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A MODIFIED SPECTRAL CONJUGATE GRADIENT

METHOD FOR SOLVING UNCONSTRAINED

MINIMIZATION PROBLEMS
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ABSTRACT. The development a modified spectral conjugate
gradient method for solving unconstrained minimization prob-
lems is considered in this paper. A new Conjugate (update)
parameter isobtained by the idea of Dai-Kou’s technique for gen-
erating conjugate parameters. A new spectral parameter is also
presented based on quasi-Newton direction and quasi-Newton
condition. Under the strong Wolfe line search, the proposed
method (DOO) is proved to be globally convergent. Numerical
results showed that the algorithm takes lesser number of itera-
tions to obtain the minimum of a given function.
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1. INTRODUCTION

Let us consider the unconstrained optimization problem:

min{f(x)|x ∈ Rn}, (1)

where f : Rn → R is continuously differentiable. The gradient vec-
tor of f(x) is denoted by g(x), that is , g(x) = ∇f(x). Conjugate
Gradient Methods (CGMs) are very effective for solving large-scale
unconstrained optimization problem . The basic approach of the
traditional CGMs is to generate a sequence {xk}of iterates accord-
ing to

xk+1 = xk + αkdk (2)
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where αk is the step size minimizing f approximately along dk
from xk by a suitable line search. And the next search direction
is generated by

dk+1 = −g(xk+1) + βkdk (3)

with a suitable conjugate (update) parameter βk , where d1 =
−g(x1)

It is an established fact that different conjugate parameters corre-
spond to different CGMs and their numerical performance and con-
vergence also varies. Well-known formulas for βk are the ones devel-
oped by Dai and Yuan[5], Fletcher conjugate descent[7], Fletcher
and Reeves[8], Hestenes and Stiefel [9], Liu and Storey[12], and
Polak-Rebie’re- Polyak [13]. To attain good computational perfor-
mance and to maintain the attrative feature of strong global conver-
gence, researchers paid special attention to spectral CGMs. Barzilai
and Borwein [3] considered a spectral conjugate gradient method for
solving large scale unconstrained optimization problem (1) where
they define their step-length as xk+1 = xk − 1

αk
gk . gk is the gradi-

ent vector of f at xk and the scalar αk is given by αk =
sTk−1yk−1

sTk−1sk−1

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Every iteration of
their method requires only O(n) floating point operations and a
gradient evaluation. No matrix computations and no line searches
are required during the process. More interesting from a theoretical
point of view is that the method does not guarantee descent in the
objective function. Andrei [1], proposed a spectral CGM, where the
search direction is given by dk+1 = −θk+1gk+1 + βNk sk, dk = −g1
and θk+1 is the spectral parameter. The directions yielded by dk+1,
βNk and θk+1 possess descent property as gTk dk+1≤−(θk+1− 1

4)‖gk+1‖2.

This shows that the direction is descent only in case θk+1 > 1
4
.

Therefore, to obtain descent in any case, Andrei reset θk+1 = 1 in
case θk+1 6 1

4
. Dai and Kou [4] proposed a family of generating

conjugate parameters as:

βk(τk) =
yTk gk+1

dTk yk
−

(
τk +

‖yk‖2

sTk yk
− sTk yk

‖sk‖2

)
sTk gk+1

dTk yk

where τk is a pending parameter. Dai and Kou [4] emphasized that:

τk =
sTk yk

‖sk‖2
where sk−1 = xk − xk−1 and yk−1 = gk − gk−1.

Jinbao, et al. [10], proposed a new spectral conjugate gradient
method for large-scale unconstrained optimization based on quasi-
Newton direction and quasi-Newton condition. They introduced a
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new approach for generating spectral parameters by a new double-
truncating technique, which can ensure both the sufficient descent
property of the search directions and the bounded property of the
sequence of spectral parameters. Despite the success recorded by
this method, it does not guarantee descent direction in some in-
stances in the objective function. This leads to large number of
iterations to achieve convergence.

In this paper, the conjugate parameter of Polak, Ribie’re and
Polyak [13] will be combined with that of Dai and Kou [4] to ob-
tain new βpk ; quasi-Newton direction and condition will be used to
obtain the required new search direction.

