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ABSTRACT. This paper emphases on stability and bounded-
ness of solutions to certain nonlinear non autonomous second
order stochastic delay differential equations. A complete Lya-
punov functional is constructed and used to establish conditions,
on the nonlinear functions appearing in the equations, to guar-
antee stability and boundedness of solutions to the second order
stochastic delay differential equations considered. The obtained
results are new, complement and extend the existing results on
second order stochastic delay differential equations in the liter-
ature. Finally, examples together with their numerical simula-
tions are given to confirm genuineness and assert the correctness
of the obtained results.
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1. INTRODUCTION

Delay differential equation (DDE) (also known as the differential
equation with retarded argument) occurs in a wide variety of natu-
ral and man made systems. The inclusion of delay effects in math-
ematical modelling give rise to differential equations with constant,
time varying, distributed and /or state dependent delays. DDEs
play a pertinent role in laser physics, environmental modelling, elec-
tronic engineering, communication system, traffic flows, control the-
ory, population dynamics, dynamics of neuronal networks, primary
infection, drug therapy, immune response, the study of chemostat
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models, circadian rhythms, epidemiology, the respiratory system,
tumor growth to name few.
Accordingly, many useful techniques has been developed by au-

thors to study delay differential equations, particularly, the devel-
opment of the direct method of Lyapunov to study the behaviour
of solutions of DDEs. In this direction we can mention the books of
Burton [8], Hale [11], Hale and Lunel [12], Driver [13], Yoshizawa
[37] which contain general background to the subject matter, and
the dazzling papers of Ademola et al. [5], Canlon [9], Domoshnitsky
[13], Ogundare et al. [22, 23, 24], Tunç et al. [29, 30, 31, 32, 33],
Xianfeng and Wei [34], Yeniçerioğlu [34, 36] and the references cited
therein.
Effect of noise in differential equations is increasingly a focus

of investigation. This is true especially in the world of science and
technology as mentioned above. Also, different approaches has been
developed in this direction to study the effect of noise in stochas-
tic differential equations (SDEs) and stochastic delay differential
equations (SDDEs). See for instance the survey books of Arnold
[7], Oksendal [25], Shaikihet [28], and the stupendous, papers of
Abou-El-Ela et al. [1, 2], Ademola et al. [4], Caraballo et al. [10],
Ivanov et al. [15], Jedrzejewski [16], Kolarova [17], Kolmanovskii
and Shaikhet [18, 19], Liu and Raffoul [20], Mao [21], Raffoul [26],
Rezaeyan and Farnoosh [27], Zhu et al. [38] and the references cited
therein.
In 2014, the authors in [23] and [31] discussed conditions which

guarantee boundedness and stability properties of solutions of the
following second order differential equations

x′′ + f(x)x′ + g(x) = p(t, x, x′)

and

x′′ + c(t, x, x′) + q(t)b(x) = f(t),

respectively.
In 2015, following authors work on different problems of sec-

ond order differential equations. First, the author in [3] employed
Laypunov direct method, criteria which ensure boundedness and
stability (when p(t, x(t), x′(t)) = 0) of solutions to the second order
differential equation

[φ(x(t))x′(t)]′ + g(t, x(t), x′(t))x′(t) + ϕ(t)h(x(t)) =

p(t, x(t), x′(t)),
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where φ, g, ϕ, h and p are continuous functions in their respective
arguments are discussed. In [5] conditions which guarantee peri-
odicity, stability and boundedness of solutions to the second order
nonlinear delay differential equation

x′′(t) + φ(t)f(x(t), x(t− τ(t)),x′(t), x′(t− τ(t))) + g(x(t− τ(t)))

= p(t, x(t), x′(t)),

are discussed. Furthermore, the authors in [1] and [2] established
conditions for stability and boundedness of solutions of the follow-
ing second order stochastic delay differential equations

x′′(t) + ax′(t) + bx(t− h) + σx(t)w′(t) = 0,

x′′(t) + ax′(t) + f(x(t− h)) + σx(t− τ)w′(t) = 0

and

x′′(t) + g(x′(t)) + bx(t− h) + σx(t)w′(t) = p(t, x(t), x′(t), x(t− h)),

respectively where h > 0, τ > 0 are constants delays, a, b are pos-
itive constants, f, g, p are continuous functions with g(0) = 0 and
w ∈ R

m is an m−dimensional standard Brownian motion defined
on the probability space.
Recently, in 2016 the authors in [4] studied criteria for stability

and boundedness of solutions to a certain second order stochastic
differential equation

x′′(t) + g(x(t), x′(t))x′(t) + f(x(t)) + σx(t)ω′(t) = p(t, x(t), x′(t)),

where f, g, p are continuous functions and ω ∈ R
m is an m−

dimensional standard Brownian motion defined on the probability
space.
Nevertheless, according to our observations from the relevant lit-

erature, the problem of stability and boundedness of solutions of
the nonlinear non autonomous second order stochastic delay differ-
ential equation (1.1) is still opened for discussion. Therefore the
aim of this paper is to consider

x′′(t) + ψ(t)f(x(t), x′(t))x′(t) + g(x(t− τ)) + σx(t)ω′(t) =

p(t, x(t), x′(t), x(t− τ)),
(1.1)

where the functions ψ, f, g, p are continuous functions in their re-
spective arguments on R

+, R2, R, R+ × R
3 respectively with R =

(−∞,∞), R+ = [0,∞), σ > 0 is a constant and τ is a positive
constant delay. In addition, it is assumed that the continuity and
the local Lipschitz conditions on the functions f, g, p and ψ are suf-
ficient for existence and uniqueness of continuous solution denoted
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by (xt, yt) respectively. As usual the primes stand for differentiation
with respect to the independent variable t ∈ R

+. If x′(t) = y(t),
then equation (1.1) is equivalent to the system

x′(t) = y(t),

y′(t) = − ψ(t)f(x(t), y(t))y(t)− g(x(t))− σx(t)ω′(t)

+ p(t, x(t), y(t), x(t− τ)) +

∫ t

t−τ

g′(x(s))y(s)ds.

