
b22
4a
− c0

)
; P14 = 1

2
√
a

√
π
2
Cos

(
b22
4a
− c0

)

P21 = Am

2
√
a

√
π
2
Cos

(
b21
4a
− c0

)
P22 = Am

2
√
a

√
π
2
Sin

(
b21
4a
− c0

)

P23 = Am

2
√
a

√
π
2
Cos

(
b22
4a
− c0

)
; P24 = Am

2
√
a

√
π
2
Sin

(
b22
4a
− c0

)

Q11 = Bm
√
π

8
√
a
e−

b24
4a
−c0e2c0 ; Q12 = Bm

√
π

8
√
a
e−

b32
4a
−c0e

b23
2a

Q13 = Bm
√
π

8
√
a
e−

b24
4a
−c0e2c0 ; Q14 = Bm

√
π

8
√
a
e−

b42
4a
−c0e

b24
2a

Q21 = Cm
√
π

8
√
a
e−

b23
4a
−c0e

b23
2a Q22 = Cm

√
π

8
√
a
e−

b23
4a
−c0e2c0

Q23 = Cm
√
π

8
√
a
e−

b24
4a
−c0e

b24
2a ; Q24 = Cm

√
π

8
√
a
e−

b24
4a
−c0e2c0

d10 =
2a√
2πa

, d11 =
b1√
2πa

, d12 =
b2√
2πa

, d20 =
2a

2
√
a
,

d21 =
b3

2
√
a
, d22 =

b4

2

√
a

(28)

F ∗1 = −P11C(d11) + P12S(d11) + P13C(d12)− P14S(d12) + P21S(d11)+

P22C(d11)− P23S(d12)− P24C(d12) + iQ11erfi(d21)− iQ12erf(d21)

− iQ13erfi(d22) + iQ14erfi(d22) + iQ21erf(d21) + iQ22erfi(d21)

− iQ23erf(d22)− iQ24erfi(d22)

+
1

γbj

[
Cosλm − AmSinλm −BmCoshλm − CmSinhλm

]
(29)
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F ∗2 = P13S(d12) + P14C(d12) + P11S(d11) + P12C(d11) + P21C(d11)−
P22S(d11)− P23C(d12)− P24S(d12) +Q12erf(d21)−Q12erfI(d21)−
Q13erfi(d22)−Q14erfi(d22) +Q21erf(d21)

Q23erf(d22)− iQ24erfi(d22) (30)

Equation (27) represents the transverse displacement response to
forces moving at variable velocities of a prestressed non-uniform
Rayleigh beam resting on Vlasov elastic foundation and having ar-
bitrary end support conditions.

(b) Moving Mass

If the moving load has mass commensurable with that of the struc-
ture, the inertia effect of the heavy load is not negligible. Thus,Γ0 6=
0 , and we are required to solve the entire equation (20). This we
term the moving mass problem. Unlike in (a), it is obvious that an
exact analytical solution to this equation is not possible. Thus, we
resort to an approximate analytical method discussed in [1]. It is
a modification of the asymptotic method due to Struble. To this
end, we rearrange equation (20) to take the form

Z̈m(t) +
2(c+ at)Γ0R2(k,m, t)

1 + Γ0R1(k,m, t)
Zm(t) +

γ2MF (c+ at)2Γ0R3(k,m, t)

1 + Γ0R1(k,m, t)
Zm(t) =

Γ0L
2gTPM

λkΩ1(k,m)

[
1 + Γ0R1(k,m, t)

] (31)

where
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R1(k,m, t) = D1a(k,m) +
1

π

∞∑
n=0

TA(n, t)D1b(k,m, n)− 1

π

∞∑
n=0

TB(n, t)D1c(k,m, n)

R2(k,m, t) = D2a(k,m) +
1

π

∞∑
n=0

TA(n, t)D2b(k,m, n)− 1

π

∞∑
n=0

TB(n, t)D2c(k,m, n)

R3(k,m, t) = D3a(k,m) +
1

π

∞∑
n=0

TA(n, t)D3b(k,m, n)− 1

π

∞∑
n=0

TB(n, t)D3c(k,m, n)

R4(k,m, t) = D4a(k,m) +
1

π

∞∑
n=0

TA(n, t)D4b(k,m, n)− 1

π

∞∑
n=0

TB(n, t)D4c(k,m, n)

