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SPECTRAL-BERNSTEIN RESIDUAL METHOD FOR

THE SOLUTION OF BOUNDARY VALUE PROBLEM

GOVERNING DEFLECTION OF A BEAM VIA MATLAB
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ABSTRACT. This work focuses on the use of Bernstein basis
function in the application of Spectral method for numerical so-
lution of differential equations governing deflection of prismatic
beam subject to transverse loading. The solution takes the form
of linear combination of Bernstein basis functions and spectral
coefficients. The entire solution process is automated in MAT-
LAB and a set of illustrative examples are given to demonstrate
the effectiveness and accuracy of the technique.
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1. INTRODUCTION

A beam is a structural element used for bearing loads, it is typically
used for resisting vertical loads, shear forces and bending moments.
The loads applied to the beam result in reactive forces at the beam’s
support points. The total effect of all the forces acting on the beam
produces the shear forces and bending moments within the beam,
that in turn induce internal stresses, strains and deflections of the
beam.
This deflection from of a beam is governed by the differential equa-
tion of the form:

y ′′

[ 1 + (y ′ )2 ] 3/2
− T

E I
y =

w x (L − x)

2E I
, 0 ≤ x ≤ L

(1)
With boundary condition: y (0) = y (L) = 0
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Where

x = location along the beam (in)
T = Tension applied (lbs)
E = Y oung′smodulus of elasticity of the beam (psi)
I = moment of inertia (in4)
w = uniform loading intensity (lb/in)
L = length of beam (in)

Over the years numerical methods have proven to be reliable and
such that provide constructive means of obtaining solution to this
equation, for instance Siang-Yu Tsai [11] provided numerical com-
putation for nonlinear beam problems, Thankane and Stys [10] ap-
plied finite difference method for beam equation using mathemat-
ica to establish results for beam with free end. Gunakala et al. [8]
equally published a journal article on a finite element solution of
the beam equation via MATLAB.
In the work of Miletic et al.[7] on Euler-Bernoulli beam equation
with boundary conditions, its stability is discussed under dissipa-
tive finite element method. On the other hand, Vidar Stienstrom [9]
established a numerical simulation of the dynamic beam using the
SBP-SAT method. This method involves a stable boundary treat-
ment of the dynamic beam equation (DBE) which two different sets
of boundary conditions has been conducted using summation-by-
part-simultaneous-approximation-team (SBP-SAT)
This work seeks to establish MATLAB implementation of the Spectral-
Bernstein method in the solution of equation (1). This method is
essentially an implementation of spectral method in the solution of
beam problem using Bernstein polynomial as the basis function.

2. Bernstein polynomials
Bernstein polynomial named after Sergie Natanovich Bernstein in 1912
[4], when he used the polynomials in Bernstein form in a construc-
tive proof for the Stone-Weierstrass approximation theorem [Bernstein
1912]. As a result of numerous properties of this polynomial, it has over
the years been deployed for numerical solution of several equations cut-
ting across different types of differential, Integral and integro-differential
equations.
The Bernstein polynomials of degree n on the interval [ a , b ] are defined
by

Bi , n (t) =
1

(b − a) n

(
n
i

)
(t − a )i (b − t )n − i (2)
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for i = 0, 1 , . . . , n

where

(
n
i

)
= n !

n ! (n − 1 ) !

It satisfies a 3-term recursive relation:

Bk , n (t) = (1 − t)Bk , n− 1 (t) + tB k− 1, n− 1 (t)

Table below shows Bernstein polynomials of degree 1-5 within the nat-
ural interval

Table 1: Properties of Bernstein polynomials as applied in this study
are found in [4].

n Bernstein Polynomials
1 B0 , 1 = 1 − t, B1 , 1 = t
2 B0 ,2 = (1− t )2, B1 , 2 = 2 t (1 − t ) , B2 , 2 = t2

