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ADOMIAN DECOMPOSITION METHOD FOR DIRECT

INTEGRATION OF BERNOULLI DIFFERENTIAL

EQUATIONS
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ABSTRACT. We introduce the basic and less known method-
ology of Adomian Decomposition Method (ADM) that yields
series solutions for differential equations. We then formulate
the method to obtain analytic solutions, in a rapidly convergent
series, to some class of higher order differential equations. ADM
is a type of algorithm applicable to various ordinary or partial
differential equations including Bernoulli Differential Equations
(BDEs) as proved by the present paper. The results show ex-
cellent potentials of applying this method.
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1. INTRODUCTION

Bernoulli differential equations (BDE) are nonlinear differential equa-
tions named after J. Bernoulli, a Swiss scientist. They are used in mod-
ern Physics for modeling the dynamics behind certain circuit elements
known as Bernoulli memristors. These types of differential equations are
special because they are nonlinear with exact solutions. The equation
has a nonlinear term which is a function of the independent variable
raise to a certain exponent, say n. When n is zero or one, the BDE is
linear. But for n ≥ 2, substitution is carried out to transform it to a
linear form which can then be solved linearly [1] and [2]. In this paper
we apply Adomian Decomposition Method (ADM) to solve BDE with
n ≥ 2.
In the 1980’s, George Adomian introduced a new method to solve non-
linear functional equations [3]. This method has since been termed the
Adomian Decomposition Method (ADM) and has been the subject of
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much investigation and modification [4], [5]. The Adomian Decompo-
sition Method generates a solution in form of a series whose terms are
determined by a recursive relation using these Adomian polynomials [6],
[7] and [8]. The ADM involves separating appropriately the equation
under investigation into linear and nonlinear portions, in such a way
that the isolated linear part is easy to be inverted. On the one hand,
the linear differential operator representing a linear portion of the equa-
tion is inverted (integrated) and the inverse operator is then applied to
the equation considering any given conditions. On the other hand, the
nonlinear portion is decomposed into a series of Adomian polynomials
[9]. The method is satisfactory if the problem has a unique solution.
Consider differential equation of the form

y′ + P (x)y = g(x)yn (1)

A case where P (x) = c, with c a constant, is commonly discussed in
literature in the application of ADM, for example (see [10]). In this work,
we considered a case for which P is a function of x. Also several articles
involve the transformation of BDEs to obtain the analytic solution (see
[4] and [11]). The ADM allow us to avoid auxiliary transformations of
the dependent variable. In reviewing the basic methodology involved, a
general nonlinear differential equation will be used for simplicity.

2. BASIC METHODOLOGY OF ADM

We consider differential equation of the form

y(m) = f(x, y, y′, . . . , y(m−1)) (2)

where I is an interval containing 0 (unless otherwise stated), m a natural
number and f a continuous function that is smooth with respect to its
last m variable(s).
We denote by L the differentiation (operator) and by L−1 its inverse
(integration) under 0 initial condition.
Then we re-write equation (2) as

Lmy = f(x, y, y′, y′′, . . . , y(m−1)) x ∈ I , (3)

Inverting (integrating) equation (3), we have

y = c0 + c1x
2 + · · ·+ cm−1x

m−1 + L−m
(
f(x, y, y′, y′′, . . . , y(m−1))

)
(4)

Setting

y0(x) = c0 + c1x
2 + · · ·+ cm−1x

m−1 (5)

and

N(x, y) = L−m
(
f(x, y, y′, y′′, . . . , y(m−1)

)
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(4) takes the form

y = y0 +N(x, y). (6)

The ADM approach for solving (6) consists of finding a series solution

y = y0 + y1 + y2 + y3 + ... + yn + ...

basing on the fact that the function N(x, y) admits an adomian decom-
position of the form

N(x, y) = A0(x, y0) + A1(x, y0, y1) + A2(x, y0, y1, y2) + ...

+An(x, y0, y1, y2, ..., yn) + ...

and by using the recursive formula :

yn+1 = An(x, y0, y1, y2, ..., yn) ; for n = 0, 1, 2, ...

The formula of An is :

An(x, y0, y1, y2, ..., yn) =
1

n!

∂n

∂λn
N

(
x,

+∞∑
k=0

λkyk

)
; for n = 0, 1, 2, ...

For instance, when g is an infinitely many times differentiable function,
then its ADM decomposition is

g(y) =

+∞∑
n=0

An(y0, y1, y2, ..., yn)

with y =
+∞∑
n=0

yn and

A0 = g(y0)

A1 = g′(y0)y1

A2 = g′(y0)y2 + g′′(y0)
y21
2!

A3 = g′(y0)y3 + g′′(y0)y1y2 + g(3)(y0)
y31
3!

