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HIGHER ORDER BOUNDARY VALUE PROBLEMS
WITH INTEGRAL BOUNDARY CONDITIONS
AT RESONANCE ON THE HALF-LINE

S. A. IYASE AND O. F. IMAGA!

ABSTRACT. In this paper, we study the following higher order
boundary value problems at resonance on the half-line:

(@(u™ @) = ft,u(t),d(B),--- u" "V (D),  ae. t€(0,00),

subject to the boundary conditions
u(n—?) (O) = ZO@; /u(t)dtv u(i) (O) = Ovl = 17 27 T (’I’L - 3)7

lim ¢(t)u™ Y (t) = 0.

t—oo

By using coincidence degree arguments we establish some
existence criteria under the resonant condition

m—2

Z aiﬂ“l = (n — 1)'

i=1
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nance.
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1. INTRODUCTION

In this article, we are concerned with the existence of solutions for
the following higher-order boundary value problems on the half-line
of the form:

(q(O)u™ D (B) = f(tult),d (), ,u""V(@)), ae. te(0,00), (1)

m G

u"2(0) = Z @i/u(t)dt, uD(0)=0,i=1,2,---,(n—3),

=1 0

Received by the editors June 28, 2018; Revised May 17, 2019 ; Accepted: May 18,
2019
www.nigerianmathematicalsociety.org; Journal available online at https://ojs.ictp.
it/jnms/
1Com‘esponding author
165



166 S. A. IYASE AND O. F. IMAGA
lim q(t)u""Y(t) =0, (2)
t—o0

where f : [0,00] x R" — R is a Caratheodory’s function, a; €
R(1<i<m)0<& <& <& <& <1,qg>0,
q € C[0,00) N C"2(0, 00), % € L'[0, 00| and

S € = (n—1)!. The boundary value problem (1)-(2) is called
i=1

a problem at resonance if Lu = (q(t)u™ Y®) = 0 has nontriv-
ial solutions under the boundary conditions (2), that is when dim
ker L > 1. In this case, the condition Y ;&' = (n — 1)! is criti-

i=1

cal since we require a nontrivial kernel for our differential operator,
if (1)-(2) is to be at resonance. In recent years there has been
an increasing interest in the study of boundary value problems on
finite intervals especially for second, third and fourth order bound-
ary value problems. See [7, 9, 10, 13, 15, 16] and references therein.
To the best of our knowledge there are few papers on higher order
boundary value problems on the half-line or unbounded domains
with integral boundary conditions. For some recent literature on
higher order boundary value problems see [1, 3, 4, 5, 6, 8, 11,
12] and references therein. Boundary value problems with integral
boundary conditions are encountered in various applications such
as in population dynamics, blood flow models and cellular systems.

In this work, we will utilise the coincidence degree theory of
Mawhin [14] to derive our existence results.

In section 2 of this paper, we shall provide some background def-
initions and some preliminary lemmas while section 3 is devoted to
stating and proving the main existence theorems. in section 4, we
will validate our main existence results with an example.

2. PRELIMINARY

We provide here some background definitions and coincidence de-
gree theory.
Definition 1: Let X and Z be two real Banach spaces. A linear
mapping
L :Dom L C X — Z is called a Fredholm mapping if

(i) ker L has a finite dimension,

(ii) Im L is closed and has a finite codimension.

If L is a Fredholm mapping then the Fredholm index is given by
IndL =dim ker L— codim Im L. This definition implies that there
exists continuous projections P : X — X, ) : Z — Z such that
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Im P=kerL, kerQ =Im L, X =kerL@®kerP, Z7 =1Im L &
Im @ and that the mapping L|pom rrker p : Dom L Nker P — ImL
is invertible. The inverse is denoted by K, while the generalised
inverse is denoted by Kpgo : Z — Dom L N ker P and defined by
Kpg=K,(I —Q).

Definition 2: Let L : Dom L C X — Z be a Fredholm mapping.
E a metric space and N : £ — Z be a mapping. N is said to be
L-compact on F if QN : E — Z and Kp(I — Q) : E — X are
compact on E. N is L-completely continuous if it is L-compact on
every bounded £ C X.