(1.2)

The derivative of the functions g and ω (i.e., g′ and ω′) exist and
are continuous for all x and t respectively. This paper is motivated
from the works in [1, 2, 3, 4] and [22].
An equally interesting problem is the situation where the func-

tion g and the term σx(t)ω′(t) in (1.1) are replaced with deviating
arguments and σx(t − τ)ω′(t) respectively. This has already been
considered by us and the results arising in this direction will be ad-
vertized through another outlet. The obtained results in the present
paper are completely new and they extend previously known results
in [3, 23, 24, 32] on second order ordinary differential equations, the
works in [5, 9, 10, 14, 22, 29, 31, 33, 34, 34, 36] where the delay
differential equations are considered and the recent works on sec-
ond order stochastic delay differential equations in [1, 2, 4]. Some
mathematical tools that will be needed in the sequel are discussed
in Section 2. That is definitions of major terms used in the pa-
per, some basic results on stability and boundedness of solutions
to non autonomous n−dimensional stochastic differential equation
(2.1) are also presented in this section. The main results of this
paper and their proofs are discussed in Section 3 while examples
and simulation of the numerical solutions are presented in the last
section.

2. Preliminary Results

Let (Ω,F, {Ft}t>0,P) be a complete probability space with a filtration
{Ft}t>0 satisfying the usual conditions (i.e. it is right continuous and
{F0} contains all P−null sets). Let B(t) = (B1(t), · · · , Bm(t))T be an
m−dimensional Brownian motion defined on the probability space. Let
| · | denotes the Euclidean norm in R

n. If A is a vector or matrix, its
transpose is denoted by AT . If A is a matrix, its trace norm is denoted
by

|A| =
√

trace (ATA).
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For more information see Arnold [7] and Mao [21]. Consider a non
autonomous n−dimensional SDDE

dx(t) = F (t, x(t), x(t − τ))dt+G(t, x(t), x(t − τ))dB(t) (2.1)

on t > 0 with initial data {x(θ) : −τ ≤ θ ≤ 0}, x0 ∈ C([−τ, 0];Rn).
Here F : R

+ × R
2n → R

n and G : R+ × R
2n → R

n×m are measur-
able functions. Suppose that the functions F,G satisfy the local Lip-
schitz condition, given any b > 0, p ≥ 2, F (t, 0, 0) ∈ C1([0, b];Rn)
and g(t, 0, 0) ∈ Cp([0, b];Rm×n). Then there must be a stopping time
β = β(ω) > 0 such that equation (2.1) with x0 ∈ Cp

Ft0
[class of Ft-

measurable C([−τ, 0];Rn)-valued random variables ξt and E‖ξt‖p <∞]
has a unique maximal solution on t ∈ [t0, β) which is denoted by x(t, x0).
Assume further that

F (t, 0, 0) = G(t, 0, 0) = 0

for all t ≥ 0. Hence, the SDDE admits zero solution x(t, 0) ≡ 0 for any
given initial value x0 ∈ C([−τ, 0];Rn).
Definition 2.1. The zero solution of the stochastic differential equation
(2.1) is said to be stochastically stable or stable in probability, if for every
pair ε ∈ (0, 1) and r > 0, there exists a δ0 = δ0(ε, r) > 0 such that

Pr{|x(t;x0)| < r for all t ≥ 0} ≥ 1− ε whenever |x0| < δ0.

Otherwise, it is said to be stochastically unstable.

Definition 2.2. The zero solution of the stochastic differential equation
(2.1) is said to be stochastically asymptotically stable if it is stochastically
stable and in addition if for every ε ∈ (0, 1) and r > 0, there exists a
δ = δ(ε) > 0 such that

Pr{ lim
t→∞x(t;x0) = 0} ≥ 1− ε whenever |x0| < δ.

Definition 2.3. A solution x(t0, x0) of the SDDE (2.1) is said to be
stochastically bounded or bounded in probability, if it satisfies

Ex0‖x(t, x0)‖ ≤ C(t0, ‖x0‖), ∀ t ≥ t0 (2.2)

where Ex0 denotes the expectation operator with respect to the proba-
bility law associated with x0, C : R+ ×R

n → R
+ is a constant function

depending on t0 and x0.

Definition 2.4. The solutions x(t0, x0) of the SDDE (2.1) is said to be
uniformly stochastically bounded if C in (2.2) is independent of t0.

Let K denote the family of all continuous non-decreasing functions
ρ : R+ → R

+ such that ρ(0) = 0 and ρ(r) > 0 if r �= 0. In addition, K∞
denotes the family of all functions ρ ∈ K with

lim
r→∞ ρ(r) = ∞.
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Suppose that C1,2(R+ ×R
n,R+), denotes the family of all non negative

functions V (t, xt) (Lyapunov function) defined on R
+ × R

n which are
twice continuously differentiable in x and once in t. By Itô’s formula we
have

dV (t, xt) = LV (t, xt)dt+ Vx(t, xt)G(t, xt)dB(t),

where

LV (t, xt) =
∂V (t, xt)

∂t
+
∂V (t, xt)

∂xi
F (t, xt)

+
1

2
trace [GT (t, xt)Vxx(t, xt)G(t, xt)],

(2.3)

Vxx(t, xt) =

(
∂2V (t, xt)

∂xi∂xj

)
n×n

, i, j = 1, · · · , n,
with xt = x(t + θ), −r ≤ θ ≤ 0, t ≥ 0. In this study we will use
the diffusion operator LV (t, xt) defined in (2.3) to replace V ′(t, xt) =
d
dtV (t, xt). We now present the basic results that will be used in the
proofs of the main results.

Lemma 2.5. (See [7]) Assume that there exist V ∈ C1,2(R+ ×R
n,R+)

and φ ∈ K such that

(i) V (t, 0) = 0, for all t ≥ 0;
(ii) V (t, xt) ≥ φ(‖x(t)‖), φ(r) → ∞ as r → ∞; and
(iii) LV (t, xt) ≤ 0 for all (t, x) ∈ R

+ × R
n.

Then the zero solution of SDDE (2.1) is stochastically stable. If condi-
tions (ii) and (iii) hold then (2.1) with x0 ∈ Cp

f0
has a unique global

solution for t > 0 denoted by x(t; t0).