D1a(k,m) =
LD1A(k,m)

Ω1(k,m)
, D1B(k,m, n) =

LD1B(k,m, n)

Ω1(k,m)
,

D1C(k,m, n) =
LD1C(k,m, n)

Ω1(k,m)
, D2a(k,m) =

LD2A(k,m)

Ω1(k,m)
,

D2B(k,m, n) =
LD2B(k,m, n)

Ω1(k,m)
, D2C(k,m, n) =

LD2C(k,m, n)

Ω1(k,m)

D3a(k,m) =
LD3A(k,m)

Ω1(k,m)
, D3B(k,m, n) =

LD3B(k,m, n)

Ω1(k,m)
,

D3C(k,m, n) =
LD3C(k,m, n)

Ω1(k,m)
, D4a(k,m) =

LD4A(k,m)

Ω1(k,m)
,

D4B(k,m, n) =
LD4B(k,m, n)

Ω1(k,m)
, D4C(k,m, n) =

LD4C(k,m, n)

Ω1(k,m)
(32)

By means of this technique, one seeks the modified frequency
corresponding to the frequency of the free system due to the pres-
ence of the distributed moving mass. An equivalent free system
operator defined by the modified frequency then replaces equation
(31). Thus, we set the right-hand side of equation (31) to zero and
consider a parameter Γ1 < 1 for any arbitrary ratio , defined as

Γ1 =
Γ0

1 + Γ0

(33)

Evidently,
Γ0 = Γ1 +O(Γ2

1) (34)

which implies

1

1 + Γ1R1(k,m, t)
= 1− Γ1R1(k,m, t) +O

(
Γ2

1

)
(35)

where∣∣∣∣∣Γ1

(
D1a(k,m) +

1

π

∞∑
n=0

TA(n, t)D1b(k,m, n)
1

π

∞∑
n=0

TA(n, t)D1b(k,m, n)

)
< 1

∣∣∣∣∣
(36)
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when we set Γ1 = 0 is a case corresponding to the case when the
inertia effect of the mass of the system is negligible is obtained and
the solution of (31) is of the form

Zm(t) = Λ cos

[
σMF t− φ(m, t)

]
(37)

where Λ, σMF t are constants and φ(m, t) is as previously defined.
However, since Γ1 < 1, Struble’s technique requires that the asytmp-
totic solution of the homogeneous part of equation (31) be of the
form

Zm(t) = ψ(m, t)Cos[σMF t− φ(m, t)] + Γ1Z1(t) +O(Γ2
1) (38)

where ψ(m, t) and φ(m, t) are slowly varying functions of time.
Substituting (38) and its derivatives into the homogeneous part of
equation (31) one obtains

− 2 ˙ψ(m, t)σMF sin

[
σMF t− φ(m, t)

]
+ 2ψ(m, t)σMF

˙φ(m, t)cos

[
σMF t− φ(m, t)

]
− 2Γ(c+ at)

[
D2a(m, k)

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

2n+ 1
D2b(k,m, n)

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

2n+ 1
D2c(k,m, n)

][
ψ(m, t)σMF sin

[
σMF t− φ(m, t)

]]

+

[
(c+ at)2Γ1

{
1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

2n+ 1
D3b(k,m, n)

+D3a(k,m)− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

2n+ 1
D3c(k,m, n)

}
+ aΓ1

{
D4a(k,m)

+
1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

2n+ 1
D4b(k,m, n)

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

2n+ 1
D4c(k,m, n)

}

− σ2
MF Γ1

{
D1a(k,m) +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

2n+ 1
D1b(k,m, n)

− 1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

2n+ 1
D1c(k,m, n)

}](
ψ(m, t)cos

[
σMF t

]
− φ(m, t)

)
= 0

(39)

retaining terms to O(Γ1) only.
In order to obtain the modified frequency, we extract the varia-
tional part of the equation describing the behavior of ψ(m, t) and
φ(m, t) during the motion of the mass. Thus, noting the following
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trigonometric identities

cos(2n+ 1)π(x0 + ct+ 1
2at

2)

2n+ 1
cos

[
σMF t− φ(m, t)

]
=

1

2(2n+ 1)

{
cos(2n+ 1)π(x0 + ct+

1

2
at2)

+ σMF t− φ(m, t)) + cos((2n+ 1)π(x0 + ct+
1

2
at2)− σMF t+ φ(m, t))