3 B0 , 3 = (1 − t )3, B1,3 = 3 t (1 − t )2 B2,3 = 3 t 2 (1 −
t ) B3 , 3 = t3

4 B0,4 = (1 − t )4, B1,4 = 4 t (1 − t)3 , B2 , 4 = 6 t 2 (1 −
t)2 , B3,4 = 4 t 3 (1− t) , B4,4 = t4

5 B0,5 = (1−t)5, B1,5 = 5 t(1−t)4 B2,5 = 10 t2(1−t)3 , B3,5 =
10 t3(1− t)2 B4,5 = 5 t 4 (1 − t )B5,5 = t5

3. Spectral Method
Spectral methods were developed in a long series paper by S.A Orszag
(1969) [5]. This method is normally accomplished either with collocation
or a Galerkin or a Tau (τ) approach. Spectral method is closely related
with finite element methods (FEM) since they are built on the same
idea; the distinct difference between them is that, spectral method has
an advantage over the finite element method because spectral methods
uses basis functions that are nonzero over the whole domain while finite
element make use of local approach since it uses basis functions that
are nonzero only on small sub-domains. The original tau (τ) method
for ordinary differential equations approximate the unknown function
by a truncated Chebyshev expansion. Thus, Spectral methods have
minimal error when compared to finite element method it has excellent
error properties as describe in numerical analysis of spectral methods by
D.Gottlieb et al. (1977) [5] and B. Mercier (1989) [1]. J.P.Boyd (2000)
[2] discusses Chebyshev and Fourier spectral method. L.N. Trefethen
(2000) [6] established spectral methods in MATLAB. Spectral methods
fundamentals in single domains was established by C.Canuto etal (2006)
[3]. However, this work seeks to explore effectiveness of Bernstein poly-
nomials using the spectral method.
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SPECTRAL-BERNSTEIN METHOD

The heart of the matter is to state without proof the following:
The use of spectral method demands an accomplishing approach which
from previous studies can be collocation, Gelerkin or Tau (τ) approach.
The unknown function y(x) in equation (1) represents the deflection,
this equation is nonlinear and there is no hope to solve it exactly Beam
4 . However, if the deflection is small then (y′)2 is negligible compared
to 1, thus the equation simplifies to:

y ′ ′ − T

EI
y =

wx(L− x)

2EI
(2)

Subject to boundary condition: y (0) = y (L) = 0
We therefore proffer numerical solution to equation (2) since it is a good
approximation to (1) having satisfied the above stated condition. This
method involves representing the deflection y(x) in equation (2) by the
finite expansion:

yn (x) =

n∑
i=0

ci φi (x) (3)

The efficiency of Bernstein polynomial in numerical approximation made
it a choice polynomial in a good number of numerical studies, as a
result of this, this work is structured to have equation (3) as Bernstein
approximate solution of the form;

yn (x, c) =

n∑
i=o

ci(x)Bi,n(x) (4)

Where Bi,n (x) and ci are Bernstein polynomials and spectral coeffi-
cients respectively. For a chosen n, equation (4) is substituted in the
beam equation (2) written as;

R ⇒ y ′ ′ − α y − β x (L − x) = 0 (5)

Where α = T
E I and β = w

2E I
The implication of equation (5) is that when the exact solution y (x) is
substituted into (2), we have the residual equals to zero.
However, when any other function apart from the exact solution is sub-
stituted into (2), it gives a residual which is not equal to zero.

R ⇒ ȳ ′ ′ − α ȳ − β x (L − x) �= 0 (6)

R(x, c) ⇒ d

dx2

(
n∑

i=0

ci Bi,n(x)

)
− α

(
n∑

i=0

ci Bi,n(x)

)

−β t (L− t) �= 0 (7)

Equation (7) is thereafter set to zero at each of (n − 1 ) equally spaced
points within the interval ( 0 , L). This yield a system of (n − 1 )
equations.
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Treatment of Boundary Conditions
At the boundary points of simply supported beam we have;

y ( 0 ) = y (L ) = 0 (8)

Considering properties of Bernstein polynomial is illustrated in [Ola-
gunju Maths Phy] and subjecting equation (4) to (8) we have:

c0 = 0
cn = 0

In conjunction with equation (4), this is a reflection of zero deflection at
the boundary points.
The Approximate Solution
The system of (n − 1) equations from (7) are solved via the use of
algebraic solver to yield numerical values for in (8) is solved via the use
of algebraic solver, this yields numerical values for c1 , c2 , . . . cn− 1

which are substituted into (4) to yield approximate solution;