A4 = g′(y0)y4 + g′′(y0)
(
y22
2! + y1y3

)
+ g(3)(y0)

y21y2
2! + g(4)(y0)

y41
4!

(7)

A sufficient condition for the convergence of the ADM decomposition
is provided in [12].
.
For an instance, if

y(m) = yp (8)
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then

y = c0 + c1x+
c2x

2

2!
+ · · ·+ cm−1x

m−1

(m− 1)!
+ L−m(yp) (9)

where

y0 = c0 + c1x+
c2x

2

2!
+ · · ·+ cm−1x

m−1

(m− 1)!

ADM implies :

yn+1 = An = L−1(Bn(y0, y1, y2, ..., yn))

where Bn(y0, y1, y2, ..., yn) is the nth component of the Adomian De-
composition of yp, see formula (7). Therefore :

y1 = L−1(yp0).

y2 = L−1(pyp−10 y1) = L−1(pyp−10 (l−1(yp0))).

y3 = L−1
[
p(p−1)

2! yp−20 y21 + pyp−10 y2

]
= L−1

[
p(p−1)

2! yp−20 (L−1(yp0))2 + pyp−10 (L−1(pyp−10 (L−1(yp0))))
]
.

y4 = L−1
[p(p− 1)(p− 2)

6
yp−30 y31 + p(p− 1)yp−20 y1y2 + pyp−10 y3

]
.

. . .

3. APPLICATION OF ADM TO OBTAIN SOLUTIONS OF y′ = xqyp

Let

y′ = xqyp . (10)

That is

Ly = xqyp

which implies

y = c+ L−1 (xqyp) (11)

where the anti-differentiation L−1 is appropriately defined according to
the sign of q. In fact we shall consider the cases in which L−1 is the
integration under 0 initial condition, at 0 if q ≥ 0 but at 1 if q < 0.
Here

y0 = c

and ADM implies :

yn+1 = An = L−1(xqBn(y0, y1, y2, ..., yn))



ADOMIAN DECOMPOSITION METHOD FOR DIRECT . . . 215

where Bn(y0, y1, y2, ..., yn) is the nth component of the Adomian De-
composition of yp. Therefore :

y0 = c

y1 = L−1 (xqyp0)

y2 = L−1(xq(pyp−1o y1)) = L−1(xq(pyp−1o L−1(xqyp0)))

y3 = L
−1(xq(

p(p− 1)

2
yp−20 (y1)

2 + pyp−10 y2)

= L
−1(xq(

p(p− 1)

2
yp−20 (L−1(xqyp0))2 + pyp−10 L−1(xq(yp−1o L−1(xqyp0))))

y4 = L−1(xq(
p(p− 1)(p− 2)

6
yp−30 (y1)

3

+ p(p− 1)yp−2(y1)(y2) + pyp−10 y3)

= L−1(xq(
p(p− 1)(p− 2)

6
yp−30 (L−1(xqyp0))3

+ p(p− 1)yp−2((L−1(xqyp0))(L−1(xp(pyp−10 l−1(xqyp0)))))))

+ pyp−10 L−1(xq(
p(p− 1)

2
yp−20 (L−1(xqyp0))2

+ pyp−10 L−1(xq(yp−1o L−1(xqyp0))))).

(12)

. . . (13)

y = y0 + y1 + y2 + y3 + y4 + . . .

4. IMPLEMENTATION STRATEGIES

Example 1. We consider solution BDEs of the form (5) for

(i) q = p = 1, (ii) q = 1 and p = −1, (iii) q = −1 and p = 1,
and for (iv) q = p = −1

(i) y′ = xy, y(0) = e = e1. Exact solution y = e
x2

2
+1, x ∈ R.

Besides, According to ADM, using equation (11)
y0 = c = e1, An = L−1(xBn) with Bn = yn and L−1 as the integration
under 0 initial condition at 0. In this way
yn+1 = L−1(xyn). Thus

y1 = L−1(xy0) = e1(x
2

2 ).

y2 = L−1(x(L−1(xy0))) = e1(x
4

8 ).

y3 = L−1(L−1(x(x(L−1(xy0))))) = e1(x
6

48 ).

y4 = L−1(x(L−1(x(L−1(x(L−1(xy0)))))) = e1( x8

384).

y5 = e1( 1
3840x

10).
. . .
So y = e1 + e1(x

2

2 ) + e1(x
4

8 ) + e1(x
6

48 ) + e1( x8

384) + e1( 1
3840x

10) + . . .
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Now we assume, by mathematical induction, that for some n,

yn = e1
(
x2n

2nn!

)
.

Let us compute for yn+1. We have

yn+1 = e1L−1(( x2n

2nn!)) = e1( x2(n+1)

2n+1(n+1)!
).