}
sin(2n+ 1)π(x0 + ct+ 1

2at
2)

2n+ 1
cos

[
σMF t− φ(m, t)

]
=

1

2(2n+ 1)

{
sin(2n+ 1)π(x0 + ct+

1

2
at2)

+ σMF t− φ(m, t)) + sin((2n+ 1)π(x0 + ct+
1

2
at2)− σMF t+ φ(m, t))

}
cos(2n+ 1)π(x0 + ct+ 1

2at
2)

2n+ 1
sin

[
σMF t− φ(m, t)

]
=

1

2(2n+ 1)

{
sin(2n+ 1)π(x0 + ct+

1

2
at2)

+ σMF t− φ(m, t)) + sin((2n+ 1)π(x0 + ct+
1

2
at2)− σMF t+ φ(m, t))

}
sin(2n+ 1)π(x0 + ct+ 1

2at
2)

2n+ 1
sin

[
σMF t− φ(m, t)

]
=

1

2(2n+ 1)

{
cos(2n+ 1)π(x0 + ct+

1

2
at2)

+ σMF t− φ(m, t)) + cos((2n+ 1)π(x0 + ct+
1

2
at2)− σMF t+ φ(m, t))

}
(40)

and neglecting terms that do not contribute to the variational equa-
tions, equation (39) reduces to

− 2ψ̇(m, t)σMF sin[σppt− φ(m, t)] + 2ψ(m, t)σMFφ(m, t) cos[σMF t− φ(m, t)]

− 2cΓ1σMF tψ(m, t)D2a(k,m) sin[σMF t− φ(m, t)] +
[
c2Γ1D3a(m, t)

+ aΓ1D4a(k,m)− σ2
MF Γ1D1a(k,m)]ψ(m, t)σMF cos[σMF t− φ(m, t)] = 0

(41)

However,the variational equations of the problem are obtained by
setting coefficients of sin[σMF t − φ(m, t)] and cos[σMF t − φ(m, t)]
in equation (41) to zero.
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Thus, we obtain[
2ψ̇(m, t) + 2cΓ1ψ(m, t)D2a(k,m)

]
sin

[
σMF t− φ(m, t)

]
(42)

and[
2σMF φ̇(m, t) + Γ1(c2D3a(k,m) + aD4a(k,m)− σ2

MFD1a(k,m))

]
ψ(m, t)

(43)

Solving equations (42) and (43), we have

ψ(m, t) = A0e
−Γ1cD2a(k,m)t (44)

and

φ(m, t) =

[
σ2
MFD1a(k,m)− c2D3a(k,m)− aD4a(k,m)

2σMF

]
Γ1t+ θm

(45)
where A0 and θm are constants.
Solving equations (42) and (43) respectively, we have

Zm(t) = A0e
−Γ1cD2a(k,m)t cos[σMF t− θm] (46)

where

σMM = σMF

{
1− Γ1

2

[
D1a(k,m)− c2D3a(k,m) + aD4a(k,m)

σ2
MF

]}
(47)

is called the modified frequency representing the frequency of the
free system due to the presence of moving mass. Thus, the homo-
geneous part of equation (31) can be written as

d2Zm(t)

dt2
+ σ2

MMZm(t) = 0 (48)

Consequently, the entire equation (31) reduces to

d2Zm(t)

dt2
+ σ2

MMZm(t) =
Γ1L

2g

kπΩ1(k,m)
[− cosλk +Ak sinλk +Bk coshλk

+ Cksinhλk + cos
λk
L

(x0 + ct+
1

2
at2)−Ak sin

λk
L

(x0 + ct+
1

2
at2)

−Bk cosh
λk
L

(x0 + ct+
1

2
at2)− Ck sinh

λk
L

(x0 + ct+
1

2
at2)] (49)
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Solving equation (49) in conjunction with the initial conditions,
one obtains the expression forZm(t) . Thus, in view of (10)

Vn(x, t) =

∞∑
m=1

Γ1Lg
√
π

λkϕ11

√
2aτ(x)

{
sin Ωmmt

Ωmm

[
cos

(
b21
4a
− C0

)
C

(
b1 + 2at√

2πa

)

+ sin

(
b21
4a
− C0

)
S

(
b1 + 2at√

2πa

)
+ cos

(
b22
4a
− C0

)
C

(
b2 + 2at√

2πa

)

