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INTEGRAL REPRESENTATIONS AND IDENTITIES
ON RANK-1 SYMMETRIC SPACES OF COMPACT
TYPE

R. O. AWONUSIKA

ABSTRACT. The Jacobi coefficients cﬁ(mﬂ) 1<j<ta,p>
—1) associated with the normalised Jacobi polynomials ,@éa’ﬁ )
(k=0,1,2,...; a,8 > —1) describe the Maclaurin heat coeffi-
cients b, (N, £ =1,2,...) and the associated spectral polynomi-
als @éa’ﬂ ) of N-dimensional compact rank-1 symmetric spaces.
In this paper, apart from constructing a spectral polynomial
,%’éa’ﬂ) associated with the product [L@]ia’ﬁ)r we develop in-
tegral representations (involving Gegenbauer polynomials and
Jacobi polynomials) for ﬁféa’ﬁ ) in terms of the spectral sum of
integer powers of eigenvalues of the corresponding Gegenbauer
and Jacobi operators. These integrals apart from being inter-
esting in their own right lead to integral representations and
identities for these eigenvalues and their multiplicities.
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1. INTRODUCTION

Suppose (£, g) is a compact N-dimensional (N = 1,2,...) Rie-
mannian manifold without boundary and let A = A4 denote the
(nonnegative) Laplace-Beltrami operator on 2" acting on smooth
functions f € C*(2") and given in local coordinates by

a vdet g

By basic spectral theory there exists a complete orthonormal ba-
sis (pg : k=0,1,2,...) consisting of eigenfunctions of Ay, in the

N N
1 ,
Ayf= >0 | Y Vdetggtor | f. (1)
j=1 k=1
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Hilbert space L*(2"), with associated eigenvalues A\, = A\,(27), k =
0,1,2, satisfying Ay pr = Appr. Each \; has finite multiplicity
and the spectrum can be arranged in ascending order 0 = )y <
A < Ay < --- while \; 7 oo. Furthermore by orthogonality,
(@j,g&k)LQ(e%‘) = 0 for 0 < j 7£ k whilst ||90]HL2(9”) = 1 for all
j=0,1,2,....

The heat semigroup (U (t):=e B2 1t > O) defined in the usual
way admits an integral kernel Ko = Ky (t,z,y), which, for ¢ > 0
and z,y € 2, can be expressed by the spectral sum

Koltz,y) =3 e ou@)enly). 2)

k=0

One easily sees that the heat kernel K4 is real, symmetric in z
and y, i.e., Ky (t,z,y) = Ko (t,y,x) and smooth; indeed K4 €
C>®((0,00) x & x Z'). For heat kernels in Riemannian geometry
and applications, see the monographs Berger et al [1], Chavel [2]
and Li [3] and the references therein. See also Bakry et al [4]. When
2 is a N-dimensional compact rank-1 symmetric space, using the
addition formula for the matrix coefficients, the heat kernel can be
shown to have the form (see, e.g., Helgason [5, Ch. IV]; see also
Awonusika [6, Appendix A.1])

Ko (40) = 3 G 88 O 3)
k=0

Here A\ (Z27) (with & = 0,1,2,...) are the numerically distinct
eigenvalues of A 5, My (Z") is the dimension of the eigenspace asso-
ciated with Ax(Z") (i.e., the multiplicity of the eigenvalue A\, (Z")),
¢ (0) is the spherical function on 2" associated with the eigen-
value A\p(Z7), 6 is the geodesic distance between the points x,y €
Z and Vol(Z") is the volume of 2. Remarkably in this set-

ting the spherical functions ®; can be explicitly expressed as the

normalised Jacobi polynomials (see Appendix B) ,@,ga’ﬁ )(cos 0) =

P,ga’ﬁ)(cos 9)/Pk(a’6)(1) (with £ =0,1,2,...) and for suitable choice
of parameters «, f > —1 (see TABLE 1).