2.DERIVATION OF THE METHOD

2.1 Selection of the Modified Conjugate (Update) CG Pa-
rameter
Consider a spectral CGM of the form:

dk+1 = −θk+1gk+1 + βkdk, d1 = −g1 (4)

where βk is the conjugate (update) parameter and θk+1 is the spec-
tral parameter. Combining the conjugate parameter of Polak, Ri-
bie’re and Polyak(βPRPk ) with the conjugate parameters of Dai and
Kou [4], new conjugate parameter is obtain as:

βk(τk) = βPRPk −

(
τk +

‖yk‖2

sTk yk
− sTk yk

‖sk‖2

)
sTk gk+1

dTk yk
(5)

but

τk =
sTk yk

‖sk‖2
and βPRPk =

gTk+1yk

‖gk‖2
=
yTk gk+1

‖gk‖2
(6)

Substitute (6) into (5) and simplify, to obtain βPk as

βPk =
yTk gk+1

‖gk‖2
−

(
sTk yk

‖sk‖2
+
‖yk‖2

sTk yk
− sTk yk

‖sk‖2

)
sTk gk+1

dTk yk

βPk =
yTk gk+1

‖gk‖2
− ‖yk‖

2 dTk gk+1

(dTk yk)
2 ∀ sTk = dTk (7)

Substituting (7) into (4), the direction becomes

dk+1 = −θk+1gk+1 + βPk dk, d1 = −g1 (8)

2.2 Selection of the New Spectral Parameter ( θPk+1)
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To obtain the new spectral parameter ( θPk+1) , the search direc-
tion dk+1 generated by (8) could be approximated by quasi-Newton
direction as,

dk+1 u −H−1k+1gk+1 (9)

where Hk+1 is an approximation of the Hessian ∇2f(xk+1).
Equating (8) and (9) to have

θk+1gk+1 =
gk+1

Hk+1

+ βPk d k

Multiply through by Hk+1 and STk to have

θk+1Hk+1gk+1 = gk+1 + βPk d kHk+1 (10)

From quasi-Newton condition

STkHk+1 = yTk (11)

Substitute (11) into (10), and then substitute for βPk to have

θPk+1 =
yTk dk

‖gk‖2
− 1

yTk gk+1

(
‖yk‖2 dTk gk+1

dTk yk
− STk gk+1

)
(12)

Thus, the new search direction in (8) becomes

dk+1 = −θPk+1gk+1 + βPk dk, d1 = −g1 (13)

with βPk and θPk+1 defined by (7) and (12) respectively.
2.3 Descent Property of the Search Direction
The direction defined by (13) has the following descent property.
Theorem 1
The direction dk+1 generated by βpk satisfies gTk+1dk+1 ≤ −(θpk+1 −
1
4
) ‖gk+1‖2 , k = 0, 1, 2, ..., where θp1 = 1. particularly, dk+1 is a

descent direction when θk+1 >
1
4
.

Proof
For k = 0, from (13) the relation is true.

gT1 d1 = −‖g1‖2 ≤ −(1− 1

4
) ‖g1‖2 .

For k ≥ 1
Multiply (13) by gTk+1 and Substitute for βpk to have

gTk+1dk+1 = −θPk+1 ‖gk+1‖2 +
gTk+1ykg

T
k+1dk

‖gk‖2
− ‖yk‖

2 (dTk gk+1)
2

(dTk yk)
2

(14)
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Taking into acccount the inequality UTV = 1
2

(
‖U‖2 + ‖V ‖2

)
∀U, V ∈

Rn, letting U = 1√
2
gk+1 and V =

√
2
ykg

T
k+1dk

dTk yk
, we have

gTk+1ykg
T
k+1dk

dTk yk
≤ 1

4
‖gk+1‖2 +

‖yk‖2 (gTk+1dk)
2

(dTk yk)
2

(15)

Substitute (15) into (14) to have

gTk+1dk+1 = −θPk+1 ‖gk+1‖2+
1

4
‖gk+1‖2+

‖yk‖2 (gTk+1dk)
2

(dTk yk)
2

−‖yk‖
2 (dTk gk+1)

2

(dTk yk)
2

gTk+1dk+1 = −
(
θPk+1 −

1

4

)
‖gk+1‖2 .