The boundary value problem (1)-(2) will be formulated in the ab-
stract form

Lu = Nu and the following coincidence degree theorem of Mawhin
[14] will be employed to derive existence of solutions.

Theorem 1:[14] Let &/ C X be open and bounded and let L be
a Fredholm operator of index zero and N be L-compact on FE.
Assume that the following conditions are satisfied:

(1) Lu # ANu for every (u, A) € [(Dom L\ ker L)NOE] x (0, 1),

(2) Nu ¢ Im L for u € ker LN OE,

(3) deg(QN|xerr, ENker L,0) # 0 with Q : Z — Z a continuous
projection such that ker ) = Im L.

The equation Lu = Nu has at least one solution in Dom L N E.
Definition 3: The map [ : [0,00) x R" — R is an L'[0,00)
Caratheodory if the following conditions are satisfied:

(1) for each u € R", f(t,u) is Lebesque measurable,

(2) for a.e t € [0,00), f(t,u) is continuous on R”,

(3) for each r > 0 there exists ¢, € L'0,00) such that for
a.e. t € [0,00) and every u such that |u| < r we have

(£ u)] < on(t).

Let AC[0,00) denote the space of absolutely continuous functions
on [0,00). Let X = {u € C"'[0,00),u, v, ,u? qun=? ¢
AC|0, 00), tlim et lu®(t)]|

—00
exists , 0 < i <n—1, (qunV) € L'0,00)} endowed with the

norm

. Then X is a Banach space. Let

Osisn=1 | te[0,00)

| u|= max [ sup e Hul(t)|

Z = L'0,00) with the norm || y |1= [ |y(¢)|dt, y € Z. Theorem
0
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2: [1] Let F be a subset of C, = {y € C(]0,00)) : tlim y(t)exists}
—00
that is equipped with the norm || y ||oc= sup |y(¢)|. Then F' is
te[0,00)
relatively compact if the following conditions hold:

(1) F is bounded in X,

(2) the functions belonging to F' are equicontinuous on any com-
pact subinterval of [0, 00),

(3) the functions from F' are equicontinous at oo.

We will use the following adaptation of theorem (2) to show that
K,(I —Q): E— X is relatively compact in X.

Lemma 1: [8]. Let D C X, then D is relatively compact in X if
the following conditions are satisfied:

(1) D is bounded in X,

(2) the family W = {w; : w;(t) = e tu@(t),t > 0,u € D}
is equicontinuous on any compact subinterval of [0, c0) for
i=0,1,--,n—1,

(3) the family W = {w; : w;(t) = eDui(t), t > 0, u € D} is
equiconvergent at oo for i =0,1,--- ,n —1.

Let L : Dom L C X — Z be defined by Lu = (q(t)u" VY t €

m &i .
[0,00) where Dom L = {u € X : u"2(0) = 3 o [u(t)dt, uD(0) =
=10

Qi:QLZ~Wn—&ﬁmq®M“Wﬂ:O}“k%ﬁmmew—
—00

erator N : X — Z by Nu(t) = f(t,u(t), - ,u""'(t)), t € [0,00).
Then (1)-(2) takes the form

Lu = Nu. (3)

Lemma 2: If > ;&' = (n —1)! and
=1

i=

&i

]

e—S

q(s)

NgE

dsdrs -+ - dr,dt # 0

1

-.
Il

T3 1 o
() T{ y(m)drdry - - - dr,dt = O}.

Proof: (i) For u € ker L, we have (¢(t)u™ Y(t))’ = 0. Then we
obtain
u" V() =0
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or
u(t) = ag + ait + agt® + - - + ap_ot"

where a;(i = 0,1,--- ,n —2) € R. From «(0) =0, i =0,1,---,
n — 3 we derive ag = a1 = a9 = -+ = a,_3 = 0. Hence

ker L ={u€Dom L:u=dt"?* deR, tc0,00)}

(ii) We show that Im L = {y €Z:

Zaz/// / 72/ (r1)dr - dTndt:O}.

