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EFFECT OF PERTURBATION IN THE CORIOLIS

FORCE ON THE STABILITY OF L4,5 IN

THE RELATIVISTIC R3BP

NAKONE BELLO

ABSTRACT. An investigation of motion of a test particle near
the triangular points L4,5 in the restricted three-body problem
(R3BP) when a small perturbation is given to the Coriolis force
within the framework of the post-Newtonian approximation is
carried out. It is seen that there is no explicit effect of this
perturbation on the positions of triangular point, whereas the
relativistic factor has. We also observe that the stability region is
affected by both the relativistic factor and a small perturbation
in the Coriolis force. It is also found that both the coordinates
of triangular points are affected by the mass ratio µ, contrary
to the classical case where only the abscissa is affected.

Keywords and phrases: Celestial Mechanics, Perturbation, Cori-
olis force, Relativity, R3BP. 2010 Mathematical Subject Classifica-
tion: 90C31, 70F07, 70F15.

1. INTRODUCTION

The planar circular restricted three-body problem describes the mo-
tion of the third body of infinitesimal mass moving in the gravita-
tional field of two massive bodies called primaries, which revolve
around their common center of mass in circular orbits under the
influence of their mutual gravitational attraction. This problem
possesses five points of equilibrium, three of them called collinear
points L1, L2,L3 and are unstable; the other two are called the trian-
gular points L4,L5, and are stable for the mass ratio μ < 0.03852...
(Szebehely [1]). Wintner [2] showed that the stability of these tri-
angular points is due to the existence of Coriolis force as the coordi-
nate system is rotating. Several studies (Szebehely [3]; Bhatnagar
and Hallan [4]; AbdulRaheem and Singh [5]; Singh [6] and Singh
and Begha [7] ) have described the effects of small perturbations in
the Coriolis and centrifugal forces on the motion of the third body.
Szebehely [3] investigated the stability of triangular points by keep-
ing the centrifugal force constant, and found that the Coriolis force
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is a stabilizing force. Later, SubbaRao and Sharma [8] proved that
this fact is not always true as they observed an increase in both
the Coriolis and centrifugal force due to oblateness of the primary.
This was confirmed by AbdulRaheem and Singh [5]. Bhatnagar
and Hallan [4] extended the work of Szebehely [3] by considering
the effect of perturbations in the Coriolis and centrifugal forces.
Of recent Singh [9] investigated the effects of small perturbations
in the Coriolis and centrifugal forces, radiation pressures and tri-
axiality of the two stars (primaries) on the positions and stability
of an infinitesimal mass (third body) in the frame work of the pla-
nar circular restricted three-body problem (R3BP). The author ob-
served that the positions of the three collinear and two triangular
equilibrium points are affected by radiation, triaxiality and a small
perturbation in the centrifugal force, but are unaffected by that of
the Coriolis force. The collinear points are found to remain unsta-
ble, while the triangular points are seen to be stable for 0 < μ < μc

and unstable for μc ≤ μ ≤ 1
2
, where μc is the critical mass ratio

influenced by small perturbations in the Coriolis and centrifugal
forces, radiation and triaxiality. The author also noticed that the
Coriolis force possesses a stabilizing behavior, while the centrifugal
force has a destabilizing behavior. Therefore, the overall effect is
that the size of the region of stability decreases with increase in the
values of the parameters involved.
The theory of general relativity is currently the most successful
gravitational theory describing the nature of space and time, and
is well confirmed by observations. Especially, it has passed “clas-
sical test” such as the deflection of light, the perihelion shift of
Mercury and the Shapiro time delay, and also a systematic test
using the remarkable binary pulsar “PSR1913+11” (Will [10]). In
addition, future space astrometric missions such as the Space In-
terferometry Mission (SIM) and Galactic Astrometric Instrument
for Astrophysics (GAIA) require a general relativistic modeling of
the solar system within the accuracy of a micro arc second (Klioner
[11]). In this context, it is worth and interesting to examine the
CR3BP in general relativity compared with Newtonian gravity.
Brumberg [12, 13] studied the relativistic problem of three bodies
in detail and compiled important results on relativistic celestial
mechanics. The author did not only obtained the equations of
motion for the general problem of three bodies but also deduced
the equations of motion of the restricted problem of three bodies.
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Bhatnagar and Hallan [14] studied the existence and linear stability
of the triangular points L4,5 in the relativistic R3BP and found that
they are always unstable in the whole range 0 ≤ μ ≤ 1