Examples of rank-1 compact symmetric spaces include the sphere
S* = SO(n + 1)/SO(n) (of real dimension N = n), the real pro-
jective space P"(R) = SO(n+1)/0(n) (of real dimension N = n),
the complex projective space P"(C) = SU(n+1)/S(U(n) x U(1))
(of real dimension N = 2n), the quaternionic projective space
P"(H) = Sp(n + 1)/Sp(n) x Sp(1) (of real dimension N = 4n)
and the Cayley projective plane P?(Cay) = F,/Spin(9) (of real
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dimension N = 16) (see Cahn and Wolf [7], Volchkov and Volchkov
[8] and Warner [9]). Here n =1,2,... .

To proceed, let us recall some of the most relevant geometric and
spectral data associated with these symmetric spaces that will be
needed later on. Indeed these are: the radial part of the Laplacian,

Ay = 50 (acot @+ (1/2)bcot(0/2)) %;
the Multiplicity (with £ =0,1,2,...)
2k + o)T(k + 20)T (0 + 1)/2) T (k + N/2)

M (Z) =

KT (204 1)I'(N/2)T (k + (a+1)/2)
o=(a+b/2)/2, N=a+b+1,
of the eigenvalues \i(Z") (k=0,1,2,...) of Ay; and the volume
I'((a+1)/2) (6)
F'(N+a+1)/2)
TABLE 1 illustrates the parameters a,b, N, a and ( for the
symmetric spaces just listed.

(5)

Vol(Z) = 272

T

TABLE 1. The parameters a,b, N, a, [ associated
with compact rank-1 symmetric spaces 2~

Z a b N o B
Sr n—1 0 n|(n—2)/2|(n—2)/2
P"(R) |n—1 0 n (n—2)/2 (n—2)/2
P*(C) I [2(n—=1)|2n -1 0
P (H) 3 |4n—1)|4n 2n -1 1
P2(Cay) | 7 8 |16 7 3

In a similar way, TABLE 2 lists the geometric and spectral data
stated in (4)-(6) for each of the aforementioned compact rank-1
symmetric spaces. '

TABLE 2. The compact rank-1 symmetric spaces 2

Ak(Z) k(k+n—1) 2k(2k +n—1) k(k +n)
2
M(2) | @k +n - DR | (k- ) B | 2k [Ty
¢ ﬁ n n
Vol(Z") 13( i r?”é) o'

IWe also write A\ (2)

= A7,
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For the corresponding data for P™(H) and P?(Cay), see TABLE
3. (See also Volchkov and Volchkov [8], Warner [9], Helgason |10,
11} and Vilenkin [12] for further reference and background on Lie
groups and symmetric spaces.)

TABLE 3. Symmetric Spaces P"(H) and P?(Cay)

Z P"(H) P?(Cay)
Me(2) k(k+2n+1) k(k+11)
2
2k+2n+1)(k+2n) [ I'(k+2n T'(k+8)I"(k+11
Mk(‘%/) ((Qn)(2n+1))((k+1)) [k:(!l“@n))—‘ 6(2k + 11) 7(!11!k)!1“((k+4))
Vol(2) o 3 (4m)®

2. THE MACLAURIN SPECTRAL FUNCTIONS ON SPACES 2

This section discusses the Maclaurin expansion of the heat kernel
Ko (t,0) with respect to the #-variable near the origin 6 = 0 (for
t > 0), and also examines the role of Jacobi coefficients in the
description of the Maclaurin heat coefficients. For a more refined
analysis and description of the resulting Maclaurin heat coefficients
including relationships to other heat invariants, see Awonusika and
Taheri [13] (see also Awonusika [6]).
Towards this end, recall that the Maclaurin expansion of K 4 (¢, 0)
about 6 = 0 has the form
b
6=0

Note that in view of Ky (t,6) being even in the f-variable [cf. (3)]
all partial derivatives of odd order vanish at § = 0 and hence the
Maclaurin expansion contains only even terms. Evidently the first
term in (7) is given by the usual trace formula, namely,