Lemma 2.6. (See [7]) Suppose that there exist V ∈ C1,2(R+×R
n,R+)

and φ0, φ1, φ2 ∈ K such that

(i) V (t, 0) = 0, for all t ≥ 0;
(ii) φ0(‖x(t)‖) ≤ V (t, xt) ≤ φ1(‖x(t)‖), φ0(r) → ∞ as r → ∞; and
(iii) LV (t, xt) ≤ −φ2(‖x(t)‖) for all (t, x) ∈ R

+ × R
n.

Then the zero solution of SDDE (2.1) is uniformly stochastically asymp-
totically stable in the large

Assumption 2.7. (See [20, 26]) Let V ∈ C1,2(R+ × R
n;R+), suppose

that for any solutions x(t0, x0) of SDDE (2.1) and for any fixed 0 ≤ t0 ≤
T <∞, we have

Ex0

{∫ T

t0

V 2
xi
(t, xt)G

2
ik(t, xt)dt

}
<∞, 1 ≤ i ≤ n, 1 ≤ k ≤ m. (2.4)

Assumption 2.8. (See [20, 26]) A special case of the general condition
(2.4) is the following condition. Assume that there exits a function σ(t)
such that

|Vxi(t, xt)Gik(t, xt)| < σ(t), x ∈ R
n 1 ≤ i ≤ n, 1 ≤ k ≤ m, (2.5)
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for any fixed 0 ≤ t0 ≤ T <∞,

∫ T

t0

σ2(t)dt <∞. (2.6)

Lemma 2.9. (See [20, 26]) Assume there exists a Lyapunov function
V (t, xt) ∈ C1,2(R+ × R

n;R+), satisfying Assumption 2.7, such that for
all (t, x) ∈ R

+ × R
n,

(i) ‖x(t)‖p ≤ V (t, xt) ≤ ‖x(t)‖q,
(ii) LV (t, xt) ≤ −α(t)‖x(t)‖r + β(t),

(iii) V (t, xt)− V r/q(t, xt) ≤ γ,

where α, β ∈ C(R+;R+), p, q, r are positive constants, p ≥ 1 and γ is a
non negative constant. Then all solutions of SDDE (2.1) satisfy

Ex0‖x(t, x0)‖ ≤
{
V (t0, x0)e

− ∫ t
t0

α(s)ds

+

∫ t

t0

(
γα(u) + β(u)

)
e−

∫ t
u α(s)dsdu

}1/p

,

(2.7)

for all t ≥ t0.

Lemma 2.10. (See [20, 26]) Assume there exists a Lyapunov function
V (t, xt) ∈ C1,2(R+ × R

n;R+), satisfying Assumption 2.7, such that for
all (t, x) ∈ R

+ × R
n,

(i) ‖x(t)‖p ≤ V (t, xt),
(ii) LV (t, xt) ≤ −α(t)V q(t, xt) + β(t),
(iii) V (t, xt)− V q(t, xt) ≤ γ,

where α, β ∈ C(R+;R+), p, q are positive constants, p ≥ 1 and γ is a
non negative constant. Then all solutions of SDDE (2.1) satisfy (2.7)
for all t ≥ t0.

Corollary 2.11. (See [20, 26])

(i) Assume that hypotheses (i) to (iii) of Lemma 2.9 hold. In addi-
tion∫ t

t0

(
γα(u) + β(u)

)
e−

∫ t
u α(s)dsdu ≤M,∀ t ≥ t0 ≥ 0, (2.8)

for some positive constant M, then all solutions of SDDE (2.1)
are uniformly stochastically bounded.

(ii) Assume the hypotheses (i) to (iii) of Lemma 2.10 hold. If con-
dition (2.8) is satisfied, then all solutions of SDDE (2.1) are
stochastically bounded.
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3. Main Results

Suppose that (xt, yt) be any continuous solution of the SDDE (1.2)
with x(t) = x and y(t) = y. The Lyapunov functional, V (t, xt, yt) =
V (t,Xt), Xt = (xt, yt) ∈ R

2, employed in this paper is defined as

2V (t,Xt) = (a2 + b2)x2 + (b+ 1)y2 + xg(x) + 2axy

+

∫ 0

−τ

∫ t

t+s
λy2(θ)dθds,

(3.1)

where a, b are positive constants, λ > 0 is a constant which will be
determined later and τ > 0 is a constant delay.

Theorem 3.1. If in addition to the basic assumptions on the functions
f, g, ω, ψ and p, suppose that a, b,B,G, P, σ, ψ0 are positive constants
and

(i) a ≤ f(x, y) for all x and y, ψ0 ≤ ψ(t) for all t ≥ 0;
(ii) bx ≤ g(x) ≤ Bx for all x �= 0, |g′(x)| ≤ G for all x;
(iii) σ2(b+ 1) < ab, ψ−1

0 < b+ 1; and
(iv) |p(t, x, y, x(t − τ))| ≤ P, 0 ≤ P < ∞, for all t ≥ 0, x, y and

x(t− τ).

Then the solution (xt, yt) of the SDDE (1.2) is uniformly stochastically
bounded provided that

τ < min

{
ab− (b+ 1)σ2

aG
,
a[(b+ 1)ψ0 − 1]

[a+ 2(b+ 1)]G

}
. (3.2)

Remark 3.2. We observe the following

(i) If the functions ψ(t)f(x, x′) = a, g(x(t − τ)) = bx, where a >
0, b > 0 are constants and σ = 0 = p(t, x, x′, x(t − τ)), then the
SDDE (1.1) reduces to second order linear differential equation

x′′ + ax′ + bx = 0, (3.3)

and hypotheses (i) to (iv) of Theorem 3.1 reduce to Routh-
Hurwitz criteria a > 0, b > 0 for asymptotic stability of the
second order linear differential equation (3.3).

(ii) The term σx(t)ω′(t) when τ = 0 extends all results on second
order ordinary differential equations discussed recently in [3, 23,
24, 32] and the references cited therein.

(iii) The term σx(t)ω′(t) is an extension to all results on stability
and boundedness of solutions of second order delay differential
equations studied in [5, 9, 10, 14, 22, 29, 31, 33, 34, 34, 36] and
the references cited therein.