Then we conclude that for every n, yn = e1( x2n

2nn!) = e1 × 1
n!

(
x2

2

)n
Therefore y = e1

∞∑
n=0

x2n

2nn! = e1(e
x2

2 ) = e
x2

2
+1.

(ii) y′ = xy−1, y(0) = 1. Exact solution y = (1 + x2)
1
2 , x ∈ R

Using equation (11), we have
y0 = c = 1.
y1 = L−1(xy−10 ) = 1

2x
2 where L−1 is the integration under 0 initial con-

dition at 0.
y2 = L−1(x(−(L−1(xy−10 )))) = L−1

(
x2

2 (−x)
)

= −1
8x

4.

y3 = L−1(x(−(L−1(xy−10 ))2 − (L−1x(−(L−1(xy−10 )))))) = L−1(3x
5

8 ) =
1
16x

6.

y4 = L−1(x(−(L−1(xy−10 ))3 − 2((L−1(xy−10 ))(L−1(x(L−1(xy−10 )))))

− L−1(x(−(L−1(xy−10 ))2 + L−1(x(−(L−1(xy−10 )))))
= 5

128x
8.

y5 = 7x10

256 .
. . .
Thus y = 1 + 1

2x
2 − 1

8x
4 + 1

16x
6 + 5

128x
8 + 7

256x
10 + . . . .

Using an appropriate mathematical induction principle as in example
1(i) above, we have

yn =

(
1/2
n

)
x2n

and so

y =
∞∑
n=0

(
1/2
n

)
x2n =

√
1 + x2

(iii) y′ = x−1y, y(1) = 1.
Exact solution y = x, x ≥ 1.
Using equation (11), we have
y0 = c = 1.
y1 = L−1(x−1y0) = lnx. Note that here L−1 is the integration under 0
initial condition at 1.
y2 = L−1(x−1(L−1(x−1y0))) = 1

2(lnx)2.

y3 = L−1(x−1(L−1(x−1(L−1(x−1y0))) = 1
6(lnx)3.
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y4 = L−1(x−1(L−1(x−1(L−1(x−1(L−1(x−1y0)))))) = 1
24(lnx)4.

y5 = (lnx)5

120 .
. . .

Using an appropriate mathematical induction principle as in example
1(i) above we have

yn = (lnx)n

n! .

Thus y = 1 + ln(x) + (lnx)2

2 + (lnx)3

6 + (lnx)4

24 + · · ·+ (lnx)n

n! + . . .

That is y =
∞∑
n=0

(
ln x
)n

n! = e(lnx)

and so y = x.

(iv) y′ = x−1y−1, y(1) = 1.

Exact solution y = (1 + 2 lnx)
1
2 , x ≥ 1.

Following (11), to solve
y = c+L−1(x−1y−1) with y0 = c = 1, where L−1 holds for the opera-
tor that assigns to a continuous function defined at 1, its anti-derivative
that vanishes at 1, we have :
y1 = L−1(x−1y−10 ) = lnx.

y2 = L−1(x−1(L−1(x−1y−10 ))) = L−1
(
1
x(− lnx)

)
= −1

2(lnx)2.

y3 = L−1(x−1(−(L−1(x−1y−10 ))2 − (L−1x−1 − (L−1(x−1y−10 )))))
= L−1

(
1
x(32(lnx)2)

)
= 1

2(lnx)3.

y4 = L−1(x(−(L−1(x−1y−10 ))3−2((L−1(x−1y−10 ))(L−1(x(L−1(x−1y−10 )))))

− L−1(x(−(L−1(x−1y−10 ))2 + L−1(x(−(L−1(x−1y−10 )))))
= −5

8(lnx)4.

y5 = 7
8(lnx)5.

. . .
Using an appropriate mathematical induction principle as in example
1(i) above we have

yn =

(
1/2
n

)
(lnx)n.

Thus y = 1 + ln(x)− (lnx)2

2 + (lnx)3

2 − 5(lnx)4

4 + 7(lnx)5

8 + . . .

y =
∞∑
k=0

(
1/2
k

)
(lnx)k ;

That is y = (1 + ln(x))
1
2 .

Example 2. y′ + y
x = y2, y(1) = 1.

Exact solution y = 1
x (1− lnx)−1 for 1 ≤ x < e.
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Firstly we shall transform this equation in order to facilitate the Ado-
mian decomposition. For x 6= 0, we have

y′ + y
x = y2 ⇐⇒ xy′ + y = xy2

⇐⇒ d
dx

(
xy
)

= xy2 .

