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COMPLETE SYNCHRONIZATION OF 5D

HYPERCHAOTIC SYSTEM

S. O. OGUNDIPE1, U. E. VINCENT, J. A. LAOYE AND R. K. ODUNAIKE

ABSTRACT. In this paper, we present the synchronization of a
5D hyperchaotic system,In this case, the dimension of the phase
space that embeds the chaotic system is five, which will require
the minimum number of coupled first order autonomous differ-
ential equations to be five which is a more complex system when
compared with the 4-D system. More complex attractors and
randomness displayed by the system make the embedded syn-
chronized information difficult to be intruded and we believe
that this will create more construction variations for error space
vectors because of the higher number of variables present. We
demonstrate the realization of complete synchronization of this
5-Dimensional hyperchaotic system. Using the active backstep-
ping technique, the usual master-slave synchronization scheme
for low order chaotic systems is extended to study the synchro-
nization of higher order systems. Our numerical results confirm
the effectiveness of the proposed analytical technique. This pro-
posal was achieved, and we believe that the result will be useful
in ensuring better security when applied in communication and
encryption of information.
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1. INTRODUCTION

Researchers have found that Nonlinear deterministic dynamical sys-
tems exhibits sensitive dependence on initial conditions. To this
end, different methods have been employed to describe their exis-
tence in the fields of sciences, medicine and engineering Strogatz
(2000) [1]. Various attributes of nonlinear dynamical systems such
as chaos, bifurcation, multistability, pattern formation and synchro-
nization have been found very useful in many disciplines.

As noted by Vincent et al (2015), synchronization of chaotic and
hyperchaotic systems has been referred to as a major breakthrough
[2] and one of the most important attributes of nonlinear dynamical
systems. This is because of its potential applications in modelling
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brain activities, chemical reactions and more importantly in infor-
mation processing and secure communication. Increasing interest
in the study of synchronization of chaotic systems has led to the dis-
covery of various types of synchronization which include complete
synchronization [3], phase synchronization [4], lag synchronization
[5], generalized synchronization [6], [7], measure synchronization
[8],[9] and [10], projective synchronization [11], [12], and [13], an-
ticipated synchronization [14],[15], reduced-order synchronization
[16] and function projective [17].

Several methods of achieving synchronization between two or more
non-linear systems have been proposed and well developed.These
include, the adaptive control [18], active control and robust synchro-
nization [19], impulsive control [20], adaptive fuzzy feedback [21],
sliding mode control [22] and backstepping technique [23]. Back-
stepping technique has been shown to exhibit outstanding perfor-
mance in the synchronization of identical and non-identical chaotic
systems, stabilization and tracking [24] and controlling of hyper-
chaotic systems [25], and useful in either the strict feedback or the
non-strict feedback systems [26].

The temporal complexity and apparent randomness of chaotic sys-
tems is the most important characteristics of chaos [27]. So, the
primary motivation of synchronization is that, one can hide certain
electronic information to be transmitted in chaotic signal and re-
trieve by the technique of chaotic synchronization.

However, Meng et al [27] opined that absolute security of infor-
mation and communication based on low-dimensional chaotic [2]
and hyperchaotic [28] systems, cannot be fully guaranteed. This
is because it can be reconstructed easily and separated from the
secure information. Hence, concerted efforts were made to generate
higher dimensional systems. In this direction, 4-Dimensional sys-
tems have been well studied, most of which are known to exhibit
instability in two directions implying that the possibility for the
existence of two positive Lyapunov exponents is ascertained. How-
ever, higher dimensional systems, with dimension greater than four
are less investigated.

In this paper, therefore, we present the synchronization of a 5D
hyperchaotic system coined by Yang and Chen (2013) [29]. In this
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case, the dimension of the phase space that embeds the chaotic sys-
tem is five, which will require the minimum number of coupled first
order autonomous differential equations to be five. The system was
coined to have three Lyapunov exponent (number of terms in the
coupled equations giving rise to instability). All the three having
non-linear functions. By the description of hyperchaos, as given by
Gao et al [30], this is a more complex system when compared with
the 4-D system described by Yuxia et al [31].