(iv) Whenever τ = 0 and ψ(t) = 1 equation (1.1) specializes to sto-
chastic differential equation discussed in [4]. Thus, the stability
and boundedness results obtained in this investigation include
and extend the results in [4].
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(v) When ψ(t)f(x, x′) = a, g(x(t− τ)) = bx, where a, b are positive
constants and p(t, x, x′, x(t− τ)) = 0, equation (1.1) reduces to
equation (1.1) considered in [1]. Thus the stability results of
this paper include and improve the stability result obtained in
Theorem 2.3 of [1].

(vi) If ψ(t)f(x, x′) = g(x′) and g(x(t−τ)) = bx(t−τ), equation (1.1)
reduces to that studied in [2], hence our stability and bounded-
ness results extend the results in [2].

Next, we will state and proof a result that will be useful in the proofs
of our results.

Lemma 3.3. Subject to the hypotheses of Theorem 3.1, there exist
positive constants D0 = D0(a, b) and D1 = D1(a, b,B, λ, τ) such that

D0(x
2(t) + y2(t)) ≤ V (t,Xt) ≤ D1(x

2(t) + y2(t)), (3.4)

for all t ≥ 0, x and y. In addition, there exist positive constants D2 =
D2(a, b,G, σ, ψ0) and D3 = D3(a, b) such that equation (3.1) and the
system (1.2) using Itô’s formula (2.3) gives

LV (t,Xt) ≤ −D2(x
2(t) + y2(t)) +D3(|x(t)| + |y(t)|)×

|p(t, x, y, x(t− τ))|, (3.5)

for all t ≥ 0, x and y.

Proof. Let (xt, yt) be any solution of SDDE (1.2). It is clear from equa-
tion (3.1) that

V (t,0) = 0,∀ t ≥ 0,0 = (0, 0) ∈ R
2. (3.6)

Furthermore, the functional V (t,Xt) defined in equation (3.1) can be
represented as

V (t,Xt) =
1

2
(b2 + x−1g(x))x2 +

1

2
by2 +

1

2
(ax+ y)2

+
1

2

∫ 0

−τ

∫ t

t+s
λy2(θ)dθds.

(3.7)

Since the double integrals in (3.7) is non-negative and the fact that
g(x) ≥ bx for all x �= 0, it follows that from equation (3.7) the existence
of a positive constant δ0 = δ0(a, b) such that

V (t,Xt) ≥ δ0(x
2 + y2), (3.8)

for all t ≥ 0, x and y, where

δ0 :=
1

2
min

{
b2 + b+min{a, 1}, b+min{a, 1}

}
.

From equation (3.6) and the inequality (3.8) the functional V (t,Xt)
defined by (3.1) is positive semi-definite. Also, from the inequality (3.8),
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we find that

V (t,Xt) = 0 if and only if x2 + y2 = 0, (3.9)

V (t,Xt) > 0 if and only if x2 + y2 �= 0 (3.10)

and

V (t,Xt) → +∞ as x2 + y2 → ∞. (3.11)

Estimate (3.11) shows that the functional V (t,Xt) is radially unbounded.
Next, since g(x) ≤ Bx for all x �= 0 and the fact that the inequality
2xy ≤ x2 + y2 holds for all (x, y) ∈ R

2, there exists a positive constant
δ1 = δ1(a, b,B, λ, τ) such that

V (t,Xt) ≤ δ1(x
2 + y2) (3.12)

for all t ≥ 0, x and y, where

δ1 :=
1

2
max

{
a2 + b2 + a+B, a+ b+ λτ + 1

}
.

By inequality (3.12) the functional V (t,Xt) of (3.1) is decrescent. Com-
bining inequalities (3.8) and (3.12), we obtain

δ0(x
2 + y2) ≤ V (t,Xt) ≤ δ1(x

2 + y2) (3.13)

for t ≥ 0, x and y. Estimate (3.13) establish the inequality (3.4) with δ0
and δ1 equivalent to D0 and D1 respectively.

Besides, using Itô’s formula defined by equation (2.3) with system
(1.2), we find that

LV (t,Xt) = −ax−1g(x)x2 − [(b+ 1)ψ(t)f(x, y) − a]y2

− 1

2

2∑
i=1

Wi + (b+ 1)σ2x2 +W3 + 2[ax+ (b+ 1)y]×

p(t, x, y, x(t− τ)) + λτy2 − λ

∫ t

t−τ
y2(μ)dμ,

(3.14)

where

W1 := ax−1g(x)x2+4[aψ(t)f(x, y)−(a2+b2)]xy+[(b+1)ψ(t)f(x, y)−a]y2,
W2 := ax−1g(x)x2+2[(2b+1)x−1g(x)−g′(x)]xy+[(b+1)ψ(t)f(x, y)−a]y2
and

W3 := 2[ax+ (b+ 1)y]

∫ t

t−τ
g′(x(μ))y(μ)dμ.

Engaging the following inequalities

4[aψ(t)f(x, y) − (a2 + b2)]2 < ax−1g(x)[(b + 1)ψ(t)f(x, y) − a]

and

[(2b+ 1)x−1g(x)− g′(x)]2 < ax−1g(x)[(b + 1)ψ(t)f(x, y) − a]
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in W1 and W2 respectively, we find

W1 =W2 ≥
[√

ax−1g(x)|x|

−
√

[(b+ 1)ψ(t)f(x, y) − a]|y|
]2

≥ 0

(3.15)

for t ≥ 0, x and y. Moreover, since g′(x) ≤ G for all x, we have

W3 ≤ Gτ(ax2 + (b+ 1)y2) + (a+ b+ 1)G

∫ t

t−τ
y2(μ)dμ (3.16)

for all t ≥ 0, x and y. Using inequalities (3.15) and (3.16) in equation
(3.14), we obtain

LV (t,Xt) ≤ − ax−1g(x)x2 − [(b+ 1)ψ(t)f(x, y) − a]y2

− [λ− (a+ b+ 1)G]

∫ t

t−τ
y2(μ)dμ

+ (b+ 1)σ2x2 +Gτ [ax2 + (b+ 1)y2] + λτy2

+ 2[ax+ (b+ 1)y]p(t, x, y, x(t − τ)),

(3.17a)

for all t ≥ 0, x and y. From hypothesis (iii) of Theorem 3.1 and choose
λ := (a+b+1)G > 0, there exist positive constants δ2 = δ2(a, b,G, σ, ψ0)
and δ3 = δ3(a, b) such that