Therefore, the desired result holds �
2.4 Wolfe Line Search
The Wolfe-type line search can bring good convergence of the asso-
ciated CGMs. The two Wolfe-type line searches that will be used
to generate the step size αk are:

1. Standard Wolfe line Search , where 0 < δ ≤ σ < 1

f(xk + αKdk)− f(xk) ≤ δαKg
T
k dk (16)

g(xk + αkdk)
Tdk ≥ σgTk dk

2. Strong Wolfe line search , where 0 < δ ≤ σ < 1

f(xk + αKdk)− f(xk) ≤ δαKg
T
k dk∣∣g(xk + αkd)Tdk

∣∣ ≤ −σgTk dk (17)

Algorithm DOO (Danhausa, Odekunle and Onanaye)
The steps of our algorithm can be given as:

Step 1. Given an initial point xo ∈ Rn, accuracy tolerance ε > 0,
positive parameters δ and σ such that δ < σ. Let d1 = −g1, set
k := 1.

Step 2. Generate a step size by (16) and (17)
Step 3. Evaluate xk+1 by (2) and compute gk+1 = ∇f(xk+1). If
|gk+1| < ε, stop. Otherwise, go to Step 4.

Step 4. Compute the conjugate (update) parameter βPk and then
generate θPk+1. by (7) and (12)

Step 5. Generate the next direction by (13). Set k := k + 1, go
to Step 2.
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3. CONVERGENCE ANALYSIS

In this section, the analysis of the convergence of Algorithm DOO
is considered. For the proof of the global convergence, the following
basic assumptions are needed.
Assupmtion 1

1. The level set S = {x ∈ Rn : f(x) ≤ f(x0)} is bounded.
2. In a neighbourhood U of S, the function f is differentiable

and it is Lipschitz continuous, i.e, thre exists a constant L > 0,
such that ‖g(x)− g(y)‖ ≤ L ‖x− y‖ ∀x, y ∈ U.
Lemma 1
Consider a CGM of the form (2) for solving the unconstrained opti-
mazation problem where dk satisfies the descent condition gTk dk < 0
and the step size satisfies the Standard Wolfe line searches (16) If

Assumption 1 holds then
∞∑
k=1

(gTk dk)
2

‖dk‖2
<∞

Proof
From (16), we have

gT(xk)dk + g(αkdk)
Tdk ≥ σgTk dk

(gk+1 − gk)T dk ≥ (σ − 1)gTk dk (18)

Noting that {xk} ⊂ S and by Lipschitz condition we have,

(gk+1 − gk)T dk ≤ L ‖αkdk ‖ ‖dk‖ ≤ L |αk| ‖dk‖2 ≤ Lαk ‖dk‖2 (19)

Equating (18) and (19), we have

αk ≥
(σ − 1)

L

gTk dk

‖dk‖2
(20)

Substituting (20) into (16), to have

fk − fk+1 ≤ δ
(1− σ)

L

(gTk dk)
2

‖dk‖2

Summing this relation over k and noting the boundedness of {fk} ,
we can see that the sequence for the iteration converges �
Lemma 2
Consider a spectral CGM, where the sequence {xk} are generated
by (2) and (13); the spectral parameter θpk+1 >

1
4

and the step size
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αk is generated by the strong Wolfe line search (24). If Assumption
1 holds then

∞∑
k=1

‖gk‖4

‖dk‖2
<∞

Proof
Since θpk+1 >

1
4
, it is clear that gTk dk < 0 by theorem 1.From (13),

make βPk dk the subject and square both sides

(βpk)
2 ‖dk‖2 = ‖dk+1‖2 + 2θpk+1g

T
k+1dk+1 + (θpk+1)

2 ‖gk+1‖2

Note that,

‖dk+1‖2

‖dk‖2
− (βpk)

2 ≥ −(θpk+1)
2‖gk+1‖2

‖dk‖2
(21)

Multiply (13) by gk+1

gTk+1dk+1 − βpkd
T
k gk+1 = −θpk+1 ‖gk+1‖2

Therefore,

|βpk |
∣∣dTk gk+1

∣∣+ |gk+1dk+1| ≥ θpk+1 ‖gk+1‖2 (22)