To do thls we con51der the problem

(g(®)u" V(1) = y(t), (4)
subject to the boundary conditions (2). We show that (4) subject
to (2) has a solution u(t) if and only if

o []-]:

If u(t) has a solution wu(t) satlsfylng (2) then from (4) we obtain

// / 72/ y(m)dr - - dTquz:fZ)?(?!)th' (6)

/ (m)dry - - - dr,dt = 0. (5)

w2 (0) = Z&i/u(t)dt
=1 0
m & t T T3 1 00
:—ZQZ//// /y(Tl)dTl"'dTndt
i1 q(72)
0 0 O 0 To
§

since Y ;"' = (n — 1)!. We derive that
=1
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If (5) holds then setting

S ///q<1>

where d is an arbitrary constant, then u(t) is a solution of (4) and
is such that (2) is satisfied.

]Oy(ﬁ)dﬁ cedy, (7)

3. THE HEART OF THE MATTER

In this section, we shall establish existence results for (1)-(2). We
assume the following conditions:

(A0) Zazfn '=(n—1) and
& T T3

Zaz// /qe(_;:)dngTg---dTn%O,

(A1) There eX1sts constant M; > 0 such that for each
u € Dom L\ ker L satisfying [u™=2(¢)] > M, for all t €
[0,00) we have QNu # 0,

(A2) There exist positive functions a;( = 1,2,--- ,n), r € L*[0, 00)
such that for all (uy,us,---,u,) € R*, t € [0,00) and
0 € 10,1) the following inequality holds

|t ug, - un| < e Za, Vs ()] 4 e an ()| un (8] +7(t), (8)

(A3) There exists a constant My > 0 such that for every d € R
with |d| > M, we have either

& ™ T3

dz/// .

o0

f(tl, dt?il, s ,d(n — 2)', O)dTldTQ ceedry, >0
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. (10)
L ftl,dt"71,~-,dn—2!,Od71d72-~-d7n<0.
q(ta) !

Theorem 3: If (A0)-(A3) holds then the boundary value problem
(1.1)-(1.2) has at least one solution provided

= 1
a; 1< —1 11
AT .

To prove theorem 3, we require the following lemmas
Lemma 3: If the conditions of Lemma 2 holds then:

(i) L:Dom L € X — Z is a Fredholm operator of index zero
and the linear continuous projection ) : 7 — Z can be

written as
(Qu)(t) = h(t) il@/é/t/ - .fq(;) ?y(ﬁ)dﬁ e drydt
where T2
) F— o

m & t T3
Sai [ [ [ f%dsdﬁ,-ndmdt
000 0

i=1

(ii) The inverse K, : Im L — Dom L Nker P is of the form

/[

/y T )dr - - - dr, (13)

with

N ello] 1
K,y || < max | max sup e ‘n2t) 4 — |1 ¥ |1
| Koy | [ <tew F | g

1
=Dy | p Il s (14)
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Proof: (i) For any y € Z, we define the projection @ as

(Qy)() h(ﬂi;aij/tjqu(;) 7y(71)d71"'d7ndt,
then
(@%y)(1) = Q(Qy)(1)
§i t Ty T3 o0
:h(t)zai///---/q(;)/y(ﬁ)d7'1~-~d7'ndt
ééaijjg?--f;@dahgu-dﬁdt
X

Forye Z, y—Qy € ker@Q =Im L and Qy € Im (). Hence, Z =
Im L+Im Q. Since Im LNIm @ = {0}, we have Z = Im L& Im Q.
Therefore dim ker L = dim Im ) = 1. Thus, L is a Fredholm

operator of index zero.
(ii) Taking P: X — X as

)
Pu(t) = rz(?!)t“, te[0,00), (15)

then it is obvious that Im P = ker L and P*u(t) = Pu(t). We can

write u € X as u(t) = Pu(t) + (u(t) — Pu(t)). Thus X = ker P +

ker L. Since ker L Nker P = 0, we obtain that X = ker P @ ker L.
For y € Im L, we have