= 0% [ 9%
K{@(t, 9) = Z m {@Kﬁr’”(ta 6)
§=0

Ky (1.0) = o7 o iM (yenirn BT
PO T Nol(2) e ~Vol(2)

Proposition 1: (Jacobi coefficients (Awonusika and Taheri [14,
15])) Consider the Jacobi polynomial Wlia’ﬂ) with £ =0,1,2,...;q,
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B > —1. Then for any integer ¢ > 1 we have

~ ~ d%
R () =Ry (W) = o 2 (cos 6)

o> 6=0

c(a, BN (9)

MN
S

Il
—

J

The scalars (cf(a,ﬂ) : 1 < j <) are called the Jacobi coefficients,
)\,(Ca’ﬂ) (k =0,1,2,...) are the eigenvalues of the Jacobi operator,
and %éa’ﬁ) = %éa’ﬁ) (X) is a (-degree polynomial in X.

Indeed, by Proposition 1 we have

826

_ o M (2) MR (2)t 0% &
gz K2 (4:0) o Z “Nol(2) oz i (0) o
_ N Mu(Z) ey 0 e
Z “Nol(2) gz 7 (cost) o
= M (X (0,8, NE
SRR
= j=1
[ J
Cj(Oé,ﬁ) ( d> —tA
= —— | tre” "% 10
‘= Vol(Z") dt (10)

Theorem 1: (Maclaurin heat coefficients (Awonusika and Taheri
[13])) The Maclaurin heat coefficients b0, = b3)(¢), £ =1,2,...,t >
0, associated with the heat kernels K4 (t,0) admit the spectral
representation

M2 e amld
(0 = P — e [N
k=0 j=1
1 ZACHE) Na—tAZ
Vel " {% (Ag)e } (11)
In particular,
WY (t) = tre 87, (12)

_The result in Theorem 1 underlines the role of the polynomials
,@éa’ﬁ ) and the Jacobi coefficients cﬁ(a, f) in expressing the Maclau-

rin coefficients b, associated with the heat kernel K »-. For more re-
sults and discussions on Maclaurin heat coefficients, see Awonusika
and Taheri [13], Awonusika [16].
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The first few Jacobi coefficients ¢f(«, 3) are given below.

1
alef) == 5077
B a+36+2
ci(a,pB) = - Ao+ 1)(a+2)
3
cs(a, B) :4(a +1)(a+2)
3 _ 40® + 30083 + 3067 + 200 + 603 + 24 (13)
¢y, f) = — 8(a+ 1)(a + 2)(a + 3)
_ 15(a+38+2)
cg(a,ﬁ) _8(04 + 1)(04 + 2)(a + 3)
(e, B) = — =

8(a+ 1)(a+2)(a+3)

For explicit calculations of these coefficients, see Awonusika and
Taheri [15].

2
3. SPECTRAL POLYNOMIALS ASSOCIATED WITH [ﬂ,ffﬁ)]

In this section, we give a spectral identity relating the differential
2
action on the product [@,ﬁa’ﬁ ) (cos 9)] to the spectral sum of inte-
ger powers of the eigenvalues of the corresponding Jacobi operator.
2

The spectral polynomial 2. associated with [,@,ga’ﬁ ) (cos 9)} is
a generalisation of @éa’ﬁ ) associated with @,ﬁ“’ﬁ )(COS 0) [cf. Propo-
sition 1].