LV (t,Xt) ≤ −δ2(x2 + y2) + δ3(|x|+ |y|)|p(t, x, y, x(t − τ))|, (3.17b)

for all t ≥ 0, x and y, where

δ2 := min

{
[ab− (b+ 1)σ2]− aGτ, a[(b+ 1)ψ0 − 1]− [a+ 2(b+ 1)]Gτ

}

and

δ3 := 2max{a, b+ 1}.
From inequality (3.17b), inequality (3.5) of Lemma 3.3 holds with δ2
and δ3 equivalent to D2 and D3 respectively. This completes the proof
of Lemma 3.3. �

Proof of Theorem 3.1. Let (xt, yt) be any solution of of the SDDE
(1.2). To prove the theorem, we first show that condition of Assumptions
2.7 and 2.8 of Section 2 hold. To see this, from system (1.2), formula
(2.3) and equation (3.1) there exists a positive constant δ4 = δ4(a, b, σ)
such that∣∣∣∣Vxi(t,Xt)Gik(t,Xt)

∣∣∣∣ ≤ δ4(x
2 + y2), 1 ≤ i ≤ 2, 1 ≤ k ≤ 2, (3.18)

for all t ∈ R
+, Xt ∈ R

2 where

δ4 := σmax{2a+ b+ 1, b+ 1} = (2a+ b+ 1)σ.
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Inequality (3.18) satisfies inequality (2.5) of Assumption 2.8 with σ(t) =
δ4(x

2 + y2).
What’s more, for any fixed 0 ≤ t0 ≤ T <∞, we have∫ T

t0

δ24(x
2 + y2)2dt <∞, (3.19)

so that inequality (3.19) fulfills estimate (2.6). Estimates (3.18) and
(3.19) satisfy conditions of Assumptions 2.8, and therefore Assumption
2.7 follows immediately. Next, we show that hypotheses (i) to (iii) of
Lemma 2.9 hold true. To see these, comparing inequality (3.13) with
item (i) of Lemma 2.9, we find that p = q = 2. Also, using hypothesis
(iv) of Theorem 3.1 in estimate (3.17b), since δ2 > 0,[

|x| − δ−1
2 δ3P

]2
≥ 0 and

[
|y| − δ−1

2 δ3P

]2
≥ 0, ∀ x, y,

there exist positive constants δ5 = δ5(δ2) and δ6 = δ6(δ2, δ3, P ) such that

LV (t,Xt) ≤ −δ5(x2 + y2) + δ6, (3.20)

for all t ∈ R
+, Xt ∈ R

2, where

δ5 :=
1

2
δ2 and δ6 := δ−1

2 δ23P
2.

Inequality (3.20) established the second hypothesis of Lemma 2.9 with
α(t) = δ5, r = 2 and β(t) = δ6. Since r = q = 2, hypothesis (iii) of
Lemma 2.9 follows with γ = 0.

Furthermore, if inequality (3.12) holds and the fact that e−δ5(t−t0) is
decaying rapidly for all t ≥ t0 it follows that

V (t0,X0)e
− ∫ t

t0
α(s)ds ≤ δ1(x

2
0 + y20)e

−δ5(t−t0) ≤ δ1X
2
0 (3.21)

for all t ≥ t0 ≥ 0, X0 ∈ R
2 and X2

0 := x20 + y20. Also,∫ t

t0

[(
γα(u) + β(u)

)
e−

∫ t
u
α(s)ds

]
du = δ−1

5 δ6

[
1− e−δ5(t−t0)

]

≤ δ−1
5 δ6,

(3.22)

for all t ≥ t0. Now from inequalities (3.21) and (3.22) all solutions of
SDDE (1.2) satisfies

EX0‖X(t,X0)‖ ≤
(
δ1X

2
0 + δ−1

5 δ6

)1/2

, ∀ t ≥ t0, (3.23)

thus inequality (2.7) holds.
Finally, in view of inequality (3.22), estimate (2.8) of Corollary 2.11

(i) holds true with M := δ−1
5 δ6. Thus by Corollary 2.11 (i) all solutions

of the SDDE (1.2) are uniformly stochastically bounded. This completes
the proof of Theorem 3.1. �
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Theorem 3.4. Suppose that hypotheses of Theorem 3.1 and inequality
(3.2) hold, then all solutions of SDDE (1.2) are stochastically bounded.

Proof. Let (xt, yt) be any solution of SDDE (1.2). From the proof of
Theorem 3.1, Assumption 2.7 hold. Next, from inequality (3.8) hypoth-
esis (i) of Lemma 2.10 holds with p = 2. Also, from estimates (3.12) and
(3.20), we find

LV (t,Xt) ≤ −δ−1
1 δ5V (t,Xt) + δ6, (3.24)

for all t ∈ R
+, Xt ∈ R

2. Estimate (3.24) establish hypothesis (ii) of
Lemma 2.10 with α(t) := δ−1

1 δ5, q = 1 and β(t) = δ6.
What’s more, since q = 1, it follows from hypothesis (iii) of Lemma

2.10 that γ = 0. Therefore, all hypotheses of Lemma 2.10 are satisfied.
Moreover, ∫ t

t0

[(
γα(u) + β(u)

)
e−

∫ t
u
α(s)ds

]
du ≤ δ1δ

−1
5 δ6, (3.25)

for all t ≥ t0 ∈ R
+, whereM := δ1δ

−1
5 δ6, and that inequality (2.8) holds.

Assumptions of Corollary 2.11 (ii) hold, thus by Corollary 2.11 (ii) all
solutions of SDDE (1.2) are stochastically bounded. This completes the
proof of Theorem 3.4. �

Next, when p(t, x, x′, x(t−τ)) = 0 and p(t, x, y, x(t−τ)) = 0 in SDDEs
(1.1) and (1.2) respectively, we have the following equations.

x′′(t) + ψ(t)f(x(t), x′(t))x′(t) + g(x(t− τ)) + σx(t)ω′(t) = 0, (3.26)

where the functions ψ, f, g, p are continuous functions defined in Section
1. Equation (3.26) when transformed to system of first order is

x′(t) = y(t),

y′(t) = − ψ(t)f(x(t), y(t))y(t) − g(x(t)) − σx(t)ω′(t)

+

∫ t

t−τ
g′(x(s))y(s)ds.