Let σmax = {σ, σ1,σ2} > 0 where 0 ≤ δ ≤ σ ≤ σ1 ≤ σ2. Then, the
step size αk satifies (22) plus∣∣g(xk + αkd)Tdk

∣∣ ≤ −σmaxg
T
k dk = σmax

∣∣gTk dk∣∣ (23)

Equation (23), together with (22), further shows that

σ |βpk |
∣∣dTk gk∣∣+

∣∣gTk+1dk+1

∣∣ ≥ θpk+1 ‖gk+1‖2 (24)

From the L.H.S of (24), in view of the fact that inequality (a2 +
σb2) ≤ (1 + σ2)(a2 + b2) always holds for any nonnegative numbers
a, b and σ and letting a = |gk+1dk+1| , b =

∣∣βpkdTk gk∣∣
(gTk+1dk+1 + σβpkd

T
k gk)

2 ≤ (1 + σ2)
[
(gTk+1dk+1)

2 + (βpk)
2(dTk gk)

2
]

(25)
Squaring the R.H.S of (24), together with (25), we have

(1 + σ2)
[
(gTk+1dk+1)

2 + (βpk)
2(dTk gk)

2
]
≥ (θpk+1)

2 ‖gk+1‖4

(gTk+1dk+1)
2 ≥ ck ‖gk+1‖4 − (βpk)

2(dTk gk)
2 (26)

where
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ck =
(θpk+1)

2

1 + σ2
max

> 0

Considering,

(gTk+1dk+1)
2

‖dk+1‖2
+

(dTk gk)
2

‖dk‖2
=

1

‖dk+1‖2

[
(gTk+1dk+1)

2 +
‖dk+1‖2

‖dk‖2
(dTk gk)

2

]
(27)

Substitute (26) into (27), we have

(gTk+1dk+1)
2

‖dk+1‖2
+

(dTk gk)
2

‖dk‖2
≥ 1

‖dk+1‖2

[
ck ‖gk+1‖4 +

(
‖dk+1‖2

‖dk‖2
− (βpk)

2

)
(dTk gk)

2

]
(28)

Substitute (21) into (28), we have

(gTk+1dk+1)
2

‖dk+1‖2
+

(dTk gk)
2

‖dk‖2
≥ ‖gk+1‖4

‖dk+1‖2

[
ck − (θpk+1)

2 (dTk gk)
2∥∥‖dk‖2∥∥∥∥‖gk+1‖2

∥∥
]

Substituting for ck

(gTk+1dk+1)
2

‖dk+1‖2
+

(dTk gk)
2

‖dk‖2
≥ (θpk+1)

2 ‖gk+1‖4

‖dk+1‖2

[
1

(1 + σ2
max)

− (dTk gk)
2∥∥‖dk‖2∥∥∥∥‖gk+1‖2

∥∥
]

From Lemma 1, lim
k→∞

(gTk dk)
2

‖dk‖2
= 0

In view of lim
k→∞

(gTk dk)
2

‖dk‖2
= 0, from (29), we have

lim
k→∞

(gTk dk)
2

‖dk‖2
1

‖gk+1‖2
= 0

Thus, for any sufficiently large k, taking into account (29) and
θpk+1 >

1
4
, we have

(gTk+1dk+1)
2

‖dk+1‖2
+

(dTk gk)
2

‖dk‖2
≥ 1

32(1 + σ2
max)

‖gk+1‖4

‖dk+1‖2

This together with Lemma 1 shows that conclusion (29) holds
true.�
Theorem 2
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Consider the sequence {xk} given by Algorithm DOO. If Assump-
tion 1 holds, f is uniformly convex, then lim

k→∞
inf = 0, i.e, the algo-

rithm is globally convergent.
Assumption 2
For k large enough the inequalities

0 < gTk+1gk ≤ 2gTk+1gk+1

Proof
Suppose that there exists a positive constant ε > 0, such that

‖gk‖ ≥ ε (30)

Square both side of (13)

‖dk+1‖2 = (θpk+1)
2 ‖gk+1‖2−2θpk+1g

T
k+1dk+1−2(θpk+1)