2. SYSTEM DESCRIPTION

We consider the following new 5D hyperchaotic system reported by
Yang and Chen (2013) [29].

ẋ = a (y − x) + p,

ẏ = cx− xz + w,

ż = −bz + xy, (1)

ṗ = −hp− xz,

ẇ = −k1x− k2y,

where a, b, h �= 0 a,b and c are the system parameters and h, k1, k2
are three control parameters, determining the chaotic and hyper-
chaotic behaviors of the system. The 5D hyperchaotic system (3)
has five Lyapunov exponents, three of which are positive Lyapunov
exponents for a given set of system parameters. The attractors of
the system at the states xy, xz, xp, xw, yz, yp, yw and zp for
a = 10, b = 8/3, c = 28, h = 2.25, k1 = −0.12, k2 = 11.3 are as
shown in figure 1.

3. DEFINITION AND FORMULATION

Let us consider the following master-slave n dimensional chaotic
systems, where the master systems is given by

ẋ1 = f1 (x1, x2, x3, ..., xn) ,

ẋ2 = f2 (x1, x2, x3, ..., xn) , (2)

ẋn = fn (x1, x2, x3, ..., xn) ,

and the controlled slave system is given by

ẏ1 = g1 (x1, x2, x3, ..., xm) + u1,

ẏ2 = g2 (x1, x2, x3, ..., xm) + u2, (3)

ẏm = gm (x1, x2, x3, ..., xm) + um,
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Figure 1. The phase portraits of the 5D system in
different planes x − y, x − z, x − p, x − w, y − z,
y − p, y − w and z − p showing possible planes in
which synchronization could take place for a = 10,
b = 8/3, c = 28, h = 2.25, k1 = −0.12, k2 = 11.3 are
shown respectively

where xi, yi (i = 1, 2, ...n) ε Rn are state space variables of the sys-
tems, fn and gm : Rn → Rn are continuous nonlinear functions and
ui (i = 1, 2, ...n) : Rm → Rm is a nonlinear control function.

Definition 1: If there exists two constants matrices A,B ε Rn

and A, B �= 0, such that lim∞ ‖Byi − Axi‖ = 0 where ‖.‖ is the
matrix norm and A,B are scaling matrices, then systems (2) and
(3) are said to be in complete synchronization.
Comment 1: The error states in relation to the definition 1 are
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strictly chosen to satisfy the definition eij (i = j = 1, 2, 3...n) ;
where i, j are the indices of the error and n refers to the number
of dimensions of the chaotic system. In this work, we consicered
the case (i = j = 5) based on our introduction.

4. DESIGN OF CONTROLLERS FOR 5-D HYPERCHAOTIC SYSTEM

Let us redefine the variables of system (1) as follows, x = x1,
y = x2, z = x3, p = x4 and w = x5 for the master system and
x = y1, y = y2, z = y3, p = y4 and w = y5 for the slave system.
Thus, for the five dimensional system [29], let the master system
be

ẋ1 = a (x2 − x1) + x4,

ẋ2 = cx1 − x1x3 + x5,

ẋ3 = −bx3 + x1x2, (4)

ẋ4 = −hx4 − x1x3,

ẋ5 = −k1x1 − k2x2,

and

ẏ1 = a (y2 − y1, ) + y4 + u1

ẏ2 = cy1 − y1y3 + y5 + u2,

ẏ3 = −by3 + y1y2 + u3, (5)

ẏ4 = −hy4 − y1y3 + u4,

ẏ5 = −k1y1 − k2y2 + u5,

the slave system, where u1, u2, u3, u4 and u5 are the set of nonlinear
controllers. The error dynamics are chosen as: e11=y1-x1, e22=y2-
x2, e33=y3-x3, e44=y4-x4 and e55=y5-x5. Using these notations and
differentiating the error dynamics, we have

ė11 = a (e22 − e11) + e44 + u1,

ė22 = ce11 − e11e33 − x1e33 − x3e11 + e55 + u2,

ė33 = −be33 + e11e22 + x11e22 + x2e11 + u3, (6)

ė44 = −he44 − e11e33 − x1e33 − x3e11 + u4,

ė55 = −k1e11 − k2e22 + u5.