Bn (y ; t) =
n∑

i=0

ci Bi,n(t)

Absolute error | en (t ) | is obtained with en(t) = y (t) − Bn(y; t),
where y (t) is the exact solution of the beam equation and Bn (y ; t )is
Spectral-Bernstein approximation of the beam equation.
Maximum error is defined as:

MaxE ( y; [ a, b ] ) = En (y) = ‖ en (t) ‖∞ = max
a≤ t≤ b

| en (t) |
The Entire Solution Procedure that accepts inputs from user

is written in MATLAB for n=5 to n=10

%MATLAB CODE FOR BEAM EQUATION n=5 to n=10

syms x a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 A B C D E F

%order=input(’enter the order of the differential equation>>’);

n=input(’enter n>>’);

A=input(’enter A>>’);

B=input(’enter B>>’);

C=input(’enter C>>’);

D=input(’enter D>>’);

intA=input(’enter the interval a>>’);

intB=input(’enter the interval b>>’);

a(1)=a0;

a(2)=a1;

a(3)=a2;

a(4)=a3;

a(5)=a4;

a(6)=a5;

a(7)=a6;

a(8)=a7;

a(9)=a8;
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a(10)=a9;

a(11)=a10;

Bn=0;

for k=0:1:n;

Bn=Bn+a(k+1)*nchoosek(n,k)*(x-intA)^k*((intB-x)^(n-k))/(intA-intB)^n;

end

disp(expand(Bn));

y=Bn;

dy=diff(Bn,x,1);

d2y=diff(Bn,x,2);

bc1=input(’enter BC1 as y dy or d2y-1>>’);

bc2=input(’enter BC2 as y dy or d2y-1>>’);

bc1a=subs(bc1,x,intA);

bc2a=subs(bc2,x,intB);

eq=A*d2y+B*dy+C*y+D;

%Collocation points boundary point non inclusive

cpb=linspace(intA,intB,n+1);

a0=0;

if n==5;

a5=0;

elseif n==6;

a6=0;

elseif n==7;

a7=0;

elseif n==8;

a8=0;

elseif n==9;

a9=0;

elseif n==10;

a10=0;

end

a=0;

eq2=subs(eq,x,cpb(2:n));

eq3=subs(eq2);

s2=solve(eq3);

if n==5

a1=s2.a1;

a2=s2.a2;

a3=s2.a3;

a4=s2.a4;

elseif n==6

a1=s2.a1;

a2=s2.a2;

a3=s2.a3;

a4=s2.a4;

a5=s2.a5;

elseif n==7

a1=s2.a1;

a2=s2.a2;

a3=s2.a3;
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a4=s2.a4;

a5=s2.a5;

a6=s2.a6;

elseif n==8

a1=s2.a1;

a2=s2.a2;

a3=s2.a3;

a4=s2.a4;

a5=s2.a5;

a6=s2.a6;

a7=s2.a7;

elseif n==9

a1=s2.a1;

a2=s2.a2;

a3=s2.a3;

a4=s2.a4;

a5=s2.a5;

a6=s2.a6;

a7=s2.a7;

a8=s2.a8;

elseif n==10;

a1=s2.a1;

a2=s2.a2;

a3=s2.a3;

a4=s2.a4;

a5=s2.a5;

a6=s2.a6;

a7=s2.a7;

a8=s2.a8;

a9=s2.a9;

end

yn1=subs(y);

xx=intA:0.1:intB;

app=subs(yn1,x,xx’);

format short e

ex=input(’enter exact solution>>’);

exact=double(subs(ex,x,xx’));

error1_BPI=double(abs(exact-app));

disp(’ x exact error1_BPI ’)

disp([double(xx’) exact error1_BPI])

clear

Numerical Experiment
Experiment 1 Given that

y′′ − 1.13636 × 10−6 + 5.818 × 10−5t− 1.13636 × 10−6t2 = 0

α = 1.13636 × 10−6 and β = 1.13636 × 10−6

0 ≤ t ≤ 50

y(0) = 0 = y(50)
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determine the deflection of the beam.
The exact solution is;

y(t) = 51.1986t + 855994.3391e0.0011t + 904011.2929e−0.0011t − 1.0t2

−1760005.6320.