2 ‖gk+1‖2+(βpk)
2 ‖dk‖2

(31)
From (13), make βpk the subject and substitute for βpk in the second
term on the R.H.S of (31)

‖dk+1‖2 = (βpk)
2 ‖dk‖2 − 2θpk+1g

T
k+1dk+1 − (θpk+1)

2 ‖gk+1‖2

Divide both side by ‖gk+1‖4 , we have

‖dk+1‖2

‖gk+1‖4
=

(βpk)
2 ‖dk‖2

‖gk+1‖4
−

2θpk+1g
T
k+1dk+1

‖gk+1‖4
−

(θpk+1)
2 ‖gk+1‖2

‖gk+1‖4
(32)

gTk dk = −‖gk‖2 ⇒ gTk+1dk+1 = −‖gk+1‖2 (33)

Substitute (33) into (32), we have

‖dk+1‖2

‖gk+1‖4
=

(βpk)
2 ‖dk‖2

‖gk+1‖4
−

(θpk+1 − 1)2

‖gk+1‖2
+

1

‖gk+1‖2
(34)

Substitute (7) into (34) (Also recall that yk = gk+1 − gk) :

‖dk+1‖2

‖gk+1‖4
=
‖dk‖2

‖gk+1‖4

[
gTk+1(gk+1 − gk)

‖gk‖2
− ‖yk‖

2 dTk gk+1

dTk (gk+1 − gk)

]2
−

(θpk+1 − 1)2

‖gk+1‖2
+

1

‖gk+1‖2

From Assumption 2, 0 < gkgk+1 ≤ 2gTk+1gk+1

‖dk+1‖2

‖gk+1‖4
≤ ‖dk‖

2

‖gk‖4
+

1

‖gk+1‖2

Let k = k − 1, then
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‖dk‖2

‖gk‖4
≤ ‖dk−1‖

2

‖gk−1‖4
+

1

‖gk‖2

‖dk‖2

‖gk‖4
≤

k−1∑
i=0

1

‖gi‖2

From(30), ‖gk‖ ≥ ε
Therefore,

‖dk‖2

‖gk‖4
≤ k

ε2

Taking the inverse of both sides and applying summation

∑
k≥1

‖gk‖4

‖dk‖2
≥ ε2

∑
k≥1

1

k
= +∞

which contradicts Lemma 2, therefore lim
k→∞

inf ‖gk‖ = 0.

Hence, the proof of the desired result has been completed �

4. NUMERICAL EXPERIMENT

Here, we intend to check the numerical performance of the proposed
Algorithm and compare it with the methods [2, 10, 11], with a large
number of numerical experiments on large-scale instances.

4.1 Preparation

The testing problems consist of 96 instances from ten to ten thou-
sand variables. For the sake of analyzing and comparing the nu-
merical results, for all tested methods, the parameters and stop
criterion will be uniformly chosen as σ = 0.9 , δ = 0.00001, stop
criterion : (i) ‖gk‖ < 10−6 or (ii) Itr ¿ 2000, where ITR denotes the
number of iterations, and the step size is always generated by (17).
All codes are written in MatLab 8.5 and run on a Samsung PC with
1.67 GHz, 2 GB RAM memory and Windows 7.0 operating system.
When observing the numerical performance of a given optimal method,
the number of iterations (ITR), function evaluations (NF), gradi-
ent evaluations (NG), Central Processing Unit time (CT) and so
on are important factors. Particularly, CPU time is the critical
observation point. So, to show the performance difference between
the tested methods more clearly, we adopt the performance pro-
files [6] to summarize the numerical performances of the proposed
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Algorithm and compare it with methods [ 2, 10, 11], with a large
number of numerical experiments on large-scale instances. These
performance profiles allow us to compare objectively the different
methods with respect to robustness and efficiency. We say that a
given solver is robust for solving a given optimization problem if
it succeeds in finding an optimal solution, and it is efficient if it
requires fewer CT, NF, NG, ITR and so on. Efficiency and robust-
ness rates are readable on the left and right vertical axes of the
associated performance profiles, respectively.

4.2 Numerical Experiment

Experiment I—numerical performance of our method (N-
M) compare with methods [2, 10, 11] with respect to num-
ber of iterations.