With error dynamics (6), if appropriate u1, u2, u3, u4 and u5 are
chosen, such that the system is stable and unchanged, then the
asymptotic stabilization would be realized leading to globally stable
synchronization of the system. If z1 = e11, its time derivative is
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ż1 = ė11 and we can write the first part of (6) as

ż1 = a (e22 − e11) + e44 + u1. (7)

. We can stabilize (7) using the Lyapunov function

v1 =
1

2
z21 . (8)

By substituting for ż1 in the derivative of (8) and choosing e22 =
α1 (z1) as a virtual controller, we have u1 = −e44, so that

v̇1 = −az21 ≤ 0. (9)

Since the error between e22 and α1 (z1) is estimative as z2 = e22-
α1 (z1) and α1 (z1) = 0, we can write the (z1, z2) subsystem as

ż1 = −a(z2 − z1),

ż2 = cz1 − z1e33 − x1e33 − x3z1 + e55 + u2.

(10)

We stabilize the second part of equation (10) by describing the
second Lyapunov function given as

v2 = v1 +
1

2
z22 , (11)

By substituting for ż2 in the derivative of (11) and choosing e33 =
α2 (z2) as a virtual controller choosing u2 = −z2 − cz1 + z1x3 − e55,
we have

v̇2 = −az21 − z22 ≤ 0. (12)

Thus, the (z1, z2) subsystem is negative definite and assymptotically
stable. Since the error between e33 and α2 (z2) is estimative as z3
= e33-α2 (z2) and α2 (z2) = 0, let

z3 = e33. (13)

and we can write the (z1, z2, z3) subsystem as

ż1 = −a(z2 − z1),

ż2 = −z2 − z1z3, (14)

ż3 = −bz3 + e11z2 + x1z2 + x2e11 + u3,

and stabilize (14) by defining the third Lyapunov function given as

v3 = v2 +
1

2
z23 . (15)
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By substituting for ż3 in the derivative of (15) choosing e11 =
α3(z3) = 0 as a virtual controller and choosing u3 = −x1z2−x2z1,we
have

v̇3 = −az21 − z22 − bz23 ≤ 0. (16)

Thus, the (z1, z2, z3) subsystem is assymptotically stable.Let e44
= z4 and its derivative ė44 = ż4 we can write the (z1, z2, z3, z4)
subsystem as

ż1 = a(z2 − z1),

ż2 = −z2 − z1z3,

ż3 = −bz3 + z1z2, (17)

ż4 = −hz4 − z1z3 − x1z3 − x3z1 + u4..

We can stabilize (17) by defining the fourth Lyapunov function
given as

v4 = v3 +
1

2
z24 . (18)

By substituting for (v̇3) and (ż4) in the derivative of (18) and choos-
ing u4= z1z3 + x1z3 + x3z1, we have

v̇4 = −az21 − z22 − bz23 − hz24 ≤ 0. (19)

Thus, the (z1, z2, z3, z4) subsystem is assymptotically stable. Let z5
= e55, we can write the (z1, z2, z3, z4, z5) system as

ż1 = a(z2 − z1),

ż2 = −z2 − z1z3,

ż3 = −bz3 + z1z2, (20)

ż4 = −hz4,

ż5 = −k1z1 − k2z2 + u5, ,

and stabilize (20) by defining the fifth Lyapunov function given as

v5 = v4 +
1

2
z25 . (21)

By susbstituting for v̇4 and ż5 in the derivative of (21) and choosing
u5 = −z5 + k1z1 + k2z2, we have

v̇5 = −az21 − z22 − bz23 − hz24 − z25 ≤ 0. (22)
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Thus, the whole system is assymptotically stable and we can write

ż1 = a(z2 − z1),

ż2 = −z2 − z1z3,

ż3 = −bz3 + z1z2, (23)

ż4 = −hz4,

ż5 = −z5.