As a consequence of Proposition 1, we have the following result:

Proposition 2: (Spectral polynomials) Let a, 8 > —1 and k =

0,1,2,.... Then for any integer ¢ > 1 we have
20 )
(0675) e d (azﬁ)
%y (M) = [@k (cos 0)] .
L2y S -
- (229) 22 e B (e BN, (14)
p=0 i=0 j=0

The scalars (cf(a, 3) : 1 < j <€) are the usual Jacobi coefficients,

)\,(Ca’ﬁ) = k(k+ a+ g+ 1) are the eigenvalues of the Jacobi operator
and %éa’ﬁ) = %éa’ﬁ) (X) are (-degree polynomials in X.
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The first few spectral polynomials %éa’ﬁ ) are given below.
e (/ =1) Here we see that
2™ (W) = el HX, (15)

where el(a, 8) = 2ci(a, B).
e (¢ =2) Indeed we have

T () = DN + Ao 0) ] ()
where

ei(a, B) =2ci(a, )

3o B) =2 (3 [c}(@. B)]" + B0, 8)) =
e (¢ =3) It is seen here that

75 () =eblo, AN + o ) [ 0]+ bt ) 1]

2120 +3) , (17)
Q—ch(%ﬁ)-

(19
where
ei(a, B) =2ci(ev, B)
o ) =2 (15} (o B)ci(ar ) + e, ) = "ot Do, ),
e ) =2 (15e} (e B)cklar 6) + e ) = T T2 )
(19)

4. INTEGRAL REPRESENTATIONS OF SPECTRAL
POLYNOMIALS 2"

This section is concerned with the evaluation of certain definite in-
tegrals involving Gegenbauer polynomials (see Appendix A) and
Jacobi polynomials with product of weight functions. It is inter-
esting to see here that these integrals can be explicitly evaluated
in terms of the spectral sum of integer powers of the eigenvalues
A (A7) and their multiplicities My (2"). Special cases of this iden-
tity give integral representations of eigenvalues of the Laplacian on
compact rank-1 symmetric spaces. It is important to mention that
the results obtained in this section are a generalisation of those in
Gradshtejn and Ryzhik [17, Sec. 7.31 (p. 795)].

Our starting point in this direction is the following remarkable
product formula for the Jacobi polynomials due to Dijksma and
Koornwinder [18].
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Proposition 3: (Dijksma and Koornwinder [18]) Let a and g be
integers or half-integers greater than or equal to zero. Then

P( (cos 219)P( B (cos 2¢)
=Xy / / CSHPH (1 cos 9 cos ¢ + y sin ¥ sin @)
(1— 2% 2(1 — y?)° 2 dyds, (20)
where the constant XZ"B is given by

op  Dla+p+1I(k+a+)T(k+8+1)
Xk _wmk+mwk+a+6+nrw+§ﬁ%ﬁ+@'

(21)

We restate Proposition 3 in the following form.
Proposition 4: Let a and [ be integers or half-integers greater
than or equal to zero. Then the following equality holds:

[P(a’ﬂ)(cos 0)} i

:aﬁ// platori/a VQ)(;[( y)cose+(:c+y)]2—1)

(1— %) 2(1 - )ﬁ 2 dydx, (22)
where the constant 77,?’6 is given by
ap LTla+B+DI(k+a+1)I(E+B+1)
s Dk +a+ B+ (a+ )T (B+3)

y F(2k+2a+28+2)T (a+5+3)
FRa+28+2)T (k+a+B+3)T(2k+1)

(23)

Proof: By setting ¥ = ¢ = 6/2 and using the identity (79) in (20),
we have

[P(a’ﬁ) (cos 0)] i

_,yaﬁ/ / a+5+1/2a+ﬁ+1/2)( “Y o504 +y)
1 2 2

(1— 2% 2(1 — y?)’ 3 dyda, (24)
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where the constant ”y,j"ﬁ is given by
o FNa+p+1)(k+a+1D(k+8+1)
Pooal(k+ D)(k+a+ B8+ DT (a+ )T (8+ 1)
I'(a+B+3)T(2k+2a+28+2)
F(2k+a+p6+3)T(2a+25+2)

(25)

Upon applying the relation (82) gives the desired result.