(LE,)y(t) = [qt) (K ()" V) = y(t), t € [0,00)
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and for v € Dom L Nker P one has

(K, Lyu(t) = Ky[a(t)u"V(@)]

t Tn

[/
/ / / "=V (r)dry - - - dry,

0 0

/ Du V() drdry - - - dr,

=u(t) - (n—2)!

since u € Dom L Nker P, (K,L)u(t) = u(t).
Using the definition of K, we have

— —tyn—2—1 1
e (Kpy) ()] < max ( sup e”'t"” ) I Il il

0<i<n—2 t€[0,00)
Fori=n—1

! (Kyy) "V (1)) < s - HooH gl (16)

te(0

Therefore,

; | . oo 1
K,y || < max | max sup e ‘2|, 4 — Y
I Ky | [ <tew e LLRAL

1
=D, | - Y-
I Iyl

(17)

Lemma 4: If f is a Caratheodory’s function then N is L-compact.
Proof: Let D C X be bounded with r = sup{|| w ||: w € D}. Since
f :]0,00) x R" — R satisfies the Caratheodory’s condition with
respect to L'[0, 00) there exists a Lebesgue integrable function ¢,
such that

‘Nu(t” - ‘f(tvu(t)7ul(t)7' t 7u(n71)(t)‘ S Qpr(t)v le [0,00), u € -D7
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I Nu < [ [Nu(s)lds <[5~ lerldt =[] ¢ ||1,
0

| @Nu [|1 < /IQNu(s)\ds
0

e m & s T T3
< [ St [ [ [ ]
0 =1 0 0 0 0
L Wt ans]
q(m2) T1)|AT14T? Tn
T2
m & s e T3
<Unlllen s [ Slad [ [ [
=1 0 0 0 0
17|N(>|dd i dsit
q(72) u(T1)|aT1ATy Tpds

T2

&L
<l A llill er 1y Y loal 25 | g = B <00
i=1 ’
From (17) we have

1
I Kp(I = Q)Nu || < Dy || p 1l (F = Q) Nu |y
1 1
<Dy | p 2l NIy +Da |l p 1l @Nu |y

1
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Thus K,(I — Q)N (D) is uniformly bounded in X.
Let u € D and ty, ty € [0, M], M € (0,00) with ¢; < t5. Then

e (K,(I — Q)Nu(ts)) — e (K,(I — Q)Nu(t1))]
_ / e (K, (I — Q)Nu(s))]'ds

t1
to

= | [ 1 (1 = QNu(s))ds + ¢ (5,1 = Q) Nu(s))ds

<2ty — 1) || Kp(I —Q)Nu ||

1
< Z(tg — tl)Dn H ; H1 [H ©r + Bn] — 0 as t1 — to.

For0<:<n-—2

e (Kp(I — Q)Nw)V(ty) — e (K,p(I — Q)Nu)¥ ()]
_ / e~ (K, (I — Q)Nu)D(s)]'ds

t1
to

= /[—G_S(Kp(f — Q)Nw)W(s))ds + e * (K, (I — Q)Nu) ™V (s)]ds

t1

<2t —t) || Kp(I = Q)Nu |

1
< 2ty —t1) D, || p 1 [l @rlli + Bn) — 0 as t; — t.
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Fori=n—-1

le™ (K (1 = Q)Nw)" D (ts) — ™" (Ky(1 = Q)Nu) "V (ty)]

el T
- i@, (I — Q)Nu(s @/(I—Q)Nu(s)ds

—to

IN

ctcen \ 7 (I — Q)Nus)|ds

a(t2)  a(t)