5. NUMERICAL SIMULATIONS

Here we present our numerical simulation in order to verify the
effectiveness of the controllers. We used the fourth-order Runge -
Kutta algorithm. The system parameters are chosen as a = 10,
b = 8/3, c = 28, h = 2.25, k1 = −0.12, k2 = 11.3 when the initial
conditions were x1 = 0.1, y1 = 0.1, z1 = 0.1, p1 = 0.1, w1 = 0.1,
x2 = 0.5, y2 = 0.01, z2 = 0.8, p2 = 0.7 and w2 = 0.5.We comment
that these initial conditions gave rise to the observed attractors
and time series before the activation of the synchronization con-
trol at t ≥ 20. The step size was maintained at H = 0.005. The
controllers ui (i = 1, 2, ...5) were activated at t ≥ 20. The result
for the synchronized states e1, e2, e3, e4 and e5 for the system is
shown in Figures (2), (3), (4), (5) and (6) respectively. The globally
synchronized state is shown in Figure (7). In all the states, syn-
chronization took place when each of the controllers was activated
at t ≥ 20 which signifies that complete synchronization of the 5D
hyperchaotic system has been achieved.
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Figure 2. Synchronized state of e1 when a = 10,
b = 8/3, c = 28, d = 2.25, p = −0.12, k = 11.3
when the initial conditions were x1 = 0.1, y1 = 0.1,
z1 = 0.1, q1 = 0.1, w1 = 0.1, x2 = 0.5, y2 = 0.01,
z2 = 0.8, q2 = 0.7 and w2 = 0.5, H = 0.005 at t ≥ 20
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Figure 3. Synchronized state of e2 when a = 10,
b = 8/3, c = 28, d = 2.25, p = −0.12, k = 11.3
when the initial conditions were x1 = 0.1, y1 = 0.1,
z1 = 0.1, q1 = 0.1, w1 = 0.1, x2 = 0.5, y2 = 0.01,
z2 = 0.8, q2 = 0.7 and w2 = 0.5, H = 0.005 at t ≥ 20
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Figure 4. Synchronized state of e3 when a = 10,
b = 8/3, c = 28, d = 2.25, p = −0.12, k = 11.3
when the initial conditions were x1 = 0.1, y1 = 0.1,
z1 = 0.1, q1 = 0.1, w1 = 0.1, x2 = 0.5, y2 = 0.01,
z2 = 0.8, q2 = 0.7 and w2 = 0.5, H = 0.005 at t ≥ 20
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Figure 5. Synchronized state of e4 when a = 10,
b = 8/3, c = 28, d = 2.25, p = −0.12, k = 11.3
when the initial conditions were x1 = 0.1, y1 = 0.1,
z1 = 0.1, q1 = 0.1, w1 = 0.1, x2 = 0.5, y2 = 0.01,
z2 = 0.8, q2 = 0.7 and w2 = 0.5, H = 0.005 at t ≥ 20
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Figure 6. Synchronized state of e5 when a = 10,
b = 8/3, c = 28, d = 2.25, p = −0.12, k = 11.3
when the initial conditions were x1 = 0.1, y1 = 0.1,
z1 = 0.1, q1 = 0.1, w1 = 0.1, x2 = 0.5, y2 = 0.01,
z2 = 0.8, q2 = 0.7 and w2 = 0.5, H = 0.005 at t ≥ 20
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Figure 7. The globally synchronized state of e1, e2,
e3, e4 and e5 when a = 10, b = 8/3, c = 28, d = 2.25,
p = −0.12, k = 11.3 when the initial conditions were
x1 = 0.1, y1 = 0.1, z1 = 0.1, q1 = 0.1, w1 = 0.1,
x2 = 0.5, y2 = 0.01, z2 = 0.8, q2 = 0.7 and w2 = 0.5,
H = 0.005 at t ≥ 20
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6. CONCLUSION

In this paper, we have demonstrated, analysed and validated
the realization of complete synchronization of 5-dimensional hy-
perchaotic system using the active backstepping technique. We ex-
tended the usual master-slave synchronization scheme for low order
chaotic systems to study the synchronization of this higher order
systems. Each of the 5-dynamical states was successfully synchro-
nized and by implication, electronic information can be hidden in
any or all of this 5d Hyperchaotic system and such information can
be transferred, communicated and retrieved by applying the control
inputs for each or all the dynamical states. Our numerical results
confirm the effectiveness of the analytical technique and we belief
that they are observable in laboratory experiments.
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