Table 2 Table of error for different degree of approximation

t n=3 n=5 n=7 n=9
0 0.0000 e−003 0.0005 e−006 0.4657 e−008 0.4657 e−0010

5 0.0130 e−003 0.1977 e−006 0.5467 e−008 0.5453 e−0010

10 0.0164 e−003 0.1941 e−006 0.4765 e−008 0.4752 e−0010

15 0.0153 e−003 0.1782 e−006 0.5988 e−008 0.5975 e−0010

20 0.0132 e−003 0.1834 e−006 0.5614 e−008 0.5601 e−0010

25 0.0123 e−003 0.1895 e−006 0.4460 e−008 0.4447 e−0010

30 0.0132 e−003 0.1834 e−006 0.5614 e−008 0.5601 e−0010

35 0.0153 e−003 0.1782 e−006 0.5988 e−008 0.5975 e−0010

40 0.0164 e−003 0.1941 e−006 0.4765 e−008 0.4752 e−0010

45 0.0130 e−003 0.1977 e−006 0.5467 e−008 0.5453 e−0010

50 0.0000 e−003 0.0005 e−006 0.4657 e−008 0.4657 e−0010

Fig. 1. Bifurcation plot for a variable viscosity when Γ = Λ = 1.

Experiment 2 Determine the deflection of a beam Given that T =
1000lbs, q = 100(lb/in), L = 120in, I = 625(in4), E = 3.0 ∗ 107(psi)
therefore,

α =
T

EI
and β =

q

2EI

α =
1000

3.0 ∗ 107 × 625
and β =

100

2× 3.0 ∗ 107 × 625

α = 5.3333 × 10−8 and β = 2.6667 × 10−9
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Hence,

y′′(t)− 5.3333 × 10−8y(t)− 2.6667 × 10−9t(t− 120)

0 ≤ t ≤ 120

y(0) = 0 = y(120)

.
The exact solution is;