We now state the main theorem of this paper.
Theorem 2: (Integral-spectral identity) Let oz and § be integers
or half-integers greater than or equal to zero. Then for any integer
¢ > 1 we have the following integral representation:

Hy %7 ()
[+ 1P

k~|—a+5+m+1) .
//Z T Thtat g1 Pmlev)@-v)

x P* a+,8+m+1/2 —1/24m) (2 2 1) (1-— 3;2)0‘—%(1 — yQ)ﬁ_% dydzx,
(26)

¢
where a,,

is a constant coefficient, p’ (x,y) is a -degree polynomial
in x and y, %éa’ﬁ) (Ax) is the spectral polynomial in Proposition 2

and the constant H{” is given by
op TUE+a+DI(k+a+ B+ DT (a+5)T(8+3)
[Pk + DR+ DPT(a+ B+ DIk + 8+ 1)
F2a+28+2)0 (k+a+p+32)

X . 27
[(2k+20426+2)T (o + 5+ 2) (21)
Proof: For ¢ > 1, consider the differential relation
1 a* (e.8) 2
T’BW { [Pk (COS 9>i| } s
/ / > plr1/2) 1[(30— )cosf + (z +y)> — 1
a7 | g WY Y -

— 2?73 (1 — 42?2 dyda,

where p = o+ 8+ 1/2. Note that the vanishing of the odd terms

in the above identity is due to the Jacobi polynomial Pk(a’ﬁ ) being
even in the #-variable. Indeed, from the recursion formula (75) we
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d2€

g { L 7eo0)] '}

5 1 1 £
e / / S dl,
“1 ==

0=0

F'k+a+pB+m+1)
2n(k+a+B+1)

(z —y)" Phu(z,y)

X P,Sf;ﬁ+m+§’i2+m) (227 — 1) (1 — 2*)* (1 —y )5 2 dydx.
(28)
On the other hand, by Proposition 2,
[ ps) 2 @8) (y]? @)
— {[P (cose)} } - [Pk (1)} ZD ). (29)

It therefore follows from these two identities the spectral relation

[

cTk+a+B4+m+1)
m 2n(k+a+p+1)

(Q} - y)mﬁ{m(r? y)

y P}gi—;ﬂ—km-&-l/l 1/2+m) (2x2 _ 1) (1— 2% (1 — 2)5—% dydx
2
PO0] e
- ] X (M) (30)

M’
and this completes the proof of the theorem.
The first coefficients a’, and pf, = pf (x,y) are given in TABLES
4 and 5 respectively.

TABLE 4. The first coefficients a’,.

ai [ai|a3|af | af | af [ai|a| a3 | af
—1]1]3|—-1]—-15|—-15| 1 |63]|210]|105
: TAB;E 5. The ﬁrst2 coefficients pfngz Pt (x, y)3
V4 V4 Y2 Py Do
52 _ 3y 2 o _ Doy |52 _ 3w

Tl 575 x 2 2 2 2
3 T 1 T
Ps3 P pz Ps3 Py
3 | 65z 63y 29; . 15xy + 5y 53 3:(:221/ 2

It is observed that a’,
¢>1.

pi(z,y) = ',

(1 < m < ¢) are integer coefficients and
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4.1. INTEGRAL REPRESENTATIONS OF A;(2°) and M;(2)

This subsection describes the eigenvalues \;(2") and the multi-
plicities My (2") as integrals involving Gegenbauer polynomials C¥ .
The identities established here are novel in the context of special
functions.

Towards this end, we restate Theorem 2 in the following form.
Theorem 3: (Integral-spectral identity) Let o, § > —1/2 and k =
0,1,2,.... Then for any integer £ > 1 we have the following integral
formula:

[04,5(@(045) ()\ )

a+1)]
a+ﬁ+m+1) atB+m+1
/‘/ Z:Z T(a+p3+1) ™ (@)
x (x —y)"(1 - 2%)°72 (1 — y*)° "= dyda, (31)

where a’ %ga’ﬂ ) (Ax) are as defined in Theorem 2 and the constant

I,‘:’ﬂ is given by

Pk +a+1)0k+a+ B+ 10 (a+3)T(8+3)
F(k+1DI(a+p+1DI(k+B8+1)

A special case of Theorem 3 is given in the following theorem.