2
in contrast

to the classical R3BP where they are stable for μ < μ0, where μ is
the mass ratio and μ0 ≤ 0.03852... is the Routh’s value.
Ragos et al. [15] investigated numerically the linear stability of the
collinear libration points L1,2,3 in the relativistic R3BP for several
solar system cases, and found that they are unstable.
Douskos and Perdios [16] investigated the stability of the triangular
points in the relativistic R3BP and contrary to the result of Bhat-
nagar and Hallan [14] , they obtained a region of linear stability in

the parameter space 0 ≤ μ < μ0− 17
√
69

486c2
. They also determined the

positions of the collinear points and showed that they are always
unstable.
Ahmed et al. [17] studied also the stability of triangular points in
the relativistic R3BP. In contrast to the previous result of Bhat-
nagar and Hallan [14] they obtained a region of linear stability as
0 ≤ μ < μ0 +

11387
119232c2

.
Abd El-Salam and Abd El-Bar [18] studied the photogravitional
restricted three-body problem within the framework of the post-
Newtonian approximation. They obtained the locations of the tri-
angular points in the series forms which are new analytical results.
From the literature above, we are motivated to study the effect of
a small perturbation in the Coriolis force on the same problem.
This paper is organized as follows: in section 2, the equations gov-
erning the motion are presented; section 3 describes the positions of
equilibrium points, while their linear stability is analyzed in section
4; the discussion and numerical results are given in section 5 and
6 respectively. Finally, section 7 conveys the main findings of this
paper.

2. EQUATIONS OF MOTION

The motion of an infinitesimal mass in the relativistic R3BP in a
synodic coordinate system and dimensionless variables is controlled
by the equations (Brumberg [12], Bhatnagar and Hallan [14] ):

ξ̈ − 2nη̇ = ∂W
∂ξ

− d
dt

(
∂W
∂ξ̇

)
,

η̈ + 2nξ̇ = ∂W
∂η

− d
dt

(
∂W
∂η̇

)
,

(1)
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with

W = 1
2
(ξ2 + η2) + 1−μ

ρ1
+ μ

ρ2
+ 1

c2

[−3
2

(
1− 1

3
μ(1− μ)

)
(ξ2 + η2)

+1
8

{
ξ̇2 + η̇2 + 2(ξη̇ − ηξ̇) + (ξ2 + η2)

}2

+3
2

(
1−μ
ρ1

+ μ
ρ2

)(
ξ̇2 + η̇2 + 2(ξη̇ − ηξ̇) + (ξ2 + η2)

)
−
(

(1−μ)2

ρ21
+ μ2

ρ22

)
+ μ(1− μ)

{(
4η̇ + 7

2
ξ
) (

1
ρ1

− 1
ρ2

)
−η2

2

(
μ
ρ31

+ 1−μ
ρ32

)
+
(

−1
ρ1ρ2

+ 3μ−2
2ρ1

+ 1−3μ
2ρ2

)}]
,

(2)

n = 1− 3

2c2

(
1− 1

3
μ(1− μ)

)
, (3)

ρ21 = (ξ + μ)2 + η2,

ρ22 = (ξ + μ− 1)2 + η2,
(4)

where 0 < μ ≤ 1
2
is the ratio of the mass of the smaller primary to

the total mass of the primaries; ρ1 and ρ2are distances of the infin-
itesimal mass from the bigger and smaller primary, respectively; n
is the mean motion of the primaries; c is the velocity of light.
We now introduce a small perturbation in the Coriolis force by
means of a parameter ϕ = 1+ ε, |ε| << 1, with unperturbed value
unity. Consequently, the equations (1) may be written as in the
form:

ξ̈ − 2ϕnη̇ = ∂W
∂ξ

− d
dt

(
∂W
∂ξ̇

)
,

η̈ + 2ϕnξ̇ = ∂W
∂η

− d
dt

(
∂W
∂η̇

)
,

(5)

where,

W = 1
2
(ξ2 + η2) + 1−μ

ρ1
+ μ

ρ2
+ 1

c2

[−3
2

(
1− 1

3
μ(1− μ)

)
(ξ2 + η2)

+1
8

{
ϕξ̇2 + ϕη̇2 + 2ϕ(ξη̇ − ηξ̇) + (ξ2 + η2)

}2

+3
2

(
1−μ
ρ1

+ μ
ρ2

){
ϕξ̇2 + ϕη̇2 + 2ϕ(ξη̇ − ηξ̇) + (ξ2 + η2)

}
−1

2

(
(1−μ)2

ρ21
+ μ2

ρ22

)
+ μ(1− μ)

{(
4ϕη̇ + 7

2
ξ
) (

1
ρ1

− 1
ρ2

)
−η2

2

(
μ
ρ31

+ 1−μ
ρ32

)
+
(

−1
ρ1ρ2

+ 3μ−2
2ρ1

+ 1−3μ
2ρ2

)}]
,

(6)

3. LOCATIONS OF TRIANGULAR POINTS

The equilibrium points are obtained from equations (5) after putting

ξ̇ = η̇ = ξ̈ = η̈ = 0. These points are the solutions of the equations
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∂W
∂ξ

= 0 = ∂W
∂η

with ξ̇ = η̇ = 0.

This is equivalent to

ξ − (1−μ)(ξ+μ)

ρ31
− μ(ξ−1+μ)

ρ32
+ 1

c2

[−3ξ
(
1− 1

3
μ(1− μ)

)
+ 1

2
ξ(ξ2 + η2)

−3
2
(ξ2 + η2)

(
(1−μ)(ξ+μ)

ρ31
+ μ(ξ−1+μ)

ρ32

)
+ 3

(
1−μ
ρ1

− μ
ρ2

)
ξ

+ (1−μ)2(ξ+μ)

ρ41
+ μ2(ξ−1+μ)

ρ42
+ μ(1− μ)

{
7
2

(
1
ρ1

− 1
ρ2

)
+7

2
ξ
(
− (ξ+μ)

ρ31
+ (ξ−1+μ)

ρ31

)
+ 3

2
η2
(

μ(ξ+μ)

ρ51
+ (1−μ)(ξ−1+μ)

ρ52

)
+
(

ξ+μ
ρ31ρ2

+ ξ−1+μ
ρ1ρ32

− (3μ−2) (ξ+μ)
2ρ31

− (1−3μ) (ξ−1+μ)
2ρ32

)}]
= 0 ,

and

ηF = 0, (7)

where,

F =
(
1− (1−μ)

ρ31
− μ

ρ32

)
+ 1

c2

[−3
(
1− 1

3
μ(1− μ)

)
+ 1

2
(ξ2 + η2)

+3
(

(1−μ)
ρ1

+ μ
ρ2

)
− 3

2
(ξ2 + η2)

(
(1−μ)
ρ31

+ μ
ρ32

)
+
(

(1−μ)2

ρ41
+ μ2

ρ42

)
+μ(1− μ)

{
7
2
ξ
(
− 1

ρ31
+ 1

ρ32

)
−
(

μ
ρ31

+ 1−μ
ρ32

)
+3

2
η2
(

μ
ρ51

+ (1−μ)
ρ52

)
+ 1

ρ31ρ2
+ 1

ρ1ρ32
− (3μ−2)

2ρ31
− (1−3μ)

2ρ32

}]
,

The triangular points are the solutions of equations (7) with η �= 0.
Since 1

c2
<< 1 and in the case 1

c2
→ 0, one can obtain ρ1 = ρ2 = 1;

we assume in the relativistic R3BP thatρ1 = 1+x and ρ2 = 1 +y
where, x, y << 1 may depend upon the relativistic and Coriolis
effects. Substituting these values in the equations (4), solving them
for ξ, η and ignoring terms of second and higher powers of x and y
, we get

ξ = x− y +
1− 2μ

2
,

η = ±
(√

3

2
+

x+ y√
3

)
,

Now substituting the values of ρ1, ρ2, ξ, η from above in equations
(7) with η �= 0, and neglecting second and higher order terms in
x, y, 1

c2
, we have

(1− μ)x− μy − 3μ(1−2μ) (1−μ)
8c2

= 0,

(1− μ)x+ μy +
7 (μ−μ2)

8c2
= 0.