(3.27)

We have the following results.

Theorem 3.5. Suppose that hypotheses (i) to (iii) of Theorem 3.1
are satisfied, then the trivial solution of the SDDE (3.27) is uniformly
stochastically asymptotically stable in the large provided that inequality
(3.2) holds.

Proof. To prove this result, it is enough to show that conditions (i) to
(iii) of Lemma 2.6 hold. To see this let (xt, yt) = Xt ∈ R

2 be any solution
of the SDDE (3.27). From equation (3.6), estimates (3.8), (3.11) and
(3.12), hypotheses (i) and (ii) of Lemma 2.6 hold. In addition, from
(3.1) and (3.27) using Itô’s formula (2.3), we find that

LV (t,Xt) ≤ −δ5(x2 + y2) (3.28)
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for all t ∈ R
+ and Xt ∈ R

2. Estimate (3.28) established hypothesis (iii)
of Lemma 2.6. Hypotheses of Lemma 2.6 hold, thus by Lemma 2.6 the
trivial solution Xt ≡ 0 of (3.27) is uniformly stochastically asymptoti-
cally stable in the large. This completes the proof of Theorem 3.5. �

Next, we shall state and proof stability and uniqueness of a global
solution of the SDDE (3.27). We obtain the following result.

Theorem 3.6. Suppose that b, and G are positive constants:

(i) If hypotheses (i) and (iii) of Theorem 3.1 hold, g(x) ≥ bx for
all x �= 0 and |g′(x)| ≤ G for all x then the trivial solution
of SDDE (3.27) is stochastically stable provided that inequality
(3.2) holds; and

(ii) If hypotheses of Theorem 3.6 (i) hold, then the system (3.27)
possesses a unique global solution for t > 0.

Proof. (i) To prove Theorem 3.6 (i), we will show that hypotheses (i) to
(iii) of Lemma 2.5 hold true. To see this let (xt, yt) = Xt ∈ R

2 be any
solution of the SDDE (3.27). From equation (3.6), inequalities (3.8) and
(3.28), hypotheses of Lemma 2.5 hold, thus by Lemma 2.5 the trivial
solution Xt ≡ 0 of (3.27) is stochastically stable.

(ii) Here, we shall show that conditions (ii) and (iii) of Lemma 2.5 hold
true. From inequalities (3.8) and (3.28) items (ii) and (iii) of Lemma
2.5 are satisfied, hence by Lemma 2.5 the solution of the SDDE (3.27)
possesses a unique global solution for t > 0. This completes the proof of
Theorem 3.6. �

If the forcing term p(t, x, x′, x(t − τ)) is replaced by p(t) defined on
R
+, we have a special case of (1.1) as follows.

x′′(t) + ψ(t)f(x(t), x′(t))x′(t) + g(x(t − τ)) + σx(t)ω′(t) = p(t), (3.29)

where the functions ψ, f, g, p are continuous functions defined in Section
1. Equation (3.29) when transformed to system of first order is

x′(t) = y(t),

y′(t) = − ψ(t)f(x(t), y(t))y(t) − g(x(t)) − σx(t)ω′(t)

+

∫ t

t−τ
g′(x(s))y(s)ds + p(t).

(3.30)

We have the following results.

Corollary 3.7. If hypotheses (i) to (iii) of Theorem 3.1 and inequality
(3.2) hold, if the function p(t) is bounded by a finite constant, then the
solutions (xt, yt) = Xt ∈ R

2 of SDDE (3.30) are

(i) uniformly stochastically bounded; and
(ii) stochastically bounded.

Proof. See the proofs of Theorem 3.1 and Theorem 3.4 respectively. This
completes the proof of Corollary 3.7. �
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4. Examples

In this section we will discuss some special cases to show the correct-
ness of the results in Section 3.
Example 4.1. Consider the second order SDDE

x′′ + (3 + cos 4t)

(
4 + x2 + (x′)2

1 + x2 + (x′)2

)
x′

+

[
2x(t− τ) +

1

2
sin(x(t− τ))

]

+ σx(t)ω′(t) =
2 + t2 + x2 + (x′)2 + |x(t− τ)|
1 + t2 + x2 + (x′)2 + |x(t− τ)| ,

(4.1)

where σ > 0 is a constant and τ > 0 is a constant delay which will be
determined later. If x′ = y, equation (4.1) becomes

x′ = y,

y′ = − (3 + cos 4t)

(
4 + x2 + y2

1 + x2 + y2

)
y −

[
2x+

1

2
sinx

]

− σx(t)ω′(t) +
1

2

∫ t

t−τ

[
4 + cos(x(s))

]
ds

+
2 + t2 + x2 + y2 + |x(t− τ)|
1 + t2 + x2 + y2 + |x(t− τ)| .

(4.2)

From equations (1.2) and (4.2) we obtain the following relations

(i) the function ψ(t) is defined as

ψ(t) := 3 + cos 4t.

since

−1 ≤ cos 4t ≤ 1

for all t, it follows that

ψ(t) = 3 + cos 4t ≥ ψ0 = 2 > 0 ∀ t.
The behaviour or path of ψ(t) for t ∈ [−6π, 6π] is shown in
Figure 1

(ii) The function

f(x, y) := 3 +
1

1 + x2 + y2
.

Since 1+x2+y2 is monotonically increasing for all x and y, thus

f(x, y) ≥ a = 3 > 0,

for all x and y. The behaviour of this non linear function is
shown in Figure 2.
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Figure 1. The behaviour of the function ψ(t) for t ∈ [−6π, 6π].

(iii) The function

g(x) := 2x+
sinx

2

so that
g(x)

x
= 2 +

sinx

2x
.