Here, we test our method (N-M) on 96 middle-large-scale instances
using 48 problems from ten to ten thousand variables, and com-
pare it with Loannis and Panagiotis’s spectral CGM [11] (LP),
Birgin and Martinez’s spectral CGM [2] (BM), and Jinbao, Qian,
Xianzhen, Youfang and Jianghua’s spectral CGM [10] ( JQXYJ).
All the tests are carried out under ceteris paribus conditions.
In Figure 1, N-M slightly outperforms the LP, BM, and JQXYJ
methods respectively, as the former is always on the top curve of
the other three methods. The N-M solves 30% of the test problems
with the least number of iteration while the LP, the BM and JQXYJ
approximately solve about 15%, 27% and 22% of the test problems
respectively. Therefore, N-M outperforms the other three method
with respect to iterations numbers. Similar result is obtained when
we considered the total numbers of function evaluations and the
respective gradient evaluations.

Experiment II—numerical performance of our method (N-
M) compare with methods [2, 10, 11] with respect to CPU
time.

Here, we test our method (N-M) on 96 middle-large-scale instances
from ten to ten thousand variables, and compare it with Loannis
and Panagiotis’s spectral CGM [11] (LP), Birgin and Martinez’s
spectral CGM [2] (BM), and Jinbao, Qian, Xianzhen, Youfang and
Jianghua’s spectral CGM [10] ( JQXYJ) with respect to CPU time.
In Figure 2, the performance profile was compared with respect to
CPU time of N-M with the LP, BM and JQXYJ methods. The
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Fig. 1. Performance profile with respect to number of iteration of LP,
JQXYJ, N-M and BM

Figure shows that the LP solve 25% of the test problems with the
least CPU time, followed by the N-M method, BM method and
JQXYJ method respectively. Since all methods are implemented
with the same condition of line search, by taking the three factors all
in all, we conclude that, N-M to generate the more efficient search
direction, on the whole. This is further supported by the fact that
run-based profiling can be very sensitive to hardware configuration
and the possibility of other internal or external interruptions to the
computer during computation

Fig. 2. Performance profile with respect to CPU time of N-M,
JQXYJ, LP and BM
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5. CONCLUDING REMARKS

In conclusion, a Modified Spectral Conjugate gradient Method was
developed for solving unconstrained minimization problem, where
the step length is generated by the Strong Wolfe line Search. When
the objective function is uniformly convex, the proposed algorithm
is proved to be globally convergent. A large number of numerical
examples on large-scale instances are reported, and this shows that
the proposed method is promising.
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APPENDIX

The test problems used in these analysis are the unconstrained problems in the CUTE test

problem library.
1. Extended White and Holst function

2. Extended Rosenbrock Function

3. Extended Freudenstein and Roth Function
4. Extended Beale Function

5. Extended Wood Function

6. Perturbed Quadratic Function
7. Raydan 1 Function

8. Extended Tridiagonal 1 Function
9. Diagonal 4 Function

10. Extended Himmelblau Function

11. Extended Powell Function
12. FLETCHCR Function (CUTE)

13. NONSCOMP Function (CUTE)

14. Extended DENSCHNB Function (CUTE)
15. Extended Quadratic Penalty QP1 Function

16. Extended Penalty Function

17. Hager Function
18. BIGGSB1 Function (CUTE)

19. Extended Maratos Function

20. Six-Hump Camel Function
21. Three-Hump Camel Function

22. Booth Function

23. Trecanni Function
24. Zettl Function

25. Shallow Function
26. Generalized Quartic Function

27. Quadratic QF2 Function

28. Leon Function
29. Generalized Tridiagonal 1 Function
30. Generalized Tridiagonal 2 Function

31. POWER Function (CUTE)
32. Quadratic QF1 Function

33. CUBE Function (CUTE)

34. Extended Quadratic Penalty QP2 Function
35. Extended Quadratic Penalty QP1 Function
36. Quartic Function

37. Matyas Function
38. Colville Function

39. Dixon and Price Function
40. Sphere Function
41. Sum Squares Function

42. Powell Singular Function
43. Extended Wood
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44. Test Function

45. Raydan 2 Function

46. Diagonal 3 Function
47. Diagonal 5 Function

48. Quadratic QF2