(8)
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Solving these equations for x and y,we get

x = −μ (2 + 3μ)

8c2
,

y = −(1− μ) (5− 3μ)

8c2
.

Thus, the coordinates of the triangular points (ξ,±η) denoted by
L4 and L5 respectively are,

ξ = 1−2μ
2

(
1 + 5

4c2

)
,

η = ±
√
3
2

{
1 + 1

12c2
(−5 + 6μ− 6μ2)

}
.

(9)

4. LINEAR STABILITY

Let (a, b) be the coordinates of the triangular pointL4. We set
ξ = a + α , η = b + β , (α , β << 1) in the equations (5) and for
simplicity we substitute the value of ϕ = 1 + ε. First, we compute
the terms on their right hand side, neglecting second and higher
order terms of small quantities to obtain(

∂W

∂ξ

)
ξ=a+α , η=b+β

= Aα +Bβ + Cα̇ +Dβ̇

where,

A =
3

4

{
1 +

1

2c2
(
2− 19μ+ 19μ2

)}
,

B = 3
√
3

4
(1− 2μ)

(
1− 2

3c2

)
,

C =

√
3 (1− 2μ)

2c2
(1 + ε)

D =
6− 5μ+ 5μ2

2c2
(1 + ε)

Similarly, we get(
∂W

∂η

)
ξ=a+α , η=b+β

= A1α+B1β + C1α̇ +D1β̇

where,

A1 =
3
√
3

4
(1− 2μ)

(
1− 2

3c2

)
,

B1 =
9

4

{
1 +

7 (−2 + 3μ− 3μ2)

6c2

}
,
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C1 =
1

2c2
(−4 + μ− μ2

)
(1 + ε) ,

D1 = −
√
3

2c2
(1− 2μ) (1 + ε) .

d

dt

(
∂W

∂η̇

)
ξ=a+α , η=b+β

= A2α̇ +B2β̇ + C2α̈+D2β̈,

where,

A2 =
√
3

2c2
(1− 2μ) (1 + ε) ,

B2 =
(−4+μ−μ2)

2c2
(1 + ε) ,

C2 =
17−2μ+2μ2

4c2
+
{

10−μ+μ2

2c2

}
ε,

D2 =

√
3

4c2
(1− 2μ) (1 + 2ε) .

d

dt

(
∂W

∂η̇

)
ξ=a+α , η=b+β

= A3α̇ +B3β̇ + C3α̈ +D3β̈

where,

A3 =
6−5μ+5μ2

2c2
(1 + ε) ,

B3 = −
√
3

2c2
(1− 2μ) (1 + ε) ,

C3 = −
√
3

4c2
(1− 2μ) (1 + ε) ,

D3 =
3 (5−2μ+2μ2)

4c2
+
{

8−5μ+5μ2

2c2

}
ε.

Thus, the variational equations of motion corresponding to equa-
tions (5), on making use of equation (3), can be obtained as

P1α̈+ P2β̈ + P3α̇ + P4β̇ + P5α + P6β = 0,

Q1α̈ +Q2β̈ +Q3α̇ +Q4β̇ +Q5α +Q6β = 0,

(10)
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where,

P1 = 1 + C2, P2 = D2, P3 = A2 − C,
P4 =

{
B2 − 2 (1 + ε)

(
1− 1

2c2
(3− μ+ μ2)

)−D
}
, P5 = −A,

P6 = −B

Q1 = C3, Q2 = 1 +D3, Q3 = 2 (1 + ε)
(
1− 1

2c2
(3− μ+ μ2)