+ sin

(
b22
4a
− C0

)
S

(
b2 + 2at√

2πa

)
− cos

(
b21
4a
− C0

)
C

(
b1√
2πa

)

− sin

(
b21
4a
− C0

)
S

(
b1√
2πa

)
− cos

(
b22
4a
− C0

)
C

(
b2√
2πa

)

− sin

(
b22
4a
− C0

)
S

(
b2√
2πa

)
− 1

2Ωmm

[
sin(λk + Ωmmt)− sin(λk − Ωmmt)

]]

− cos Ωmmt

Ωmm

[
cos

(
b21
4a
− C0

)
S

(
b1 + 2at√

2πa

)

− sin

[
b21
4a
− C0

]
C

(
b1 + 2at√

2πa

)
− cos

(
b22
4a
− C0

)
S

(
b2 + 2at√

2πa

)

+ sin

(
b22
4a
− C0

)
C

(
b2 + 2at√

2πa

)
− cos

(
b21
4a
− C0

)
S

(
b1√
2πa

)

+ sin

(
b21
4a
− C0

)
C

(
b1√
2πa

)
+ cos

(
b22
4a
− C0

)
S

(
b2√
2πa

)

− sin

(
b22
4a
− C0

)
C

(
b2√
2πa

)
− cosλk

Ωmm
+

1

2Ωmm

[
cos(λk − Ωmmt) + cos(λkΩmmt)

]]}(
sin

mπx

L

)
(50)

which represents the transverse displacement response to distributed
masses, moving with non-uniform velocity of a prestressed Rayleigh
beam resting on elastic foundation having arbitrary end support
conditions. By way of illustrating the foregoing analysis, we con-
sider in succession (i) Clamped-Clamped end conditions and (ii)
Cantilever end conditions noting that simply supported end con-
ditions have been treated in an earlier paper [1] whose results are
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in agreement with results obtained using the methods in this paper.

(i) Non-uniform Rayleigh beam with Clamped-Clamped end conditions

At the clamped end, both deflection and slope vanish at the bound-
ary. Thus,

V (0, t) = 0 = V (L, t),
∂V (0, t)

∂x
= 0 =

∂V (L, t)

∂x
(51)

and for normal modes

Um(0) = 0 = Um(L),
∂Um(0)

∂x
= 0 =

∂Um(L)

∂x
(52)

which implies that

Uk(0) = 0 = Uk(L),
∂Uk(0)

∂x
= 0 =

∂Uk(L)

∂x
(53)

Thus, it can be shown that

Am =
sinhλm − sinλm
cosλm − coshλm

=
cosλm − coshλm
sinλm + sinhλm

= −Cm

and Bm = −1
(54)

In view of (54), the frequency equation is given as

cosλm coshλm = 1 (55)

It follows from equation (55), that

λ1 = 4.73004, λ2 = 7.85320, λ3 = 10.99561 (56)

The expression for Ak, Bk, Ck and the corresponding frequency
equation are obtained by a simple replacement of m and k in equa-
tion (54) and (55). Substituting (54) and (55) into equations (29)
and (50) respectively to obtain the displacement response to a mov-
ing force and moving mass respectively of a clamped-clamped uni-
form Rayleigh beam resting on a Pasternak elastic foundation.

(ii) Non-uniform Rayleigh beam with Cantilever end end conditions

In this case the beam type structure is clamped at one end and free
at the other end. Accordingly, the boundary conditions are

V (0, t) = 0 =
∂V (0, t)

∂x
,

∂2V (0, t)

∂x2
= 0 =

∂3V (L, t)

∂x3
(57)

and for normal modes

Um(0) = 0 =
∂Um(0)

∂x
,

∂2Um(L)

∂x2
= 0 =

∂3Um(L)

∂x3
(58)
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which implies that

Um(0) = 0 =
∂Uk(0)

∂x
,

∂2Uk(L)

∂x2
= 0 =

∂3Uk(L)

∂x3
(59)

It can be shown that

Am =
− sinλm − sinhλm
cosλm + coshλm

=
− cosλm − coshλm

sinhλm − sinλm
= −Cm

and Bm = −1
(60)

and the frequency equation for both end conditions is

cosλm coshλm = 1 (61)

and we have that

λ1 = 1.875, λ2 = 4.694, λ3 = 7.855 (62)

using (60), (61) and (62) in equations (54) and (55), we obtain
the transverse displacement response respectively to a moving force
and moving mass of a cantilever Rayleigh beam with a non-uniform
cross section resting on a Pasternak elastic foundation.