Theorem 4: (Integral representations of )\,(f’ﬁ )) Let a and 8 be
integers or half-integers greater than or equal to zero. Then the

1575 —

(32)

eigenvalue )\(a’ﬂ ) admits the integral representation

PN = / / C50 (@)@ — y)(1 = 2?)* 3 (1 = y?)7 2 dyda,
(33)
where

~s  mllk+a+)Dk+a+8+1I (a+3)T(8+3) (3

U Ta+ D (a+2)T(a+ B+ 2)T(k+ DI(k+ 8+ 1)

In what follows we present integral representations of the eigenval-
ues A\, (2") with multiplicities My(Z") according to whether 2" is
the sphere S™, the complex projective space P"(C), the quaternionic
projective space P"(H), or the Cayley projective plane P?(Cay).

Theorem 5: The following integral representations hold on sym-
metric spaces 2 :
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(D) (X =S":1a=0=(n-2)/2)
My, (S™) A (S™)

n 272
{ ] / / C(z)(x —y)(1 — 2?) 53(1—y2)n7_3dydx,
—1J-1

(35)
where
)= o (k4 "5 ) | o), (36)
2) (Z=P"(C):a=n—1,8=0)
My, (P™(C)) A\ (P™(C))
n 3/2
// " O ) — y)(1 — 223 (1 — ?)* dyd,
- (37)
where
O (z) = 8(2k + n)Ci (2). (38)
(3) (2 =P"(H):a=2n—1,3=1)
M, (P™(H)) A (P™(H))
n 5/4
— / / @y — 223 (1 — )2 dyda,
(39)
where
Y () = 16(2k 4 2n + 1)CH*2 (). (40)
(4) (Z =P?*(Cay):a=1,58=23)
M, (P*(Cay)) A (Pz(Cay))
/ / CPi(Can)( )1 —a?) 5 (1—y?) 2 dyde,  (41)
where
CP*Ca) () . zfi;ﬁ(zk F11)C2 (2). (42)

Here w} = Vol (S"), wf = Vol (P*(C)) and w} = Vol (P"(H)).
Proof: From (33) and (34) we see that
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(1) (X =S":a=p8=(n-2)/2)

~n—=2 n—=2 (L*Q L*Q)
2 7 2

:/_j/_zCSkl(w)(x—y)(l—x) (1= 4?7 dyda,

where

sz o[l (%)) Tk +n—1)

' 0] T+ DTk + 1)
oM, () [wp 177
_n(2k+n—1)[ } ’

and we have used I (3) ' (%52) /T (2) = o™ /w73
1 0)

2) (Z =P"C):a=n-1,0

where

'[Vn—l,O o

wy M, (P"(C)).
w32 8(2k +m

~—

B)(Z =P"H):a=2n—-1,5=1)

g~ [ e -y -t -y
—1J-1

141

(43)

(46)
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where
Fn-11 _ w20 (k 4+ 2n)T(k 4+ 2n + 1T (20 — 1)
Eo TN @n)2n+ )2+ 2)T(k + DIk + 2)

_ mi(k+2n)T (20— 1)
T 220)T(2n 4 2)(k + 1)

_ T(2n—3) > My (P"(H))
F'2n+1) 2(2k+2n+1)
Wit My (P(H)

4
= ; 48
w4 16(2k +2n + 1) (48)

[roraen]

(4) (2 =P?(Cay):a=17,8=23)

oA / / 12 (@) (e — )1 —2?) 5 (1 — )} dyde, (49)

where

Fra_ _225-9009 - 72 T(k +8)D(k + 11)
P 16-64-8!- 711 -T(k + 1)D(k + 4)
2259009 - 72 M, (P?(Cay))
© 16-64-8!-6(2k + 11)