)− C1

+A3 , Q4 = B3 −D1, Q5 = −A1, Q6 = −B1

Then the corresponding characteristic equation is

(P1Q2 − P2Q1)λ
4 + (P1Q6 + P5Q2 + P3Q4 − P6Q1 − P2Q5 − P4Q3)λ

2

+P5Q6 − P6Q5 = 0
(11)

Substituting the values of Pi, Qi, i = 1, 2, ..., 6 in (11), the charac-
teristic equation (11) after normalization becomes

λ4 + bλ2 + d = 0, (12)

where,

b=
(
1− 9

c2

)
+
{
8 + −147+30μ−30μ2

2c2

}
ε,

d = 27
4
μ(1− μ) + −585μ+693μ2−216μ3+108μ4

8c2

+
{

−243μ+324μ2−162μ3+81μ4

4c2

}
ε.

When 1
c2

→ 0 and there is no perturbation in the Coriolis force(i.e. ε =
0), (12) reduces to its well known classical restricted problem form
(see e.g. Szebehely [1] ).
The discriminant of (12) can be written as

Δ =
(−54

c2
− 81ε

c2

)
μ4 +

(
108
c2

+ 162 ε
c2

)
μ3 +

(
27− 693

2c2
− 354ε

c2

)
μ2

+
(−27 + 585

2c2
+ 273ε

c2

)
μ+1 + 16ε− 18

c2
− 291 ε

c2

(13)
and its roots are

λ2 =
−b ±√

Δ

2
(14)

where,

b =
(
1− 9

c2

)
+
{
8 + −147+30μ−30μ2

2c2

}
ε,

From (13),we have
dΔ
dμ

= 4
(−54

c2
− 81ε

c2

)
μ3 + 3

(
108
c2

+ 162 ε
c2

)
μ2

+2
(
27− 693

2c2
− 354 ε

c2

)
μ+

(−27 + 585
2c2

+ 273ε
c2

)
< 0

, ∀μ ∈ (0, 1
2

]
.

(15)

From (15), it follows that Δ is a decreasing function in
(
0, 1

2

]
.
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But
(Δ)μ=0 = 1− 18

c2
+
(
16− 291

c2

)
ε > 0

and

(Δ)μ= 1
2
= −23

4
+ 207

4c2
+
(
16− 3645

16c2

)
ε < 0

(16)

Since (Δ)μ=0 and (Δ)μ= 1
2
are of opposite signs, and Δ is monotone

and continuous, there is one value of μ, e.g. μc in the interval
(
0, 1

2

]
for which Δ vanishes.
Solving the equation Δ = 0, using (13), we obtain critical value of
the mass parameter as

μc =
1
18

(
9−√

69
)− 17

√
23
3

162c2
+

(
16

3
√
69

− 47
√

23
3

27c2

)
ε

= μ0 − 17
√
69

486c2
+
(

16
3
√
69

− 47
√
69

81c2

)
ε

(17)

where μ0 = 0.03852... is the Routh’s value
There are three possible cases regarding the sign of the discriminant
Δ:

i. When 0 ≤ μ < μc, Δ > 0 the values of λ2 given by (14)
are negative and therefore all the four characteristic roots
are distinct pure imaginary numbers. Hence, the triangular
points are stable.

ii. When μc < μ ≤ 1
2
, Δ < 0, the real parts of the character-

istic roots are positive. Therefore, the triangular points are
unstable.

iii. When μ = μc, Δ = 0, the values of λ2 given by (14) are
the same. Thus the solutions contain secular terms. This
induces instability of the triangular points.

Hence the stability region is

0 ≤ μ < μ0 − 17
√
69

486c2
+

(
16

3
√
69

− 47
√
69

81c2

)
ε (18)

In the absence of a small perturbation in the Coriolis force (i.e. ε = 0),
μc reduces to the critical mass value of the unperturbed relativistic
R3BP. This confirms the result of Douskos and Perdios [16], but
disagrees with that of Ahmed et al [17].
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In the presence of the perturbation ε and in the absence of rela-
tivistic term 1

c2

(
i.e. 1

c2
→ 0

)
,μc verifies the results of Bhatnagar and

Hallan [4] when a small perturbation in centrifugal force is absent
and those of Szebehely [3].
It is noticed from (18) that Coriolis force has stabilizing influence.
This agrees with the result of Singh [9] and those of AbdulRaheem
and Singh [5].