4. DISCUSSION OF CLOSE FORM SOLUTION

The response amplitude of a dynamical system such as this may
grow without bound. Conditions under which this happens are
termed resonance conditions. For both illustrative examples, we
observe that the non-uniform Rayleigh beam traversed by a moving
partially distributed force at variable velocity reaches a state of
resonance whenever

ΩMF =
mπcc
L

(63)

while the same non-uniform beam under the action of a moving
partially distributed mass experiences resonance effect when

ΩMM =
mπcc
L

(64)

Evidently,

ΩMM = ΩMF

{
1− Γ1

2

[
D1a(k,m)−

[
c2D3a(k,m) + aD4a(k,m)

]
Ω2
MF

]}
(65)

Equations (64) and (65) show that for the same natural frequency,
the critical speed for the system consisting of a non-uniform Rayleigh
beam resting on an elastic foundation and traversed by partially dis-
tributed force is greater than that traversed by partially distributed
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mass. Thus, resonance is reached earlier in the moving distributed
mass system than in moving distributed force system.

NUMERICAL CALCULATIONS AND DISCUSSIONS

In this section, calculations of practical interests in the field of
structural dynamics are presented for both illustrative examples
considered. A non-prismatic Rayleigh beam with length 12.192m
has been considered. The mass is assumed to travel at initial
velocity 8.128m/s. Furthermore E, I and µ are chosen to be
3.1×1010N/m2, 2.87698×10−3m4 and 2758.291kg/m respectively.
The values of the foundation stiffness K varied between 0N/m3 and
4000000N/m3 , axial forceN is varied between 0N and 2×106N and
shear modulusG is varied between 0N/m and 3 × 105N/m . The
transverse deflections of Rayleigh beam are calculated and plotted
against time for various values of foundation stiffness K, axial force
N , shear modulus G and rotatory inertia R0. In figure 5.1, the de-
flection profile of a clamped-clamped non-uniform Rayleigh beam
under the action of partially distributed forces moving at variable
velocity for various values of foundation stiffnessK and fixed val-
ues of axial force N shear modulus G and rotatory inertia correc-
tion factor R0 is displayed. The figure shows that as K increases,
the transverse displacement of the non-uniform Rayleigh beam de-
creases. For various travelling time t, the transverse displacement
of the beam for various values of axial force N and for fixed values
of foundation stiffness K, shear modulus G and rotatory inertia
correction factor R0 are shown in figure 5.2. It is observed that
higher values of axial force N reduce the deflection of the beam.
Also figure 5.3 displays the response amplitudes of the clamped-
clamped non-uniform Rayleigh beam to partially distributed forces
travelling at variable velocity for various values of shear modulus
G and for fixed values of foundation stiffness K, axial force N and
rotatory inertia correction factor R0. It is seen from the figure that
as the values of shear modulus increases, the response amplitude
of the simply supported non-uniform Rayleigh beam under the ac-
tion of partially distributed forces travelling at variable velocity de-
creases. In figure 5.4 the deflection profile of clamped-clamped uni-
form Rayleigh beam under the action of partially distributed forces
is displayed. It is clearly shown that as we increase the values of
rotatory inertia correction factor R0, for fixed values of foundation
stiffness K, axial force N and shear modulus G the deflection of the
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non-uniform beam decreases. In figure 5.5, the transverse displace-
ment of a clamped-clamped non-uniform Rayleigh beam under the
action of partially distributed masses for various values of founda-
tion stiffnessK and fixed values of axial force N shear modulus G
and rotatory inertia correction factor R0 is displayed. Results and
analyses are the same with the cases in figure 5.1. The deflection
profile of the clamped-clamped beam under the action of partially
distributed masses moving at variable velocity for various values of
axial force N is shown in figure 5.6. Results and analyses obtained
are similar to the ones in figure 5.2. Furthermore, figure 5.7 shows
that higher values of shear modulus G increase the displacement
amplitudes of the clamped-clamped Rayleigh beam for fixed values
of foundation stiffness K, axial force N and rotatory inertia cor-
rection factor R0. For the same clamped-clamped beam traversed
by non-uniform partially distributed masses, figure 5.8 depicts that
as the values of rotatory inertia R0 increases, the deflection of the
beam reduces for fixed values of foundation stiffness K, axial force
and shear modulus G.
Figure 5.9 displays the comparison of the transverse displacement
response of moving force and moving mass cases of the clamped-
clamped non-uniform Rayleigh beam traversed by a moving load
travelling at variable velocity for fixed values of K = 400000,
N = 200000, G = 100000 and R0 = 0.5. It is shown that the
moving distributed force deflection is higher than that of the mov-
ing distributed mass.In figure 5.10, the deflection profile of a can-
tilever non-uniform Rayleigh beam under the action of partially
distributed forces moving at variable velocity for various values of
foundation stiffness K and for fixed values of axial force N , shear
modulus G and rotatory inertia correction factor R0 is displayed.
The figure shows that as K increases, the deflection of the beam
decreases. Also for various travelling time t, the deflection pro-
file of the beam for various values of axial force N and for fixed
values of foundation stiffness K, shear modulus G and rotatory in-
ertia correction factor R0 are shown in figure 5.11. It is observed
that higher values of axial force reduce the deflection profile of the
beam. Figure 5.12 displays the displacement response of the can-
tilever non-uniform Rayleigh beam to partially distributed forces
travelling at variable velocity for various values of shear modulus
G and for fixed values of foundation stiffness K, axial force N and
rotatory inertia correction factor R0. It was observed that increase
in the shear modulus reduces the transverse displacement of the
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beam. The transverse displacement response of a clamped-free non-
uniform Rayleigh beam under the action of partially distributed
forces moving at variable velocity for various values of rotatory in-
ertia correction factor R0 and fixed values of foundation stiffness
K, axial force N and shear modulus G is displayed in figure 5.13.