(50)

4.2. EXPLICIT VALUES OF SOME DEFINITE INTEGRALS

Here we give some special cases of Theorem 2 which are novel in
the context of special functions and integral transforms.
Theorem 6: Let o and 3 be integers or half-integers greater than
or equal to zero. Then the following formula holds:

@ 31 1 1
/ / x(x —y) P, IF/BJFM) (22 —1) (1 —2*)* 2(1 — y*)" 2 dyda

_kak+oz+1)F(k:+a+ﬁ+1)( +HT(B+3)
Fa+ )N (a+2)[I(k+ DI (a+ 5+ DI+ 5+ 1)
F2a+28+2)0 (k+a+6+2)T(2k+1)
T (2k+20+28+2)T (a+B8+3)

(51)
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Proposition 4: For the special values of o, 5 = 0, the following
integral formula holds:

/ / ez — )P (227 1) (1— 223 (1 — y?) b dyda

—W T (52)

Theorem 7: The following integral representations hold on sym-
metric spaces 2 :

(1) The Sphere 2" =S". For a« = § = (n — 2)/2, we have

My (S™)
—Q”/ / (z —y)Py (22° — 1) (1 — 2?) g3(1—y2)%dyd917,
(53)
where
n—2
n nwy Wy
= — o4
1 47T|: n— 1i|2 ( )

e ) ). o9

(2) The Complex Projective Space 2" = P"(C). For a« = n —
1,8 = 0, we have the following identity:

P (2:1;2 — 1) =

My (P"(C))
—Q"/ / z(r — © (22 —1) (1 — x2)”’%(1 —y?)"2 dyda,
(56)
where
wn73/2
U= (57)
Tws

PP"(©) (992 _ 1) 1 ((ZTF;;)((Q];)LZZ Pk(ff%’%) (202 —1). (58
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(3) The Quaternionic Projective Space 2~ = P"(H). For a =
2n — 1,8 =1, the following formula holds:

M, (P"(H))
_Q”/ / 2 — )PP (27— 1) (1 23 (1 — o)} dyde,
(59)
where
. 16wn 5/4
U= — (60)
Wy

(Qk + 2n + 1)(4n + 2)% (2”+%v%> (2:52 _ 1) )

P (242 — 1) =
e () 2n+1) 2n+2), (ke ©

(61)
(4) The Cayley Projective Plane 2" = P?(Cay). Fora =7, =
3, we have
M;, (P*(Cay))
—Q/ / z(x — “(Cay) (22 —1) (1— 22)7 (1 — )2 dyde,
R (62)
where
726144 - 8!
= 24759009 (95)

PgQ(Cay) (21:2 . 1) = (2]({5@4—)11(253—?32k P]S 21 2) (2;(;2 — 1) . (64)

For the analysis of weighted inequalities and estimates for frac-
tional integrals on compact rank-1 symmetric spaces, see Ciaurri et
al [19].

A. GEGENBAUER POLYNOMIALS CY

The Gegenbauer polynomial C} = CY(t) (k=0,1,2,...,v > —1/2)
is a natural generalisation of the Legendre polynomial Py (t) (coin-
cides when v = 1/2) and is defined by the coefficient of o* in the
generating function

(1-2ta+a?) ™" = Cy( (65)
k=0
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For v > —1/2 the Gegenbauer polynomial CY(t) has a nice trun-
cated series representation resulting from the series solution to the
Gegenbauer differential equation (see (68)) in the form

Cil) = X (' e e, (6o)

0<i<t
with the derivatives satisfying the recursive relation

CH) =2t

The Gegenbauer polynomial y = CY(t) satisfies the second-order
homogeneous differential equation

d’y dy

(1-¢%) oz~ (v i

The pair form a so-called regular Sturm-Liouville system with the

corresponding Gegenbauer operator a second-order differential op-

erator in the weighted space L?[—1,1;(1 — ¢2)*~'/2dt] having the

discrete spectrum (A, = k(k+2v) : £k =0,1,2,...) and associated

eigenfunctions y = C}/(t). In particular, we have the orthogonality
relations (k,m =0,1,2,...)