(s)]ds

< g 12 lqt)e™ — qt)e™ | || (I — Q)Nu |
1 7
1<l / (1 — Q) Nu(s)|ds

1 _ _
<|l p 1% la(t)e™ — q(t2)e™ (| ¢ [l +Bx)

to

S / [l

& s T

+ |h(r !Z\az\/// / s ds

— 0 ast; — ta.
Thus K,(I — Q)N(D) is equicontinuous on every compact subset
of [0, 00). We now show that K,(I — Q)N (D) is equiconvergent at
infinity.
For uw € D, we have for 0 <7 <mn —2

e (K,(I — Q) Nu(t)]

t T T3 1
:|€_t//.../
q\m
0 0 0

o1
< oo [ N+ QNu 1] > 0 as 8 oo,

) /(I — Q)Nu(r)drdry - - - dT,
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Fori=n—-1

e (15, (1 = Q)" Y Nu(1)]

o0

_ti — u(7)dr
~le ' [U=Q@Nutrar

t

_ 1
<e tH;Hoo[HNqu+HQNuHl]%ogtsmoo.

Therefore K,(I — Q)(D) is equiconvergent at infinity. Thus the
conditions of Lemma 1 (or Theorem 2) are fulfilled. Hence K,(I —
Q)N (D) is relatively compact for every bounded D C X.
Lemma 5: Let

E; = {u € Dom L\ker L : Lu = ANu, X € (0, 1]}.

Then F; is bounded.
Proof: For u € Fy, u ¢ ker L, A # 0 and hence Nu € Im L. Since
ker Q = Im L, we obtain

& Tn T3 oo
1
ZO&Z/// /y(Tl)dTldTQ"'dTn :O, Yy c Z.
— q(t2)
0 0 0 to

From (A1) we derive a t; € [0,00) such that [u"2(¢;)] < M;.
Then

t1

2 (0)] = a2 () - / W (5)ds

0
t1
W]+ [ 0 s)lds

< My+ || u" |y

IN

From (6) one obtains

17 17
u(”1 :——/ (”1 ds———/Lu
q(t) t q(t) /

and hence
o0 o0

1 1
1000 = [ |~ [ Luts)ds|de < 2 Wl Nu . (19)
t

J q(t)
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From (18) and (19) we get
(n-2) !
[ 20) < Mt |l Nl (20)

For u € Ey, (I — P)u € Dom L Nker P. Therefore using (14), we
obtain

1
| (I = Plu | =|| K,L(I = P)u|[< D, | p [l (LI = P)u s
1 1
<Dy || = hll Lu [(i< Dy || = |l Nu s -
q q
(21)
From the definition of P, and (3.13), we derive

32 ,
Pu(t) = ré)o!)t“, (Pu)®(t) =

u™=2)(0)

Y e g << pe2,
(n—2—1)! y USSR

tn—?—i

} [ut"=2(0)] < Dylu™2(0)]

_ -
IPell= {Og?ix%es[})l,go) ’ (n—2—1)!
D

1
< Dy[Mi+ || p 1l N |l2].
(22)
[u =l Put(I = Plu |[<[| Pull + || (I = P)u|]
1 1
< Dy[My+ || p [l N la] + Do || p 2]l Ny

1
= MiDy 2D || 2 llsll Nl -

(23)
From (8) we obtain
| Nu [y < / F(s.u(s), - umD(s)|ds
0 (24)

n—1
<Y Ml 1w [+ 1 an®) [l wa(@) 1%+ 107
i=1
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Hence, (23) and (24) yields

|wl <MD,
1 n—1
+2D, | P o 1D e lallw [+ 1 an flallw 1+ 1
i=1
or
M D,,
[ull <

n—1
=20, |4 %l

L 2D g Il an lall w1+ 17 Il

n—1 ’
1—2D, | ; | ai llh

Since 6 € [0,1) and (3.4), there exists My > 0 such that
[ lI< M, (25)

therefore F; is bounded.
Lemma 6: The set

Ey={uckerL: Nueclm L},

is bounded.
Proof: For u € Fy, u(t) = dt"? where d € R, t € [0,00) and
Nu € Im L implies Nu = ker (). Hence

m & T T3
S
=190 0
1 o
) /f(Tl,dT{lZ,“' , (n—2)!d,0)dndry - - -dr, = 0.
2
to

By (A3) there exists t; € [0,00) such that |u"=2(¢,)| < M,, that

is (n —2)!|d| < M or |d| < % On the other hand

| w < [ max  sup ett"Zi] |d| < MyD,,.