Thus y′ + y
x = y2 ⇐⇒ xy = c + L−1

(
xy2
)
; where L−1 is the

integration under 0 initial condition at 1. In this way, our problem is
equivalent to
y = c

x + 1
xL
−1 (xy2). By ADM

y0 = c
x .

yn+1 = An = 1
xL
−1(xBn); where Bn = Bn(y0, y1, y2, ..., yn) is the nth

component of the Adomian Decomposition of y2. Therefore:

y1 = 1
xL
−1(x(y20)) = 1

xL
−1( c

2

x ) = c2 lnx
x .

y2 = 1
xL
−1(x(2y10y

1
1))

= 1
xL
−1(x(2( c

x)1(c2 lnx
x )))

y2 = c3 (lnx)2

x .

y3 = 1
xL
−1(x(2y0y2 + y21))

= 1
xL
−1(x(2( c

x)1(c3 ln
2 x
x )))

y3 = c4 ln3 x
x .

y4 = 1
xL
−1(x(2y0y3 + 2y1y2))

= 1
xL
−1
(

4c5 ln3 x
x

)
y4 = c5 ln4 x

x .
...
Using an appropriate mathematical induction principle as in example
1(i) above we have

yn = cn (lnx)n

x .
It follows that

y = 1
c x + lnx

c2 x
+ (lnx)3

c4 x
+ (lnx)4

c5 x
+ (lnx)5

c6 x
+ (lnx)6

c7 x
+ · · ·+ cn (lnx)n

x + . . .

= c
x

∞∑
n=0

(lnx)n .
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For 1 ≤ x < e, we have

y =
c

x(1− lnx)

and since y(1) = 1, there holds

y =
1

x(1− lnx)
, 1 ≤ x < e .

Example 3. y′ − y
x = xy2, y(1) = 3

2 .

Exact solution y = x
(

1− x3

3

)−1
, 0 < x < 3

√
3.

y′ = xy2 + y
x .

Like in the previous example, we have for all x 6= 0 :

y′ − y
x = xy2 ⇐⇒ y′

x −
y
x2 = y2

⇐⇒ d
dx

( y
x

)
= y2

⇐⇒ y
x = c+ L−1(y2)

⇐⇒ y = cx+ xL−1(y2) .

where L−1 is the integration under 0 initial condition at 1. In this way,
our problem is equivalent to
y = cx+ xL−1(y2).
y0 = c x.

y1 = xL−1(y20) = xL−1(c2x2)

= c
∫ x
1

(
c2t2

)
dt

= cx c(x3−1)
3 .

y2 = xL−1(2y0y1) = x
∫ x
1

(
2(ct)2 c(t3−1)

3

)
dt

= cx
∫ x
1 2ct2 c(t3−1)

3 dt

= cx

[(
c(t3−1)

3

)2]x
1

= cx
(
c(x3−1)

3

)2
.
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y3 = xL−1(2y0y2 + y21) = x
∫ x
1

[
2(ct)2

(
c(t3−1)

3

)2
+
(
ct c(t3−1)

3

)2]
dt

= cx
∫ x
1

[
3ct2

(
c(t3−1)

3

)2]
dt

= cx
(
c(x3−1)

3

)3
.

y4 = xL−1(2y0y3 + 2y1y2) = x
∫ x
1

[
2(ct)2

(
c(t3−1)

3

)3
+ 2

(
ct c(t3−1)

3

)
ct
(
c(t3−1)

3

)2]
dt

= cx
∫ x
1

[
4ct2

(
c(t3−1)

3

)3]
dt

= cx
(
c(x3−1)

3

)4
.

Using an appropriate mathematical induction principle as in example
1(i) above we have for every nonnegative integer n :

yn = cx

(
c(x3 − 1)

3

)n

.

Thus in a neighbourhood of 1 we have

y =
∞∑
n=0

cx

(
c(x3 − 1)

3

)n

.

Thus if x > 0 and |c(x3 − 1)| < 3, we have

y = cx
1

1− c(x3−1)
3

.

According to the initial condition y(1) = 3
2 , we have c = 3

2 and so

y =
x

1− x3

3

for 0 < x <
3
√

3.

4. CONCLUDING REMARKS

In this work we have presented the basic methodology of the ADM. The
method was formulated for solutions of variable index BDEs in term
of the given condition. We have successfully applied Adomian Decom-
position Method to Bernoulli differential equations. We have given the
general Adomian polynomial for the nonlinear term in the Bernoulli
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differential equations and applied it to pratical problems. Some imple-
mentation strategies for positive and negative index of the nonlinear
term are considered. The possibilities of obtaining analytic solution of
the used examples shows the efficiency of the method. In fact the result
obtained by Adomian Decomposition Method from each Bernoulli differ-
ential equation (BDE) were exactly the same as those of the analytical
solutions. Adomian Decomposition Method gives the exact solutions di-
rectly without the usual transformation processes that take place when
using the analytical method to find the solutions to the BDEs.
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