5. DISCUSSION

Equations (5) and (6) describe the motion of a test particle in the
relativistic R3BP with a small perturbation ε in the Coriolis force.
Equations (9) determine the positions of triangular points which
are not affected by the perturbation in the Coriolis force but are
affected by the relativistic factor. These positions correspond to
those of Bhatnagar and Hallan [14], Douskos and Perdios [16] and
Ahmed et al. [17]. It is noticed from equation (9) that the trian-
gular points form isosceles triangles with the two primaries bodies
contrary to the classical case in which they form equilateral trian-
gles. We also in (9) observe that both ξ, ηcoordinates are affected
by the mass ratioμ, contrary to the classical case where only the
abscissa is affected. Equation (17) gives the critical value of the
mass parameter which depends upon the small perturbation in the
Coriolis force and relativistic factor. It is noticed from equation
(18) that the Coriolis’ perturbation expands when ε > 0, contracts
when ε < 0 and the relativistic factor reduces the size of the region
of stability separately, but their joint effect keeps contraction when
ε > 0 and expansion when ε < 0 in that size of stability.
In the absence of perturbation in the Coriolis force (i.e. ε = 0), the
stability results obtained in this study are in agreement with those
of Douskos and Perdios [16] and disagree with those of Ahmed et al.
[17] and Bhatnagar and Hallan [14]. In the absence of relativistic
terms, the present results coincide with those, of AbdulRaheem
and Singh [5] when the primaries are spherical dark bodies and the
small perturbation in the centrifugal force is absent. The result also
coincides with that of Szebehely [3], and Bhatnagar and Hallan [14]
when the centrifugal force is absent.
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6. NUMERICAL RESULTS

The values of μcritical obtained from (17) using the Sun-Earth sys-
tem for various values of the parameter ε are tabulated in Table
1.
Table1. Critical mass (μ = 0.000003003500, c = 10064.84)

Perturbation
parameter ε

0.050000
-0.050000
0.010000
-0.010000
0.005000
-0.005000
0.001000
-0.001000
0.000500
-0.000500
0.000100
-0.000100
0.000050
-0.000050
0.000010
-0.000010
0.000005
-0.000005

μ0

0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965
0.0385208965

μc(with
ε = 0)

0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208946
0.0385208945
0.0385208945
0.0385208945
0.0385208945

μc(Eq.17)

0.0706237871
0.0064180020
0.0449414731
0.0321003161
0.0417311838
0.0353106053
0.0391629524
0.0378788367
0.0388419235
0.0381998656
0.0385851004
0.0384566888
0.0385529974
0.0384887917
0.0385273152
0.0385144739
0.0385241018
0.0385176843

7. CONCLUSION

By considering a small perturbation in the Coriolis force in the
relativistic CR3BP, the positions of the triangular points have been
determined and their linear stability has been examined. It has also
been observed that their positions are not affected by a small change
in the Coriolis force but are affected by the relativistic factor. It is
also noticed that the general stabilizing characteristic of the Coriolis
force remains unaltered and the region of stability is affected by
both the relativistic factor and perturbation in the Coriolis force.
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It is seen from Table 1, that the relativistic factor reduces the size
of the region of stability separately. It is also observed that μc > μ0

for ε > 0 and μc < μ0 for ε < 0, establishing that the Coriolis force
has a stabilizing characteristic behavior.
It is noticed that expressions for A,D,A2, C2 in Bhatnagar and
Hallan [14] differ from those of the unperturbed case of the present
study. Consequently, the expressions for P1, P3, P4, P5 and the char-
acteristic equation are also different. This led Bhatnagar and Hal-
lan [14] to infer that triangular points are unstable, contrary to
Douskos and Perdios [16] and the present result.
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