Fig. 5.1. Transverse displacement of a clamped-clamped non-uniform
Rayleigh beam under the action of partially distributed forces traveling

at a variable velocity for various values of foundation stiffness K

Fig. 5.2. Deflection profile of a clamped-clamped non-uniform
Rayleigh beam under the action of partially distributed forces traveling

at a variable velocity for various values of Axial force N
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Fig. 5.3. Transverse displacement of a clamped-clamped non-uniform
Rayleigh beam under the action of partially distributed forces traveling

at a variable velocity for various values of shear modulus G

Fig. 5.4. Response amplitude of a clamped-clamped non-uniform
Rayleigh beam under the action of partially distributed forces traveling

at a variable velocity for various values of rotatory inertia correction
factor R0

Fig. 5.5. Displacement response of a clamped-clamped non-uniform
Rayleigh beam under the action of partially distributed masses
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traveling at a variable velocity for various values of foundation stiffness
K

Fig. 5.6. Deflection profile of a clamped-clamped non-uniform
Rayleigh beam under the action of partially distributed masses

traveling at a variable velocity for various values of Axial force N

Fig. 5.7. Transverse displacement of a clamped-clamped non-uniform
Rayleigh beam under the action of partially distributed masses

traveling at a variable velocity for various values of shear modulus G



82 O. K. OGUNBAMIKE AND S. T. ONI

Fig. 5.8. Response amplitude of a clamped-clamped non-uniform
Rayleigh beam under the action of partially distributed masses

traveling at a variable velocity for various values of rotatory inertia
correction factor R0

Fig. 5.9. Comparison of the displacement response of moving force
and moving mass cases for a uniform clamped-clamped Rayleigh beam

for fixed value of K=400000, N=200000, G=100000, R0=0.5

The figure shows that as R0 increases, the dynamic deflection of the
beam decreases. Figure 5.14 shows the transverse displacement of
cantilever non-uniform Rayleigh beam under the action of partially
distributed masses moving at variable velocity for various values of
foundation stiffness K and for fixed values of axial force N , shear
modulus G and rotatory inertia correction factor R0. Results and
analyses similar to figure 5.10 are obtained. Also the response am-
plitude of the same non-uniform Rayleigh beam under the action
of partially distributed masses for various values of axial force N
and fixed values of foundation stiffness K, shear modulus G and
rotatory inertia correction factor R0 is displayed in figure 5.15. Re-
sults and analyses similar those of moving force in figure 5.11 are
obtained. The response amplitude of the cantilever beam under
the action of partially distributed masses moving at variable veloc-
ity for various values of shear modulus G is shown in figure 5.16.
Results obtained are similar to those in figure 5.12. Figure 5.17
shows that higher values of rotatory inertia correction factor R0 in-
crease the deflection profile of the cantilever beam under the action
of partially distributed masses moving at variable velocity for fixed
values of foundation stiffness K, axial force N and shear modulus
G.
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Fig. 5.10. Transverse displacement of a cantilever non-uniform
Rayleigh beam under the action of partially distributed forces traveling