Since

G(x) =
sinx

2x

lies in the closed interval [−0.1, 0.5], it follows that

0 < 2 = b ≤ g(x)

x
= 2 +

sinx

2x
≤ B = 2.5

for all x �= 0. Furthermore, the derivative of g with respect to x
is

g′(x) := 2 +
1

2
cos x

for all x, hence

|g′(x)| ≤ G = 2.5

for all x. The paths of x−1g(x), sinx
2x and |g′(x)| are depicted in

Figure 3.
(iv) The function

p(t, x, y, x(t− τ)) := 1 +
1

1 + t2 + x2 + y2 + |x(t− τ)| .
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Figure 2. Different views of the function f(x, y) in 3D.

Figure 3. The Paths of Functions
g(x)

x
,G(x) and |g′(x)|.

The fact that 1 + t2 + x2 + y2 + |x(t − τ)| is increasing for all
t ≥ 0, x, y and x(t− τ), we have

|p(t, x, y, x(t − τ))| ≤ P = 2 <∞,

for all t ≥ 0, x, y and x(t− τ).
(v) Using the calculated values of constants a, b,G, ψ0 in item (iii)

of Theorem 3.1, we find that

σ <
√
2

and we choose

σ = 1.3.

We also verified that

(b+ 1)ψ0 > 1.



202 ADEMOLA, AKINDEINDE, OGUNDARE, OGUNDIRAN & ADESINA

Finally, we calculate the value of τ defined by inequality (3.2)
as

τ < min{1.24, 0.67} = 0.67 ≈ 0.7,

and we choose

τ = 0.1.

All hypotheses of Theorem 3.1 and Theorem 3.4 hold, thus by Theorems
3.1 and 3.4 the solutions Xt = (xt, yt) ∈ R

2 of the SDDE (4.2) are

(i) uniformly stochastically bounded; and
(ii) stochastically bounded.

Alternatively, we can show that hypotheses of Assumption 2.7, Lemmas
2.9, 2.10 and Corollary 2.11 hold. To see this, the functional V defined
in equation (3.1) becomes

2V (t,Xt) = 13x2 + 3y2 + (2x+
1

2
sinx)x+ 6xy

+ 15

∫ 0

−0.1

∫ t

t+s
y2(θ)dθds.

(4.3)

The behaviour of V (t,Xt) is shown in Figure 4. Clearly, from equation

Figure 4. The Behaviour of V (t, Xt) for t = 1/15.

(4.3) that

V (t, 0) = 0, ∀t ∈ R
+. (4.4)
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We also confirmed that the double integrals
∫ 0

−0.1

∫ t

t+s
y(θ)dθds =

600t2 − 40t+ 1

120000

is non negative for all t ∈ R
+. Furthermore, since

2 +
sinx

2x
≥ 2

for all x �= 0, we find that

V (t,Xt) ≥ 3

2
(x2 + y2), ∀t ∈ R

+,Xt ∈ R
2 (4.5)

where 3/2 = δ0 of inequality (3.8). We also find (from inequality (4.5))
that

V (t,Xt) = 0 ⇔ x2 + y2 = 0, (4.6)

V (t,Xt) > 0 ⇔ x2 + y2 �= 0 (4.7)

and

V (t,Xt) → +∞ as x2 + y2 → ∞. (4.8)

In addition, since

2 +
sinx

2x
≤ 2.5

for all x �= 0, τ = 0.1 and λ = 15, equation (4.3) becomes

V (t,Xt) ≤ 9.3(x2 + y2), ∀t ∈ R
+,Xt ∈ R

2 (4.9)

where 9.3 = δ1 of inequality (3.12). From inequalities (4.5) and (4.9) we
have

1.5(x2 + y2) ≤ V (t,Xt) ≤ 9.3(x2 + y2), ∀t ∈ R
+,Xt ∈ R

2 (4.10)

Next, using Itô’s formula (2.3) with system (4.2), we obtain

LV (t,Xt) = −6

[
(3 + cos 4t)

(
4 + x2 + y2

1 + x2 + y2

)
− 1

]
y2

− 4

[
3(3 + cos 4t)

(
4 + x2 + y2

1 + x2 + y2

)
− 13

]
xy − 2

[
3

(
2 +

sinx

2x

)

−
(
2 +

cos x

2

)]
xy + 6(x+ y)

∫ t

t−0.1

(
2 +

cos x

2

)
ds + 5.07x2

+ 6(x+ y)

(
2 + t2 + x2 + y2 + |x(t− τ)|
1 + t2 + x2 + y2 + |x(t− τ)|

)

− 6

(
2 +

sinx

2x

)
x2 + 1.5y2 − 15

∫ t

t−0.1
y2(μ)dμ.

(4.11)
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Using the following inequalities

4

[
3(3 + cos 4t)

(
4 + x2 + y2

1 + x2 + y2

)
− 13

]2
<

9

(
2 +

sinx

2x

)[
(3 + cos 4t)

(
4 + x2 + y2

1 + x2 + y2

)
− 1

]
,

[
5

(
2 +

sinx

2x

)(
2 +

cos x

2

)]2
< 9

(
2 +

sinx

2x

)
×

[
(3 + cos 4t)

(
4 + x2 + y2

1 + x2 + y2

)
− 1

]

and ∣∣∣∣2 + cos x

2

∣∣∣∣ < 2.5,

equation (4.11) becomes

LV (t,Xt) ≤ −0.15(x2 + y2) + 6(|x| + |y|)×∣∣∣∣
(
2 + t2 + x2 + y2 + |x(t− τ)|
1 + t2 + x2 + y2 + |x(t− τ)|

)∣∣∣∣,
(4.12)

for all t ∈ R
+ and Xt = (xt, yt) ∈ R

2, where 0.15 = δ2 and 6 = δ3.
From system (4.2) and equation (4.3), we also find that

|Vxi(t,Xt)Gik(t,Xt)| ≤ 11.7(x2 + y2), 1 ≤ i ≤ 2, 1 ≤ k ≤ 2, (4.13)

for all t ∈ R
+ and Xt = (xt, yt) ∈ R

2, where 11.7 = δ4. What’s more, for
any 0 ≤ t0 ≤ T <∞, ∫ T

t0

136.89(x2 + y2)dt <∞. (4.14)

Now, from inequalities (4.13) and (4.14) Assumption 2.8 hold and As-
sumption 2.7 follows immediately. Next we show that hypotheses (i) to
(iii) of Lemma 2.9 hold. From the inequality (4.10) hypothesis (i) of
Lemma 2.9 holds with p = 2, q = 2. Next, since∣∣∣∣