! 1
(CF, O 2,012 = /1 Cy (1) G (1) (1= 17)"7 at
1-2v
_ 72 I'(2v + m2) 5 69)
m!(m +v)T (v)

Cyim(@). (67)

+ k(k+2v)y = 0. (68)

where 0y, is the usual Kronecker delta, that is, dg, = 0 when
k # m and Ok, = 1 when k = m. The Gegenbauer polynomial can
be expressed by the so-called Rodrigues’ formula

AT (2D (k 4 20) (1 — 12)277 g b
CZ(t)Z( )'T(=3 (+2V2( ) L
2REIT (20)T (252 + k) dt*
(70)
and satisfies the pointwise value identities
2
cqw=2% " = cvae @

where (z), = I'(z +k)/I'(z). The normalised form %} (¢) is defined
by

G (1) =

(72)

and as a result €} (1) = 1.
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B. JACOBI POLYNOMIALS P{*")

The Jacobi polynomial Pk(a’ﬁ) = P,ia’ﬂ)(t) (k=0,1,2,...; a,3 >
—1) which is a natural generalisation of the Gegenbauer polynomial
C¥ is defined by the coefficient of z* in the generating function
relation

2RI —2+R) T (1+2+R)77=> A1)~
k=0

R=+v1-2tz+ 22, |z| < 1. (73)
It is not difficult to see that the Jacobi polynomial satisfies
a, ,Q a, (OC + 1)k
PP = (DRI, BT = (1)

and the differential recursion formula (m =1,2,...)

d™ _(a,8) LT(k+m+a+B+1) (apmpsim)
_Pk (t) = om k—
dtm™ 2m T(k+a+p+1) "

(t).  (79)

As a result the Jacobi polynomial y = P,ga’ﬁ ) (t) satisfies the second-
order differential equation

(1-8)y" —(a=B+(a+B8+2)t)y +k(k+a+B+1)y =0. (76)
The spectrum here is purely discrete and given by the sequence of

eigenvalues and eigenfunctions

AN — kk+a+p8+1), y=P* 0, k=012....
(77)
As an orthogonal polynomial the Jacobi polynomial satisfies the
orthogonality relation (k,m =0,1,2,...)

1
/ PO PEA () (1 -0 (1 + )" dt = P, (78)

m
1
where the scalars CZ“’B on the right are given by

op  (@+ 1B+ Dila+ B+k+1)22TPHD(a+ 1I(B+ 1)
P R (a4 B+ 2)k(B+a+2k+1) I(a+8+2)

The Jacobi and Gegenbauer polynomials are related to one-another
through the identity

Cr(t) = V—P,f”‘é’”‘5>(t), v —1/2,  (79)
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while the Legendre polynomial is linked to the latter by P,go’o)(t) =

CZ(t) = Py(t). In terms of the Gauss hypergeometric function, the
Jacobi polynomial is given by

(a7ﬁ)
(@,5) k1P (t) 1—t
=k gk La+1—
P27 (t) @D k+a+ 8+ 1a+1; 5 ,
(80)

and that for the sake of future reference we often use the normalised
form of the Jacobi polynomial
peA 4 k! N

c@(azﬁ) t — —
C S e T et

(t), (81)

with 227 (1) = 1.
The following formula also holds:
F2k+v+1)I(k+1)

PY) (1) = P2 (g2 _ 4 —1. (82
o (1) Tk+tv+ )2kt 1) ( ) v>-1 (82)

For more information on these orthogonal polynomials the inter-
ested reader is referred to Gradshtejn and Ryzhik [17], Askey [20],
Szego [21], Koornwinder [22, 23].
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