at a variable velocity for various values of foundation stiffness K

Fig. 5.11. Deflection profile of a cantilever non-uniform Rayleigh
beam under the action of partially distributed forces traveling at a

variable velocity for various values of Axial force N

Fig. 5.12. Transverse displacement of a cantilever non-uniform
Rayleigh beam under the action of partially distributed forces traveling

at a variable velocity for various values of shear modulus G
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Fig. 5.13. Response amplitude of a cantilever non-uniform Rayleigh
beam under the action of partially distributed forces traveling at a

variable velocity for various values of rotatory inertia correction factor
R0

Fig. 5.14. Displacement response of a cantilever non-uniform
Rayleigh beam under the action of partially distributed masses

traveling at a variable velocity for various values of foundation stiffness
K
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Fig. 5.15. Deflection profile of a cantilever non-uniform Rayleigh
beam under the action of partially distributed masses traveling at a

variable velocity for various values of Axial force N

Fig. 5.16. Transverse displacement of a clamped-clamped
non-uniform Rayleigh beam under the action of partially distributed

masses traveling at a variable velocity for various values of shear
modulus G

Fig. 5.17. Response amplitude of a clamped-clamped non-uniform
Rayleigh beam under the action of partially distributed masses

traveling at a variable velocity for various values of rotatory inertia
correction factor R0
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Fig. 5.18. Comparison of the displacement response of moving force
and moving mass cases for a uniform clamped-clamped Rayleigh beam

for fixed value of K=400000, N=200000, G=100000, R0=0.5

Finally, figure 5.18 depicts the comparison of the transverse dis-
placement response of moving force and moving mass of a cantilever-
free Rayleigh beam traversed by a moving load travelling at variable
velocity for fixed values of K = 400000, N = 200000, G = 100000
and R0 = 0.5. It is clearly shown that moving mass deflection is
higher than that of the moving force showing that moving force
deflection is not always the upper bound of the deflection of the
dynamical system.

CONCLUDING REMARKS

This paper presents an analytical solution for the transverse dis-
placement of a non-uniform Rayleigh beam on a bi-parametric sub-
grade and under partially distributed masses moving at varying
velocities. The versatile method of Galerkin has been used to re-
duce the governing fourth order singular partial differential equa-
tion with variable coefficients to a sequence of second order ordinary
differential equations with variable coefficients. These equations are
treated using a modification of Strubles asymptotic techniques. The
resulting second order ordinary differential equation is solved using
the method of integral transformations. Numerical analyses were
carried out and the results show the following interesting features:

(i) for the moving distributed force and moving distributed
mass problems the response amplitudes of the beam tra-
versed by distributed load moving with variable velocity de-
crease with an increase in the values of foundation stiffness
K for fixed values of N , G and R0.
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(ii) higher values of axial force N reduce the response ampli-
tudes for both the moving force and moving mass problems.

(iii) greater values of the subgrade’s shear modulus G and ro-
tatory inertia r0 for fixed values of foundation stiffness K,
axial force N and shear modulus G are required for a notice-
able effect on the response amplitudes due to moving force
and moving mass in the vibrating system.

(iv) the response amplitudes of the Rayleigh beam decrease with
an increase in the values of shear modulus G for fixed values
of K,N and R0.

(v) as K increases, the response amplitude of the non-uniform
Rayleigh beams decreases. However the effect of K is more
noticeable than that of G.

(vi) for the non-uniform beam problem under the actions of a
partially distributed load moving with variable velocity, the
transverse displacement of the moving force is not always
greater than that of moving mass. This has previously been
reported in literature [4] and therefore, inertia of the moving
load must always be taken into consideration for accurate
and safe assessment of the response to moving distributed
load of elastic structural members.

Finally, for this dynamical system, for the same natural frequency,
the critical speed for moving mass problem is greater/smaller than
that of the moving force problem. Hence, resonance is reached
earlier in moving mass problem.
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