0Sisn=2¢e[0,00)

This shows that E5 is bounded.
We shall now prove theorem 3.
Proof: Let T : ker L — Im @ be the isomorphism defined by

T(dt"?) = dh(t), t € [0,00),
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where h(t) is as in (7). If (9) holds, Let
Es={u€ker L: XTu+ (1 —XNQNu=0, X €[0,i},
then
—ANTu=(1-XNQNu
that is

m &i Tn T3

—)\dh(t):(1—/\)h(t)izlai//t/.../

1 (oo}
m /f(ﬁ, dt2 - (n—2)d,0)drdr - - - d7,dt.
T2
T2

If A =1 then d = 0 and if |d| > M, then in view of (9) we have

m & ot T T3
—)\d2:(1—/\)d2ai///--/
=19 0 0 0

/f(71> dt?iZa T (77, o 2)‘d7 O)dTldTQ ~drpdt >0
q(72)
T2

which is a contradiction. Hence E3 is bounded.
If (10) holds, we set

Es={ueckerL: -ATu+(1—-ANQNu=0, A€ [0,1]}.
Using a similar argument we derive that Ej3 is bounded.

Let E be an open bounded set such that U?_;E C E. Then it is
easily seen that assumption (i) and (ii) of theorem 2.1 are satisfied.
Lemmas 2.3 and 2.4 have established that L is Fredholm mapping
of index zero and the mapping N is L-compact on E.

To verify the third assumption we define

H(u,\) =+ XTu+ (1 — N)QNu.
It is easily seen that H(u,\) #= 0 for every u € JF N ker L.
Therefore
deg(QN |xer ., E Nker L,0) = deg(H(+,0), E Nker L)
= deg(H(-,1), ENker L,0)
= deg(£T, E Nker L,0) # 0.

Therefore from theorem 1, Lu = Nu has at least one solution in
Dom LNE.
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4. EXAMPLE

Consider the boundary value problem

=2 G) 1
(D) = (14 Y g eost V(0] ), (20
(n-2) '« €
u (0) = ; a; i u(t)dt, o)

where Q(t) = et? te [0,00), fz =1 i = (1 +Z>a
f(ta U(t), ul(t)a U 7u(n71)(t))
U )
-t [u?(1)] (n—1) (4| 15
=e <1+;m+|008t||u (t)| 6],

- dr,dt # 0.

Assumptlon AO) is therefore satisfied. It is easily observed that
since f(t,uy,ug, -+ ,u,) > 0 for all (t,uy,us, -+, u,) € [0,00) x R"
then QNu(t) # 0 on [0, 00) for all u € Dom L\ ker L. This satisfies
assumption (Al)

[t ul®) (1), - a0 < et (1+Zgg<l+?'5+\u” V()1 )

Here a;(t) =

m Hence assumption (A2) is satisfied.
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Assumption (A3) can be computed as follows

(n—1)! &

Eef]

,(n—2)ld)dr,dry - - - dT,

(n (144) C=

S [ ]

o0 n—2 2
dr— (J)
/ - <1+ E ( i%—t ‘)dﬁdsd73~-d7n
J=0

S

(n—1)! (14 G
>d Y (1+1) // /25d8d7' -y,
=1

and satisfies (8) or (9) respectively if |d| > My = 1.

tam—a—s &l
Now D, = max | max sup e ‘" 27 -4 =
0<i<n—1 4¢0,00) ll5

I g llo=Il 5 [lh=1 and since

lim e~ 4"=27" - 0, D, = [ max sup e 270 1] 1.

t—o00 0<i<n—1 te[0,00)
1 1
(=R sdt = 20
(n—1)! (n—

; | a; 1= ; Z ZL — L1 — (L1,
(nil)' B

_ 1\(n—1)! 1
Z Fa [li= (1 = (3)" ))<m 3

Therefore all the assumption of Theorem 3.1 are satisfied. There-
fore (26) - (27) possess at least one solution.

AN,

| a; 1= 3i
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