(
2 + t2 + x2 + y2 + |x(t− τ)|
1 + t2 + x2 + y2 + |x(t− τ)|

)∣∣∣∣ ≤ 2 <∞, (|x| − 80)2 ≥ 0,

and
(|y| − 80)2 ≥ 0

for all t ∈ R
+ and Xt = (xt, yt) ∈ R

2, inequality (4.12) becomes

LV (t,Xt) ≤ −0.075(x2 + y2) + 960 (4.15)

for all t ∈ R
+ and Xt = (xt, yt) ∈ R

2, where 0.075 = δ5 and 960 = δ6.
Comparing inequality (4.15) with item (ii) of Lemma 2.9 we find that
α(t) = 0.075, r = 2 and β(t) = 960. Since r = 2 = q item (iii) of Lemma
2.9 follows with γ = 0. Furthermore,

V (t0,X0)e
− ∫ t

t0
α(s)ds ≤ 9.3(x20 + y20) = 9.3X2

0 . (4.16)
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Also, ∫ t

t0

[(
γα(u) + β(u)

)
e−

∫ t
u
α(s)ds

]
du ≤ 12800, (4.17)

for all t ≥ t0 ≥ 0. From estimates (4.16) and (4.17) we have

EX0‖X(t,X0)‖ ≤
(
9.3X2

0 + 12800

)1/2

, (4.18)

for all t0 ∈ R
+ and X0 = (x0, y0) ∈ R

2. Inequality (4.18) fulfills that
of (2.7). Finally hypotheses (i) and (ii) of Lemma 2.9 hold and from
estimate (4.17) hypotheses of Corollary 2.11 (i) hold, thus by Corollary
2.11 (i) all solutions of SDDE (4.2) are uniformly stochastically bounded.

Next, we shall establish the boundedness of solution of SDDE (4.2).
Let (xt, yt) be any solution of SDDE (4.2), from inequality (4.5) item (i)
of Lemma 2.10 holds with p = 2. Moreover from estimate (4.9) we have

0.11V (t,Xt) ≤ x2 + y2, (4.19)

for all t ∈ R
+ and Xt ∈ R

2, where 0.11 = δ−1
1 . Using inequality (4.19)

in (4.15), we have

LV (t,Xt) ≤ −0.008V (t,Xt) + 960, (4.20)

for all t ∈ R
+ and Xt ∈ R

2, where 0.008 = δ−1
1 δ5 and 960 = δ6. Inequal-

ity (4.20) fulfills item (ii) of Lemma 2.10 with q = 1, α(t) = 0.008 and
β(t) = 960. Moreover, since q = 1, we have γ = 0 so that item (iii) of
Lemma 2.10 holds. In addition,

∫ t

t0

[(
γα(u) + β(u)

)
e−

∫ t
u α(s)ds

]
du ≤ 119040, (4.21)

for all t ≥ t0 ≥ 0, where δ1δ
−1
5 δ6 = 119040 = M > 0. From inequali-

ties (4.16) and (4.21) all solutions of SDDE (4.2) satisfy estimate (2.7).
Finally, inequality (4.21) satisfies condition (2.8) of Corollary 2.11 (ii),
hence by Corollary 2.11 (ii) solutions of SSDE (4.2) are stochastically
bounded.

Example 4.2. Consider the SSDE

x′′ + (3 + cos 4t)

(
4 + x2 + (x′)2

1 + x2 + (x′)2

)
x′ +

[
2x(t− τ)

+
1

2
sin(x(t− τ))

]
+ σx(t)ω′(t) = 0,

(4.22)
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its equivalent system is

x′ = y,

y′ = − (3 + cos 4t)

(
4 + x2 + y2

1 + x2 + y2

)
y −

[
2x+

1

2
sinx

]

− σx(t)ω′(t) +
1

2

∫ t

t−τ

[
4 + cos(x(s))

]
ds.

(4.23)

Let (xt, yt) be any solution of system (4.23), the Lyapunov functional
(4.3) is still valid for system (4.23) so that items (i) (ii) (iii) and (vi) of
Theorem 3.5 hold. Thus by Theorem 3.5 the trivial solution of (4.23) is
uniformly stochastically asymptotically stable in the large.

Alternatively, using the background results of Section 2 for system
(4.23), equation (4.4), estimates (4.5) and (4.8) so that items (i) and (ii)
of Lemma 2.5 hold. Moreover, from inequality (4.12), we have

LV (t,Xt) ≤ −0.15(x2 + y2) ≤ 0, (4.24)

for all t ∈ R
+ andXt ∈ R

2. Inequality (4.24) justifies item (iii) of Lemma
2.5. Hypotheses of Lemma 2.5 hold, hence by Lemma 2.5 the trivial
solution Xt ≡ 0 of the SDDE (4.23) is stochastically stable. Besides,
from estimates (4.5), (4.8) and (4.24) system (4.23) has a unique global
solution for t > 0.

Finally, from equation (4.4), inequalities (4.5), (4.8) and (4.9), items
(i) and (ii) of Lemma 2.6 hold. Furthermore, from inequality (4.24) we
have

LV (t,Xt) ≤ −0.15(x2 + y2), (4.25)

for all t ∈ R
+ and Xt ∈ R

2. Inequality (4.25) bears out item (iii) of
Lemma 2.6, hence by Lemma 2.6 the trivial solution Xt ≡ 0 of (4.23) is
uniformly stochastically asymptotically stable in the large.

5. Simulation of Solutions
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Figure 5. The Behaviour of Xt
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Figure 6. The Behaviour of Xt

6. Concluding Remarks

This paper emphases on stability and boundedness of solutions to cer-
tain nonlinear non autonomous second order stochastic delay differential
equations. By employing the second method of Lyapunov, a complete
Lyapunov functional is constructed and used to establish conditions, on
the nonlinear functions appearing in the equations, to guarantee stabil-
ity and boundedness of solutions to the second order stochastic delay
differential equations considered.
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[31] C. Tunç, A note on the bounded solutions to x′′ + c(t, x, x′) + q(t)b(x) = f(t),
Appl. Math. Inf. Sci., 8, (1), 393 - 399, 2014.
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