y(t) = 6.0001t + 924533.6039e0.0002t + 950513.2716e−0.0002t − 0.05t2

−1875046.8755

Table 3: Table of error for different degree of approximation

t n=3 n=5 n=7 n=9
0 0.0000 e−003 0.2561 e−008 0.2561 e−009 0.2561 e−0010

5 0.0005 e−003 0.0130 e−008 0.2584 e−009 0.2584 e−0010

10 0.0009 e−003 0.1681 e−008 0.2251 e−009 0.2251 e−0010

15 0.0011 e−003 0.1797 e−008 0.2496 e−009 0.2496 e−0010

20 0.0012 e−003 0.1686 e−008 0.2548 e−009 0.2548 e−0010

25 0.0013 e−003 0.1496 e−008 0.2538 e−009 0.2538 e−0010

30 0.0013 e−003 0.1250 e−008 0.2599 e−009 0.2599 e−0010

35 0.0012 e−003 0.1077 e−008 0.2672 e−009 0.2672 e−0010

40 0.0011 e−003 0.0976 e−008 0.2765 e−009 0.2765 e−0010

45 0.0011 e−003 0.1287 e−008 0.2512 e−009 0.2512 e−0010

50 0.0010 e−003 0.1525 e−008 0.2359 e−009 0.2359 e−0010

55 0.0010 e−003 0.1773 e−008 0.2181 e−009 0.2181 e−0010

60 0.0010 e−003 0.1524 e−008 0.2457 e−009 0.2457 e−0010

65 0.0010 e−003 0.1307 e−008 0.2647 e−009 0.2647 e−0010

70 0.0010 e−003 0.1525 e−008 0.2359 e−009 0.2359 e−0010

75 0.0011 e−003 0.1287 e−008 0.2512 e−009 0.2512 e−0010

80 0.0011 e−003 0.1209 e−008 0.2532 e−009 0.2532 e−0010

85 0.0012 e−003 0.1077 e−008 0.2672 e−009 0.2672 e−0010

90 0.0013 e−003 0.1483 e−008 0.2366 e−009 0.2366 e−0010

95 0.0013 e−003 0.1729 e−008 0.2305 e−009 0.2305 e−0010

100 0.0012 e−003 0.1686 e−008 0.2548 e−009 0.2548 e−0010

105 0.0011 e−003 0.1797 e−008 0.2496 e−009 0.2496 e−0010

110 0.0009 e−003 0.1449 e−008 0.2484 e−009 0.2484 e−0010

115 0.0005 e−003 0.0130 e−008 0.2584 e−009 0.2584 e−0010

120 0.0000 e−003 0.2328 e−008 0.2328 e−009 0.2328 e−0010

Experiment 3 Determine the deflection of a beam Given that T =
10000lbs, q = 10000(lb/in), L = 120in, I = 121(in4), E = 29 ∗ 106(psi)
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Fig. 2. Bifurcation plot for a variable viscosity when Γ = Λ = 1.

therefore,

α =
T

EI
and β =

q

2EI

α =
10000

29 ∗ 106 × 121
and β =

1000

2× 29 ∗ 106 × 121

α = 2.850 × 10−6 and β = 1.425 × 10−6

Hence,

y′′(t)− 2.850 × 10−6y(t)− 1.425 × 10−6t(120 − t)

0 ≤ t ≤ 120

y(0) = 0 = y(120)

.
The exact solution is;

y(t) = 0.5t2 − 157728.6568e0.0017t − 193148.5362e−0.0017t

−60t+ 350877.1930
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Table 4: Table of error for different degree of approximation

t n=3 n=5 n=7 n=9
0 0.0000 e−001 0.0000 e−003 0.0006 e−007 0.5821 e−0010

5 0.2867 e−001 0.0771 e−003 0.0951 e−007 0.5545 e−0010

10 0.4802 e−001 0.1116 e−003 0.1199 e−007 0.1877 e−0010

15 0.5991 e−001 0.1218 e−003 0.1195 e−007 0.1938 e−0010

20 0.6603 e−001 0.1200 e−003 0.1143 e−007 0.4657 e−0010

25 0.6788 e−001 0.1143 e−003 0.1111 e−007 0.6165 e−0010

30 0.6680 e−001 0.1090 e−003 0.1105 e−007 0.2436 e−0010

35 0.6393 e−001 0.1061 e−003 0.1120 e−007 0.4833 e−0010

40 0.6026 e−001 0.1058 e−003 0.1130 e−007 0.3575 e−0010

45 0.5657 e−001 0.1075 e−003 0.1136 e−007 0.7176 e−0010

50 0.5350 e−001 0.1098 e−003 0.1131 e−007 0.7376 e−0010

55 0.5148 e−001 0.1118 e−003 0.1121 e−007 0.5224 e−0010

60 0.5077 e−001 0.1126 e−003 0.1114 e−007 0.2013 e−0010

65 0.5148 e−001 0.1118 e−003 0.1121 e−007 0.5224 e−0010

70 0.5350 e−001 0.1098 e−003 0.1131 e−007 0.7377 e−0010

75 0.5657 e−001 0.1075 e−003 0.1130 e−007 0.1355 e−0010

80 0.6026 e−001 0.1058 e−003 0.1130 e−007 0.3575 e−0010

85 0.6393 e−001 0.1061 e−003 0.1120 e−007 0.4834 e−0010

90 0.6680 e−001 0.1090 e−003 0.1105 e−007 0.2436 e−0010

95 0.6788 e−001 0.1143 e−003 0.1111 e−007 0.6165 e−0010

100 0.6603 e−001 0.1200 e−003 0.1143 e−007 0.4658 e−0010

105 0.5991 e−001 0.1218 e−003 0.1195 e−007 0.1938 e−0010

110 0.4802 e−001 0.1116 e−003 0.1199 e−007 0.1878 e−0010

115 0.2867 e−001 0.0771 e−003 0.0951 e−007 0.5546 e−0010

120 0.0000 e−001 0.0000 e−003 0.0006 e−007 0.5821 e−0010

4. CONCLUDING REMARKS

The numerical solutions obtained shows that this method is consistent
and numerically stable since the error tend towards zero as we increase
number of degree n of approximation. This method has algorithm which
make it easier since the computation are done faster and accurately on
the computer system for large n. More so, this proposed methods has
been tested on various examples which revealed that this method is very
effective.
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